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Abstract

In this paper we consider the Brownian motion with jump boundary and present a new proof
of a recent result of Li, Leung and Rakesh concerning the exact convergence rate in the one-
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1 Introduction and Notation

This article investigates the so called Brownian motion with jump boundary (BMJB) and related
models, which in recent years gave rise to several interesting results (see e.g. [10], [11], [14], [6]
and [7]). The process itself can be easily described. Consider a Brownian motion (BM) with initial
value x0 in an open domain D ⊂ Rd which we assume to have a C2,α-boundary for convenience.
When hitting the boundary ∂ D of D, the BM gets redistributed in D according to the jump distri-
bution ν , runs again until it hits the boundary, gets redistributed and repeats this behavior forever.
Obviously there are a number of possible generalizations, e.g. the BM can be replaced by a more
general diffusion and the jump distribution might depend on the boundary point which is hit by the
diffusion (see [6]). In this work we restrict ourselves to the model of a diffusion – corresponding to
a ‘good’ elliptic differential operator L – with a fixed jump distribution and partly even to BM with
a fixed jump distribution, a setting already leading to interesting and highly non-trivial questions
concerning e.g. the relation between the spectral gap of the process, the spectrum of the Dirichlet
Laplacian and the jump distribution.

The first main result of this paper establishes in a general setting the continuous dependence of the
spectral gap of the process on the jump distribution, where continuity is meant with respect to the
weak topology. This answers a question posed by I. Ben-Ari and R. Pinsky in [6].

The second main contribution of this work is a direct probabilistic route to the calculation of the
spectral gap γ1(ν) in the case of a one-dimensional Brownian motion in D = (a, b) with an arbitrary
jump distribution based on the famous probabilistic coupling method. This enables to understand
the somewhat surprisingly fast rate to equilibrium and its independence on ν on a ‘path level’. As
was already observed in previous contributions to the theme of the present work it turns out that
γ1(ν) is strictly larger than the lowest eigenvalue λ(a,b)

0 of−1
2

d2

d x2 with Dirichlet boundary conditions
(see e.g. [5] in the general case and [10], [11], [6] and [7] in the case when ν belongs to the class
of Dirac-measures). Even more remarkably the spectral gap γ1(ν) is constant in ν and coincides
with the second Dirichlet eigenvalue λ(a,b)

1 . This has already been known due to a result in [7]
in combination with a theorem in [5]. More precisely, Ben-Ari and Pinsky [7] had determined the
real-valued subset of the spectrum of the generator. Hereupon, Li, Leung and Rakesh [5] established
that the spectrum is in fact a subset of the real line. Their proof is quite involved and uses highly
non-trivial results from Fourier analysis. In [5] it is explicitly mentioned that the authors can not
provide an intuitive explanation for the ν-independence of the spectral gap. This remark together
with the open question concerning the dependence of the spectral gap on the jump distribution –
formulated by Ben-Ari and Pinsky in [7] – initiated the present work.

Despite our purely theoretical study we want to mention that the process considered in this work
or closely related versions are used in financal applications and also as simple models of processes
in neuroscience and operations research. Moreover we point out that some known results together
with (often slightly different) proofs are included in this work in order to be self-contained and
readable independent from previous works.

This work is organized as follows: In section 2, we analyze the L-diffusion with jump boundary
from a probabilistic point of view. More precisely, we re-prove already-known results concerning
exponential ergodicity using classical renewal theory, which yield non-tangible upper bounds for
the convergence rate. A sharp lower bound for this rate is derived in section 3. In section 4 we
answer the question posed by Iddo Ben-Ari and Ross Pinsky by establishing the continuity of the
spectral gap γ1(ν) in ν with respect to the weak topology in a general multi-dimensional setting.
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This continuity property is then used in order to reduce the explicit calculation of γ1(ν) in the case of
a one-dimensional BMJB to jump-distributions ν with compact support in (a, b). Finally, in section 5
we construct an efficient coupling in the case of a one-dimensional BMJB with compactly supported
jump distribution ν . This coupling is used in order to determine γ1(ν).

In the remainder of this introduction we fix the notation and recall some basic facts which will be
needed throughout this work.

1.1 Notation

We introduce the process in higher dimensions and later specialize to the one dimensional situation.
Let D ⊂ Rd be a domain with C2,α-boundary (1 > α > 0) and let (Ω, (Bt)t≥0, (Px)x∈D) denote a
smooth uniformly elliptic diffusion in D which is killed after hitting the boundary of D, i.e. (Bt)t≥0
is a diffusion process associated to a generator L of the form

L :=
1

2

d
∑

i, j=1

ai j(x)∂i j +
d
∑

i=1

bi(x)∂i ,

where the matrix a = (ai j)di, j=1 is uniformly elliptic with symmetric coefficients ai j , i.e. ai j =
a ji . Moreover, we assume that ai j and bi are bounded and have bounded derivatives. Of course,
somewhat weaker assumptions are possible, but we do not aim for such a generality in order to avoid
technical difficulties. This process induces a compact semigroup of bounded operators (PD

t )t≥0 in
L2(D), which is generated by L, with Dirichlet boundary condition as an operator acting in L2(D).
The spectrum Σ(−L) thus consists of a sequence (λD

k )
∞
k=0 converging to infinity. If the operator

L is symmetric then there exists an associated orthonormal basis (of a suitable L2-space) (ϕD
k )
∞
k=0

of eigenfunctions. For example L = 1
2

∑d
i, j=1 ∂i(ai j(x)∂ j) is symmetric in L2(D). We denote by

gD(·, ·), pD(t, ·, ·) the Green- and the transition-function associated to the diffusion in D killed at
the boundary ∂ D. If ν is a probability measure in D we denote by pD(t,ν , y) and gD(ν , y) the
expressions

∫

D

pD(t, x , y)ν(d x) and

∫

D

gD(x , y)ν(d x),

respectively. Observe that (PD
t )t≥0 acts also in a consistent way on Lp(D) for every 1≤ p ≤∞.

Let Wρ,1 be a L-diffusion in D with initial distribution ρ which is killed at ∂ D. Moreover, let
(W ν ,i)i≥2 denote an independent family of killed L-diffusion in D with initial distribution ν , which
is independent of Wρ,1. Set Tρ,ν

1 = inf
�

t ≥ 0 | Wρ,1
t ∈ ∂ D

	

, Sνi = inf
�

t ≥ 0 | W ν ,i
t ∈ ∂ D

	

and
inductively we define Tρ,ν

i+1 := Tρ,ν
i +Sνi+1 for i ≥ 1. The process (Xρ,ν

t ), called a diffusion with jump
boundary starting from the initial distribution ρ, is now defined as

Xρ,ν
t := 1{0≤t<Tρ,ν

1 }W
ρ,1
t +

∞
∑

i=2

1{Tρ,ν
i−1≤t<Tρ,ν

i }W
ν ,i
t−Tρ,ν

i−1
. (1)

If L is just the Laplacian then we simply write BMJB instead of Brownian motion with jump bound-
ary. If the initial distribution is clear from the context we just write (X νt )t≥0 instead of (Xρ,ν

t )t≥0.

The process X νt induces an operator semi-group on L∞(D) by

P ν
t f (x) = Ex

�

f (X νt )
�

=

∫ b

a

f (y)P
�

X νt ∈ d y|X ν0 = x
�

. (2)
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Instead of P(Xρ,ν ∈ ·) we will often write Pρ(X νt ∈ ·) or even Pρ(X t ∈ ·).
Moreover, ‖ · ‖T V denotes the total variation norm and for a measure γ and a measurable function
f we write occasionally 〈γ, f 〉 instead of

∫

f dγ.

It has been shown by previous authors ([10], [11], [12] and [7]) that this process is uniformly
geometrically ergodic, i.e. there exists a probability measure µν such that

− lim
t→∞

1

t
log sup

x∈D





Px
�

X νt ∈ ·)−µ
ν(·)






T V = γ1(ν)> 0, (3)

It is well-known that this is in fact equivalent to

lim
t→∞
−

1

t
log sup

f ∈L∞,‖ f ‖∞=1





P ν
t f −

∫

f dµν






∞ = γ1(ν), (4)

and hence γ1(ν) is referred to as the spectral gap. Since the spectrum Σ of an operator and its
dual coincide, it is reasonable to investigate the spectral properties of P ν

t (t > 0) by studying the
spectrum of S ν

t on the Banach-space L1(D), which is often easier to analyze and defined by

L1(D) 3 g 7→ S ν
t g(·) :=

∫

D

g(x)pν(t, x , ·) d x , (5)

where pν(t, ·, ·) denotes the transition density of the process (X νt )t≥0. The existence of the con-
tinuous transition density pν(t, ·, ·) can be deduced from the existence of the continuous transition
density pD(t, ·, ·) via decomposing Ex[ f (X νt )] according the number of jumps, which occured before
time t. This is formulated in a precise way in equation (1.2) of [7]. In particular this implies that
P ν

t maps bounded countinuous function onto bounded continuous functions.

It can be easily verified that

〈S ν
t g, f 〉= 〈g,P ν

t f 〉 ∀g ∈ L1(D), f ∈ L∞(D), (6)

i.e.
S ν∗

t =P ν
t . (7)

It is well-known from general spectral theory that this implies

Σ(S ν
t ) = Σ(P

ν
t ) for all t ∈R+,

i.e. up to complex conjugation both operators have the same spectrum at a fixed time t. And due to
compactness of S ν

t as shown in great generality in [6] one can apply the spectral mapping theorem
in order to relate the spectrum of the semigroup to the spectrum of its generator (for a very readable
account on semigroup theory we refer to [8]).

2 Geometric Ergodicity using Renewal Theory

In this section we give a short proof of ergodicity and geometric ergodicity of multi-dimensional
L-diffusion with jump boundary. We want to stress that this result is well-known and not at all
surprising. We include this result here, since our arguments slightly differ from the ones used in
previous works and are rather short. The only basic ingredient is renewal theory (see in particular
[2] and [19]).
We will need the following certainly known Lemma.
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Lemma 1. Assume that we have for every x ∈ D that Px
�

X νt ∈ ·
�

−→ µν in the weak topology. Then
µν is the unique invariant measure for X ν , i.e.

µν(A) = Pµν (X
ν
t ∈ A) for all A∈B(D), t ∈R+. (8)

Proof: The weak convergence Px
�

X νt ∈ ·
�

−→ µν implies that for all bounded and continuous
f ∈ C(D)

∫

D

f dµ = lim
s→∞

Ex
�

f (X νt+s)
�

= lim
s→∞

Ex
�

Ex
�

f (X νt+s)|X
ν
s

��

= lim
s→∞

Ex
�

EX νs
f (X νt )

�

= Eµν
�

f (X νt )
�

, (9)

where the last equality follows from the continuity of Ey
�

f (X νt )
�

=
∫

D
pν(t, y, z) f (z) dz with re-

spect to y ∈ D. One way to establish such this continuity is via equation (10).

Now let us provide a direct route for deriving the form of the invariant measure.

The above Lemma suggests to calculate Ex
�

f (X νt )
�

for continuous functions f ∈ C(D).

Ex
�

f (X νt )
�

= Ex
�

f (X νt ), T ν1 > t
�

+Ex
�

f (X νt ), T ν1 ≤ t
�

= Ex
�

f (X νt ), T ν1 > t
�

+

∫ t

0

Ex
�

f (X νt )|T
ν
1 = s

�

Px
�

T ν1 ∈ ds
�

= Ex
�

f (X νt ), T ν1 > t
�

+

∫ t

0

Eν
�

f (X νt−s)
�

Px
�

T ν1 ∈ ds
�

.

(10)

This is called a delayed renewal equation, which can be further analyzed by considering the associ-
ated pure renewal equation

Eν
�

f (X νt )
�

= Eν
�

f (X νt ), T ν1 > t
�

+

∫ t

0

Eν
�

f (X νt−s)
�

Pν
�

T ν1 ∈ ds
�

, (11)

or for short
Z(t) = z(t) + Z ∗ F(t),

with Z(t) = Eν
�

f (X νt )
�

, z(t) = Eν
�

f (X νt ), T ν1 > t
�

and F(t) = Pν
�

T ν1 ∈ [0, t]
�

. It is well-known
from general renewal theory (see e.g. [2]) that

Z(t) = U ∗ z(t),

where U(t) =
∑∞

n=0 F∗n(t) and F∗0 is defined as the Dirac distribution function degenerated at
zero. Since z(t) is directly Riemann integrable (for a definition see e.g. [2]), we can apply the Key
Renewal Theorem (see e.g. [2], p. 155), which says that

Z(t) = U ∗ z(t)→
1

m

∫ ∞

0

z(s)ds, m=

∫ ∞

0

t dF(t) (12)
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to obtain

lim
t→∞

Eν
�

f (X νt )
�

=
1

Eν[T ν1 ]

∫ ∞

0

Eν
�

f (X νs ), T ν1 > s
�

ds

=
1

Eν[T ν1 ]

∫

D

∫ ∞

0

pD(t,ν , y) d t f (y)d y

=

∫

D

f (y)
gD(ν , y)
Eν[T ν1 ]

d y.

(13)

Inserting (13) into (10) yields

lim
t→∞

Ex
�

f (X νt )
�

=

∫

D

f (y)
gD(ν , y)
Eν[T ν1 ]

d y.

We have just derived the form of the invariant measure in a constructive and probabilistically rather
direct way. Let us capture the preceding considerations by

Theorem 1. Let (X νt )t≥0 denote a L-diffusion process in the domain D with an arbitrary jump dis-
tribution ν . Then the process (X νt )t≥0 is ergodic in the sense that for all continuous functions f we
have

lim
t→∞

Ex
�

f (X νt )
�

=

∫

D

f (y)µν(d y), (14)

where the invariant distribution µν is given by

µν(d y) =
1

mν
gD(ν , y) d y,

with

mν = Eν
�

T ν1
�

=

∫

D

gD(ν , y) d y. (15)

It is natural to ask whether it is possible to obtain more information from renewal theory. At this, the
speed of convergence to the invariant measure is of main interest. If the convergence is geometrically
fast with respect to the total-variation norm, the Markov process is called geometrically ergodic.
For general renewal processes, two features of the inter-arrival distribution F are necessary and
sufficient for geometric ergodicity: Firstly, F must be a spread out distribution (for a definition see
[2]), since otherwise even convergence in total variation fails to be true. Secondly, F must have
exponentially decreasing tails (see e.g. [2]). In our setting the inter-arrival distribution Pν

�

T ν1 ∈ ·
�

share both properties, since Pν
�

T ν1 ∈ ·
�

even admits a density.

Hence [2,Theorem 2.10] allows to refine (12) to the assertion

Z(t) = U ∗ z(t) =
1

m

∫ ∞

0

z(s)ds+O(e−εt) (16)

for some sufficiently small ε. In this situation, the function f in the definition of z(t) is only re-
quired to be bounded and measurable. Therefore, equation (16) implies geometric ergodicity of
the Markov process X t . Actually, the tails of Px

�

T ν1 ∈ ·
�

are uniform-exponentially decreasing for
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x ∈ D, and hence uniform ergodicity can be deduced.
Despite these affirmative results, it is impossible to obtain good or even sharp convergence rates
from general renewal theory directly, since the above ε has been deduced from a general coupling
argument which does not fit to our particular situation.
Similar calculations to the ones presented above have already been used in previous works of Grig-
orescu and Kang [10] as well as Ben-Ari and Pinsky [7] in order to show ergodicity of the process.
Grigorescu and Kang [10] consider the Laplace transform of an expression similar to (10) and cal-
culate the associated poles. As one expects from general operator theoretic principles the density of
the equilibrium measure can be characterized as residuum of the pole at 0. Ben-Ari and Pinsky use
a different but still quite analytic approach. A probabilistic approach using the Doeblin condition in
a general setting is presented by Grigorescu and Kang in [12].

3 An upper bound for the rate of convergence

The next natural question consists of calculating the exponential convergence rate. Let us look at
the one-dimensional case. In order to find the exponential rate of convergence the analyst usually
works on the generator level and considers the following eigenvalue problem

−
1

2
u′′ = λu with ‘boundary’ condition u(a) =

∫ b

a

u(y)ν(d y) = u(b). (17)

The exponential rate of convergence γ1(ν) coincides with min{ℜλ 6= 0 | ∃uλ 6= 0 satisfying (17)}.
Observe that (17) includes the non-local boundary condition, which represents the jump mechanism
of the process. Instead of investigating the stationary problem (17), we work directly on the path
level. In this section we first prove a simple upper bound on the convergence rate in the case of the
one-dimensional BMJB in an interval D = (a, b). For this reason we introduce the reflection map R
defined by

R : (a, b)→ (a, b), R(x) := a+ b− x .

Furthermore recall from section 1.1 that (λ(a,b)
k )∞k=0 denotes the sequence of eigenvalues of the

operator −1
2

d2

d x2 in (a, b) with Dirichlet boundary conditions at both endpoints.

Proposition 1. Let d = 1 and let (X t)t≥0 denote the BMJB in (a, b) with jump distribution ν . Then we
have

γ1(ν)≤ λ
(a,b)
1 .

Proof: Due to the trivial inequality




Px(X t ∈ · )−PR(x)(X t ∈ · )






T V ≤ 2 sup
x∈(a,b)





Px(X t ∈ · )−µ






T V (18)

it is enough to estimate the left side of (18) from below. Observe first that by symmetry we have

Px(T
ν
1 ∈ ·) = PR(x)(T

ν
1 ∈ ·). (19)
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Using (19) in the last step we obtain

Px(X t ∈ A)−PR(x)(X t ∈ A) = Px(X t ∈ A; T ν1 > t)−PR(x)(X t ∈ A; T ν1 > t)

+

∫ t

0

Pν(X t−r ∈ A)Px(T
ν
1 ∈ dr)−

∫ t

0

Pν(X t−s ∈ A)PR(x)(T
ν
1 ∈ ds)

= Px(Bt ∈ A; T(a,b) > t)−PR(x)(Bt ∈ A; T(a,b) > t),

where (Bt)t≥0 is a one-dimensional Brownian motion and T(a,b) = inf{t > 0 | Bt /∈ (a, b)}. From

the spectral decomposition of the killed BM in (a, b), ϕ(a,b)
2i (x) = ϕ

(a,b)
2i (R(x)) and ϕ(a,b)

2i+1(x) =

−ϕ(a,b)
2i+1(R(x)) for all i ∈N∪ {0} we deduce

Px(X t ∈ A)−PR(x)(X t ∈ A) = Px(Bt ∈ A; T(a,b) > t)−PR(x)(Bt ∈ A; T(a,b) > t)

=
∞
∑

i=0

e−λ
(a,b)
i tϕ

(a,b)
i (x)

∫

A

ϕ
(a,b)
i (y) d y −

∞
∑

i=0

e−λ
(a,b)
i tϕ

(a,b)
i (R(x))

∫

A

ϕ
(a,b)
i (y) d y

= 2
∞
∑

i=0

e−λ
(a,b)
2i+1 tϕ

(a,b)
2i+1(x)

∫

A

ϕ
(a,b)
2i+1(y) d y.

This together with (18) clearly proves the assertion of the proposition.

One should keep in mind the important role of the symmetry (x , R(x)) used heavily in Proposition
(1). This symmetry will occur also later in the proof of the matching upper bound.

Thus the straightforward arguments used in this section demonstrate in a rather direct way that in
the case of a one-dimensional BMJB with jump distribution ν

γ1(ν)≤ λ
(a,b)
1 . (20)

Before we start with a more precise investigation of the spectral gap for general jump distributions
we ask whether the upper bound in (20) is sharp at least in a very special situation. We have seen
that the L-diffusion with jump distribution ν is ergodic and the unique invariant distribution µν has
the form

µν(d y) =
1

mν

∫

D

gD(x , y)ν(d x) d y,

where mν =
∫

D

∫

D
gD(x , y)ν(d x) d y . It seems reasonable that the speed of convergence to equilib-

rium should be fast whenever jump- and invariant distribution coincide. This immediately suggest
the question for the existence of a jump measure such that ν = µν . For simplicity let L now be
a symmetric operator, for which the theory of quasilimiting distributions is more transparent. Still
the result also holds up to obvious modifications in the non-symmetric case, but the corresponding
results on the quasilimiting behavior are scattered widely in the literature. It turns out that there
is a suitable jump-measure, namely the quasistationary distribution for the killed L-diffusion in D,
which is given by ρD := ϕD

0 (y) d y (normalized to give total mass 1). The notation quasistationary
refers to the fact that for measurable A⊂ D

PρD

�

Wt ∈ A | TD > t
�

=

∫

A

ϕD
0 (y) d y = ρD(A),
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where (Wt)t≥0 denotes an L-diffusion and TD = inf{t > 0 | Wt ∈ ∂ D}. This fact has already
been noticed by Ben-Ari and Pinsky in Theorem 1 of [6], where it has also been shown that the
quasistationary distribution defines the unique fixed point of the equation µν = ν .

Hence if (20) would be tight, it should be at least tight for the BMJB in D with jump distribution
ν = ρD. That this is actually the case is the content of the following

Proposition 2 ([6], Theorem 1). Let L be a symmetric operator in D and let the jump distribution ν
be given by the quasistationary distribution ρD(d y) = ϕD

0 (y) d y. Then we have

γ1(ρD) = λ
D
1 .

Proof: The proof differs from the one given in [6] and seems to be more probabilistic to us. Let
(X t)t≥0 denote the L-diffusion in D with jump distribution ν(d y) = ϕ0(y) d y . For measurable A we
decompose Px(X t ∈ A) according to whether there has been a jump before time t:

Px(X t ∈ A) = Px(X t ∈ A, T ν1 ≤ t) +Px(X t ∈ A, T ν1 > t)

=

∫ t

0

Pν
�

X t−s ∈ A
�

Px(T
ν
1 ∈ ds) +Px(X t ∈ A | T ν1 > t)Px(T

ν
1 > t)

= ν(A)− ν(A)Px(T
ν
1 ≥ t) +Px(X t ∈ A | T ν1 > t)Px(T

ν
1 > t)

= ν(A) +
�

Px(X t ∈ A | T ν1 > t)− ν(A)
�

Px(T
ν
1 > t).

Thus observing that − limt→∞
1
t

log‖Px(X νt ∈ · | T ν1 > t)− ν(·)‖T V = λD
1 − λ

D
0 (see e.g. [16] and

[9]) we arrive at the assertion of the Lemma.

4 Continuity of γ1(ν)

Rather simple symmetry-arguments have been used to prove that γ1(ν) ≤ λ1. For the exact evalua-
tion of γ1(ν) a deeper analysis is necessary. One natural approach consists of reducing the problem
to ‘simple’ jump distributions by certain continuity considerations. The fact that the equilibrium
measure µν depends continuously on ν with respect to the weak topology raises the question,
whether the same is true for the spectral gap λ(ν). The answer is affirmative and we want to
stress that the results of this chapter are valid in the multi-dimensional situation.

Instead of dealing with P ν
t directly, we investigate the behavior of the semigroup S ν

t defined in
(5), where we know that S ν∗

t = P ν
t . The main reason for this procedure is that in contrast to P ν

t ,
S ν

t turns out to be strongly continuous (see [6] and [7]) so that the general theory of strongly
continuous semigroups (see e.g. [8]) can be applied. For example, this makes it possible to verify
compactness for Sνt and to relate its spectrum to the spectrum of its generator by application of
known results of semigroup theory (see e.g. [7]). The following two basic results from operator-
theoretic perturbation theory, which are due to Kato, will be applied later on to the semigroup S ν

t .

Theorem 2 ([13], p.178). Let T be a closed operator in the Banach space X and let σ(T ) be separated
into two parts Σ′(T ) and Σ′′(T ) by a closed curve Γ, i.e. a rectifiable, simple closed curve Γ can be
drawn so as to enclose an open set containing Σ′(T ) in its interior and Σ′′(T ) in its exterior. Then
one has a decomposition of T according to the decomposition of X = M ′(T )⊕M ′′(T ) of the space in
such a way that the spectra of the parts TM ′ and TM ′′ coincide with Σ′(T ) and Σ′′(T ), respectively and
TM ′ ∈ B(X ).
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In the following δ̂(·, ·) denotes the metric which defines the generalized convergence of closed
operators (compare [13] p. 202).

Theorem 3 ([13], p.212). Let T be a closed operator in the Banach space X and let σ(T ) be separated
into two parts Σ′(T ) and Σ′′(T ) by a closed curve Γ, i.e. a rectifiable, simple closed curve Γ can be
drawn so as to enclose an open set containing Σ′(T ) in its interior and Σ′′(T ) in its exterior. Let
X = M ′(T )⊕ M ′′(T ) be the associated composition of X . Then there exists a δ > 0, depending on
T and Γ with the following properties. Any closed operator T̃ on X with δ̂(T̃ ,T ) < δ has spectrum
σ(T̃ ) likewise separated by Γ into two parts Σ′(T̃ ) and Σ′′(T̃ ). In the associated decomposition
X = M ′(T̃ )⊕ M ′′(T̃ ), M ′(T̃ ) and M ′′(T̃ ) are respectively isomorphic with M ′(T ) and M ′′(T ). In
particular dim M ′(T̃ ) = dim M ′(T ) and dim M ′′(T̃ ) = dim M ′′(T ) and both Σ′(T̃ ) and Σ′′(T̃ ) are
non-empty if this is true for T . The decomposition X = M ′(T̃ )⊕ M ′′(T̃ ) is continuous in T̃ in the
sense that the projection P[T̃ ] of X onto M ′(T̃ ) along M ′′(T̃ ) tends to P[T ] in norm as δ̂(T̃ , T )→ 0.

In order to apply Theorem 3 observe that for a bounded operator T and a sequence of closed
operators (Tn)n we have by Theorem 2.23 in [13] that limn→∞ δ̂(Tn,T ) = 0 if and only if the
operators Tn are bounded for n large enough and limn→∞ ‖Tn −T ‖ = 0. Now, Theorems 2 and 3
immediately imply the following conclusion.

Corollary 1. Assume that (Tn)n∈N is a sequence of compact operators in a Banach space X which
converges with respect to the operator norm to a (necessarily compact) operator T and let Γ be a curve
such that Γ divides the spectrum Σ(T ) of T into a two parts, one finite part Σ′(T ) lying inside the
curve with no limit point and one part Σ′′(T ) lying outside this curve. Then for n large enough the
spectra Σ(Tn) of the operators Tn are also separated by Γ and since dim M ′(Tn) = dim M ′(T ) < ∞
and since TnP[Tn] converges in operator norm to T P[T ] as n→∞ we also have Σ′(Tn)→ Σ′(T ) as
n→∞ with respect to the Hausdorff metric. Furthermore, If m (mn

l ) denotes the algebraic multiplicity

of the eigenvalue λ (λn
l ) of T (Tn), then

∑kn
l=1 mn

l = m.

Now we turn to the application of these abstract results to the situation at hand. We want to stress
that several of the following arguments are taken from [7]. We give rather detailed arguments since
some care concerning the dependence of various estimates on the jump distribution is necessary.

We will need the following Lemmata. These are probably well-known, but we have not been able to
locate them in the literature in the form we use them.

Lemma 2. Let D ⊂ Rd be a bounded domain and let as above (λD
n )n∈N0

and (ϕD
n )n∈N0

denote the
sequence of eigenvalues (counted according to their multiplicities) and the associated eigenfunctions of
the symmetric operator −L

L :=−
1

2

d
∑

i, j=1

∂i(ai j(·)∂ j)

in D with Dirichlet boundary conditions, respectively. Then for any ε > 0 we have

∞
∑

k=0

e−λ
D
k ε‖ϕD

k ‖
2
∞ <∞. (21)

Proof: By Jensen’s inequality we have

(ϕD
k (x))

2 = e2λD
k t(PD

t ϕ
D
k (x))

2 = e2λD
k t�Ex

�

ϕD
k (Bt),τD > t

��2 ≤ e2λD
k tEx

�

ϕD
k (Bt)

2,τD > t
�

.
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Since supx ,y∈D pD(t, x , y)≤ t−d/2 (see e.g. [1]), we conclude that

‖ϕD
k ‖

2
∞ ≤ e2λD

k t t−d/2 ‖ϕD
k ‖

2
L2(D) = e2λD

k t t−d/2. (22)

Choosing t = ε
4

in (22), the finiteness of the sum in (21) follows from Weyl’s theorem, which states

that for appropriate constants c1, c2 > 0 one has c1k2/d ≤ λD
k ≤ c2k2/d (see e.g. [3], Theorem 6.3.1).

A simple application of Lemma 2 and the dominated convergence theorem gives

Corollary 2. Let D ⊂ Rd be a bounded domain with smooth boundary and L a symmetric diffusion
operator with Dirichlet boundary conditions. Let TD = inf{t > 0 | Bt ∈ ∂ D} the first hitting time of the
boundary of D the L-diffusion process (Bt)t≥0 starting in x ∈ D then the distribution of TD is absolutely
continuous with a density which is jointly continuous in (x , t) ∈ D× (0,∞).

Let L0 =
1
2

∑d
i, j=0 ∂i

�

ai j∂ j
�

be the generator of a uniformly elliptic reversible diffusion in Rd with
smooth and bounded coefficients written in divergence form or

L0 =
1

2

d
∑

i, j=1

ai j∂i j +
�1

2

d
∑

i=0

∂iai j
�d

j=0 · ∇=:
1

2

d
∑

i, j=1

ai j∂i j +
d
∑

i=0

βi · ∇

in non-divergence form. We have seen that the first hitting time distribution of the set ∂ D has a
density which is continuous with respect to the starting point of the L0-diffusion. We will now use
this result in order to extend this to diffusions of the form

L := L0+ γ · ∇,

with γ ∈ (Cc(Rd))d .

Lemma 3. Let Px denote the law of a L-diffusion and let as above TD = inf{t > 0 | Bt ∈ ∂ D} denote
the first hitting time of ∂ D. Then Px(TD ∈ ·

�

is absolutely continuous with a density h(·, ·) that is
jointly continuous in (x , t) ∈ D× (0,∞).

Proof: Let us denote by Px the path space measures associated to the diffusion generated by L
and let P0

x denote the path space measures corresponding to the L0-diffusion. Then by the Girsanov
theorem (see e.g. section 1.9 in [17]) one has

dPx

dP0
x
�Ft
= Nt ,

where

Nt := exp
�
∫ t

0

a−1γ(Xs) dX̄s −
1

2

∫ t

0

〈a−1γ(Xs),γ(Xs)〉Rd ds
�

,

where X̄ t = X t −
∫ t

0
β(Xs) ds. Therefore we have

Px
�

TD > t
�

= E0
x

�

Nt ; TD > t
�

,

since we already know that the exit time distribution P0
x(TD ∈ ·) of the reversible diffusion corre-

sponding to L0 is absolute continuous with respect to the Lebesgue measure the same holds true for
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Px
�

TD ∈ ·
�

. Thus there is a function h(x , t) (x ∈ D, t > 0), which is jointly measurable such that
for x ∈ D and measurable A⊂ (0,∞)

Px(TD ∈ A) =

∫

A

h(x , s) ds.

It remains to show that h(x , t) has a continuous modification in (x , t) ∈ D× (0,∞). As a first step
let us show that h(x , t) is a.s. uniformly bounded in x for all t ≥ c > 0, i.e. h(x , t) ≤ Mt ≤ Mc <

∞ ∀t ∈ [c,∞]. We will use Lebesgue’s version of the fundamental theorem of calculus to conclude
that for almost every (x , t) ∈ D× (ε,∞)

lim
r,u→0

1

2u

1

|B(x , r)|

∫

B(x ,r)
Px
�

TD ∈ (t − u, t + u)
�

d x = h(x , t) (23)

as well as

1

2u

1

|B(x , r)|

∫

B(x ,r)
Px
�

TD ∈ (t − u, t + u)
�

d x

=
1

2u

1

|B(x , r)|

∫

B(x ,r)

∫

D

pD(t − ε, x , y)Py
�

TD ∈ (ε− u,ε+ u)
�

d y d x

=
1

2u

1

|B(x , r)|

∫

B(x ,r)

∫

D

pD(t − ε, x , y)Py
�

TD ∈ (ε− u,ε+ u)
�

d y d x

=
1

2u

1

|B(x , r)|

∫ ε+u

ε−u

∫

B(x ,r)

∫

D

pD(t − ε, x , y)h(y, s) d y d x ds

→
∫

D

pD(t − ε, x , y)h(y,ε) d y

(24)

as r, u→ 0+. Using equations (23) and (24) together with the fact that for very positive t > 0 the
operaror PD

t maps an integrable function to a bounded one we deduce that for some constant C > 0

|h(x , t)− h(z, s)| =
�

�

�

�

∫

D

(pD(t − u, x , y)− pD(s− u, z, y))h(y, u)d y

�

�

�

�

≤ C

∫

D

|pD(t − u, x , y)− pD(s− u, z, y)| d y. (25)

Due to continuity of pD(·, ·, y), we see that for (z, s) → (x , t) ∈ D × (0,∞) the integrand in (25)
converges pointwise to zero, and hence we obtain by Lebesgue’s theorem that

lim
(z,s)→(x ,t)

|h(x , t)− h(z, s)|= 0,

which yields the claim.

Lemma 4. Let (νn)n∈N a sequence of probability measures in D converging weakly to the probability
measure ν . Then for every ε > 0

lim
n→∞

sup
s>ε,y∈D

�

�pD(s,νn, y)− pD(s,ν , y)
�

�= 0.
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Proof: First observe that due to limn→∞ νn = ν weakly we have for every s > 0 and z ∈ D

lim
n→∞

pD(s,νn, z) = pD(s,ν , z)

as well as

lim
n→∞

∫

D

pD(s,νn, z) dz =

∫

D

pD(s,ν , z) dz.

Thus as a consequence of Scheffé’s lemma we conclude that

lim
n→∞

∫

D

�

�pD(s,νn, z)− pD(s,ν , z)
�

� dz = 0. (26)

Observe now that due to the Chapman-Kolmogorov equations

�

�pD(ε+ s,νn, z)− pD(ε+ s,ν , z)
�

�=

�

�

�

�

∫

D

�

pD(ε/2,νn, y)− pD(ε/2,ν , y)
�

pD(ε/2+ s, y, z) d y

�

�

�

�

≤
�

sup
s≥0;y,z∈D

pD(ε+ s, y, z)
�

∫

D

�

�pD(ε/2,νn, y)− pD(ε/2,ν , y)
�

�d y.

Since according to equation (26) the right hand side converges to 0 the assertion of the Lemma is
shown.

Lemma 5. Assume that νi
w→ ν . Then there exists for each t ≥ 0 an α = α(t) < 1 such that for all

ν̃ ∈ {ν ,ν1,ν2, . . . } and x ∈ D
Px
�

T ν̃i+1 ≤ t)≤ αi ∀i ∈N.

Proof: For ν̃ ∈ {ν ,ν1,ν2, . . . } define

cν̃ = cν̃(t) = 1−
∫

D

∫

D

pD(t, x , y) d y ν̃(d x).

As a direct consequence of the Markov property we get for ν̃ ∈ {ν ,ν1,ν2, . . . }

Px
�

T ν̃i+1 ≤ t)≤
�

P(∃0≤ s ≤ t : W ν̃ ,1
s ∈ ∂ D)

�i

= c i
ν̃ .

(27)

From limn→∞ νn = ν it follows that for all t > 0 we have

cνn
→ cν for n→∞,

which implies that for all ε > 0 there exists n(ε) with the property that for n≥ n(ε)

cνn
≤ cν + ε. (28)

For ε small enough (e.g. ε≤ 1−cν
2

) the right hand side in (28) is strictly smaller than one. Since

cνn
< 1 for all n ∈ {1, 2, . . . , n(ε)}.

Let
α=max{cν1

, cν2
, . . . , cνn(ε)

, cν + ε}.

Obviously, α= α(t)< 1 and since cν̃ ≤ α, the result follows from (27).
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Before we state and prove the main result of this section, let us introduce important notations, which
are necessary for illustrating the structure of the proof. Let

hρ(t) =
d

d t
Pρ
�

T ν1 < t
�

(29)

and for n≥ 2

hρ,ν
n (t) =

d

d t
P
�

Tρ,ν
n < t

�

=
�

hρ ∗ (hν)∗,n−1�(t). (30)

In the case when ρ = δx is the Dirac measure in x , we will write hx ,ν
n (t) instead of hδx ,ν

n (t). Observe
that hρ(t) is nothing else than the density of the first exit time of the L-diffusion with the initial
distribution ρ from the domain D. Moreover, set for n≥ 1

S ν
0,t g(z) :=

∫

D

pD(t, x , z)g(x) d x and S ν
n,t g(z) :=

∫

D

∫ t

0

pD(t − s, y, z)g(y)hx ,ν
n (s) ds ν(d y)d x

and similarly

P ν
0,t f (x) :=

∫

D

pD(t, x , y) f (y) d y and P ν
n,t f (x) :=

∫

D

∫ t

0

pD(t − s, y, z) f (z)hx ,ν
n (s) ds ν(d y)dz.

With these notations let us recall the definition of Pνt and write it in another way. For all f ∈ L∞ we
have

P ν
t f (x) = Ex

�

f (X νt )
�

= Ex
�

f (X νt ), T ν1 > t
�

+
∞
∑

n=1

Ex
�

f (X νt ), T νn ≤ t < T νn+1

�

= Ex
�

f (X νt ), T ν1 > t
�

+
∞
∑

n=1

∫ t

0

Ex
�

f (X νt ), T νn+1 > t|T νn = s
�

Px
�

T νn ∈ ds
�

= Ex
�

f (X νt ), T1
ν > t

�

+
∞
∑

n=1

∫ t

0

Eν
�

f (X νt−s), Sνn+1 > t − s
�

hx ,ν
n (s)ds

=

∫

D

pD(t, x , y) f (y) d y +
∞
∑

n=1

∫ t

0

∫

D

∫

D

pD(t − s, y, z) f (z)ν(d y)dz hx ,ν
n (s) ds

=P ν
0,t f (x) +

∞
∑

i=1

P ν
i,t f (x).

(31)

and hence

P ν
t =

∞
∑

i=0

P ν
i,t . (32)

A dual version of this calculation immediately yields

S ν
t =

∞
∑

i=0

S ν
i,t . (33)

Moreover, it is obvious that

〈S ν
i,t g, f 〉= 〈g,P ν

i,t f 〉 ∀g ∈ L1, f ∈ L∞, i ∈N∪ {0}, (34)
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and hence
S ν∗

i,t =P
ν

i,t ∀i ∈N∪ {0}.

We are now able to prove our first main result. During the proof we use ‖ · ‖p,p to denote
the operator norm of a bounded linear operator mapping Lp to Lp.

Theorem 4. The spectral gap γ1(ν) of the generator of the semigroup (S ν
t )t≥0 acting in L1(D) depends

continuously on the jump distribution ν with respect to the weak topology.

Several ideas of the proof are taken from [7], where they are used for a different purpose.

Proof: We will use Kato’s results cited in the beginning of this section. In order to apply these
results we have to show that for admissable distributions ν ,ν1,ν2, . . .

lim
n→∞

νn = ν with respect to the weak topology ⇒ lim
n→∞

‖S νn
t −S

ν
t ‖1,1 = 0. for all t ∈R+

We have

‖S ν
t −S

νn
t ‖1,1 ≤





S ν
t −

N
∑

i=0

S ν
i,t







1,1

︸ ︷︷ ︸

I(N ,ν)

+






N
∑

i=0

(S ν
i,t −S

νn
i,t )






1,1

︸ ︷︷ ︸

I I(N ,ν ,νn)

+




S νn
t −

N
∑

i=0

S νn
i,t







1,1

︸ ︷︷ ︸

I I I(N ,νn)

.

By duality and Lemma 5 we obtain

I(N ,ν) =






∞
∑

i=N+1

S ν
i,t







1,1 =






∞
∑

i=N+1

P ν
i,t







∞,∞

= sup
f ∈L∞:|| f ||∞=1

Ex
�

f (X νt ); T νN+1 ≤ t
�

≤ sup
x
Px
�

T νN+1 ≤ t
�

≤ α(t)N . (35)

Observe that by Lemma 5 inequality (35) holds for all ν̃ ∈ {ν ,ν1,ν2, . . . ,νn, . . .} with νn→ ν (in the
weak topology). Hence, for all ε > 0 we can find n0 = n0(ε) such that for N ≥ n0 we have

I(N ,ν)≤ ε, I I I(N ,νn)≤ ε. (36)

Since I I(N ,ν ,νn) ≤ N maxi∈{1,2,...,n0}{




S ν
i,t −S

νn
i,t







1,1}, it remains to show that for all ε > 0 there
exists n1 such that

max
i∈{1,2,...,n0}

{‖S ν
i,t −S

νn
i,t ‖1,1} ≤

ε

N
∀n≥ n1.

Since we maximize over finitely many elements, it is easy to see that it suffices to show that every
ε > 0 and every i0 ∈ {1, 2, . . .} there exists n1 such that

‖S ν
i0,t −S

νn
i0,t‖1,1 ≤

ε

N
∀n≥ n1. (37)

1228



We have by duality

‖S ν
i0,t −S

νn
i0,t‖1,1 = ‖P ν

i0,t −P
νn

i0,t‖∞,∞

= sup
x∈D

sup
|| f ||∞=1

�

�

�

�

∫ t

0

∫

D

pD(t − s,ν , z) f (z) dzhx ,ν
i0
(s) ds−

∫ t

0

∫

D

pD(t − s,νn, z) f (z) d yhx ,νn
i0
(s) ds

�

�

�

�

≤ sup
x∈D

sup
|| f ||∞=1

�

�

�

�

∫ t

0

∫

D

pD(t − s,ν , z) f (z) dzhx ,ν
i0
(s) ds−

∫ t

0

∫

D

pD(t − s,νn, z) f (z) dzhx ,ν
i0
(s) ds

�

�

�

�

+ sup
x∈D

sup
|| f ||∞=1

�

�

�

�

∫ t

0

∫

D

pD(t − s,νn, z)hx ,ν
i0

ds f (z) dz−
∫

D

∫ t

0

pD(t − s,νn, z)hx ,νn
i0
(s) ds f (z) dz

�

�

�

�

= sup
x∈D

sup
|| f ||∞=1

�

�

�

�

∫ t

0

�
∫

D

(pD(t − s,ν , z)− pD(t − s,νn, z)) f (z) dz

�

hx ,ν
i0
(s) ds

�

�

�

�

+ sup
x∈D

sup
|| f ||∞=1

�

�

�

�

∫ t

0

∫

D

pD(t − s,νn, z) f (z) dz
�

hx ,ν
i0
(s)− hx ,νn

i0
(s)
�

ds

�

�

�

�

= Ĩn( f ) + Ĩ In( f ).

The first term can be estimated by

Ĩn( f )≤ sup
x∈D

�

�

�

�

∫ t

0

�
∫

D

|pD(t − s,ν , z)− pD(t − s,νn, z)| dz

�

︸ ︷︷ ︸

a(n,t−s)

hx ,ν
i0
(s) ds

�

�

�

�

= sup
x∈D

�

�

�

�

∫ t

0

a(n, t − s)hx ,ν
i0
(s) ds

�

�

�

�

≤ sup
x∈D

�

�

�

�

∫ t−ε

0

a(n, t − s)hx ,ν
i0
(s) ds

�

�+ sup
x∈D

�

�

�

�

∫ t

t−ε
a(n, t − s)hx ,ν

i0
(s) ds

�

�

�

�

,

where ε ∈ (0, t) is arbitrary. Using a(n, t − s) ≤ 2 for every n ∈ N and
∫ t

0
hx ,ν

i0
(s) ds ≤ 1 for every

x ∈ D we conclude that

Ĩn( f )≤ sup
s≤t−ε

a(n, t − s) + 2sup
x∈D

∫ t

t−ε
hx ,ν

i0
(s) ds. (38)

Due to Lemma 4 the first term in (38) converges to 0 for every ε > 0. Whereas the second term in
(38) can be made arbitrary small by chosing ε small enough (see Lemma 3 in [7]). Thus

lim sup
n→∞

Ĩn( f ) = 0.

In order to estimate Ĩ In( f ), let

h̃x
j,i0− j−1 = hx ∗ (hν ∗ · · · ∗ hν)

︸ ︷︷ ︸

j terms

∗ (hνn ∗ · · · ∗ hνn)
︸ ︷︷ ︸

i0− j−1 terms

. (39)
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From commutativity of the convolution it follows

h̃x
j,i0− j−1− h̃x

j−1,i0− j(s) = hx ∗ [hν ∗ · · · ∗ hν
︸ ︷︷ ︸

j−1 terms
∗(hν − hνn) ∗ hνn ∗ · · · ∗ hνn

︸ ︷︷ ︸

i0− j−1 terms
](s)

= (hν − hνn) ∗ hx ∗ [hν ∗ · · · ∗ hν ∗ hνn ∗ · · · ∗ hνn](s)

= (hν − hνn) ∗ h̃x
j−1,i0− j−1. (40)

Therefore we have

Ĩ In( f ) ≤ ‖ f ‖∞ sup
x∈D

∫ t

0

|hx ,ν
i0
(s)− hx ,νn

i0
(s)| ds

≤ sup
x∈D

i0−2
∑

j=0

∫ t

0

|h̃x
j+1,i0− j−2− h̃x

j,i0− j−1|(s) ds

= sup
x∈D

i0−2
∑

j=0

∫ t

0

|(hν − hνn) ∗ h̃x
j,i0− j−2|(s) ds

≤ (i0− 1) sup
x∈D

max
j∈{0,1,...,i0−2}

∫ t

0

|(hν − hνn)| ∗ h̃x
j,i0− j−2(s) ds

Fubini
≤ (i0− 1)

∫ t

0

|(hν − hνn)|(s)ds× sup
x∈D

∫ t

0

h̃x
j0,i0− j0−2(s) ds

≤ (i0− 1)

∫ t

0

|(hν − hνn)|(s)ds

→ 0 for n→∞, (41)

where j0 denotes the index where the maximum is attained. For the last step we use that according
to Lemma 3 the density

h(x , s) =
Px
�

TD ∈ ds
�

ds
of the first exit time TD from the domain D is continuous in x , and hence by weak convergence the
integrand of the inner integral converges pointwise to zero. Another application of Scheffé’s lemma
shows that the last integral in (41) converges to zero. From (38) and (41) it follows that there exists
n1 such that (37) holds.

Remark 1.

1. In [6] Ben-Ari and Pinsky formulated the question, whether the spectral gap γ1(ν) depends con-
tinuously on ν . Theorem 4 answers this question affirmatively. But observe that Theorem 4
actually shows that arbitrary finite subsets counted according to multiplicities of the spectrum
depend continuously on ν .

2. In the recent preprint [15] we also answer Question 1 and Question 2, which are posed on page
130 in [6].

The continuity of the spectral gap might be of some importance e.g. in optimization problems
concerning the speed of convergence for the multi-dimensional BMJB.
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Corollary 3. Let D ⊂Rd satisfy our standard assumptions and let γ1(ν) denote the spectral gap of the
BMJB in D with jump distribution ν . Then for every precompact (with respect to the weak topology)
subset K of probability measures on D satisfying supn∈K γ1(ν) <∞ there exists a jump-distribution
ν0 such that

γ1(ν0) = sup
ν∈K

γ1(ν).

Proof: Take a sequence (νn)n ⊂ K such that limn→∞ γ1(νn) = supνK γ1(ν) < ∞. Then by
precompactness of K we can extract a weakly convergent subsequence (νnk

)k∈N with limit ν0 and
due to the continuity of the spectral gap

γ1(ν0) = lim
k→∞

γ1(νnk
) = sup

ν∈K
γ1(ν).

For the remaining part of this work we note the following simple

Corollary 4. Let D = (a, b) and let ν be an admissible jump distribution, i.e. ν({a, b}) = 0 and set
νn( · ) = ν

�

· | {x : dist(x ,∂ D)> 1/n}
�

. Then we have

lim
n→∞

γ1(νn) = γ1(ν).

Thus once it is shown, that γ1(·) is constant on compactly supported jump distributions (or even on
jump distributions supported on finite sets), we can conclude that γ1(·) is constant on the set of all
admissible jump distributions.

5 Rate of Convergence: Probabilistic Approach

In this section we consider BMJB on the interval (a, b) and recover a recent result of [5], which was
previously shown via elegant Fourier-analytic arguments. As already mentioned in [5] these Fourier-
analytic arguments do not offer any probabilistic explanation. We use the coupling approach, which
provides a probabilistically more satisfactory explanation for the obtained convergence rates. As
is well-known the coupling method usually involves the construction of two suitably dependent
processes as a crucial step. In our situation the main difficulty is present due to the fact that in
contrast to one-dimensional diffusions without jumps two independent BMJB can ‘pass’ each other
without hitting each other. The lower bound on the convergence rate is derived – as usual in
coupling approaches – via an investigation of the tail behavior of the coupling time. The following
result constitutes the second main theorem of this work.

Theorem 5. Assume that d = 1. Then we have

1. γ1(ν) = λD
1

2. There exists an efficient coupling.

The proof is split into smaller pieces.
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5.1 Auxiliary results

We will need the following elementary auxiliary results:

Proposition 3. Let I = (a, b) be an open interval with center c = a+b
2

. For y ∈ I let τy = inf{t :
y + Bt ∈ ∂ I} the first time of leaving the interval. Then we have for all y ∈ I and t ∈R+

P
�

τy > t
�

≤ P
�

τc > t
�

.

Proof: The proof is based on a simple coupling argument: Without loss of generality we may
assume that b > y > c. We define the coupling as follows: For t < τc y = inf{t : X t = Yt} let
X t = y − Bt and Yt = c + Bt . Now let us distinguish the following two cases: First case: X and Y
meet in c+y

2
at time τc y < τc . In this case let Y = X = c+y

2
+ Bt − Bτ1

c
for t ≥ τc y and hence both

processes leave the interval at the same time.
Second case: X and Y do not meet each other before τc . In this case, we have by definition of the
processes that τy < τc . Hence we obtain

P
�

τc > t
�

= P
�

τc > t,τc > τ
c y�+P

�

τc > t,τc < τ
c y�

= P
�

τy > t,τc > τ
c y�+P

�

τc > t,τc < τ
c y�

≥ P
�

τy > t,τc > τ
c y�+P

�

τy > t,τc < τ
c y�

= P
�

τy > t
�

.

Now we come back to the symmetry argument, which already played an essential idea in Proposition
1. In the following Proposition we put this symmetry argument – which is the key idea in our
approach – in the coupling context.

Proposition 4. Suppose that a < x ≤ c = a+b
2
≤ y < b and y = R(x) = a + b − x. Then there

is a coupling of X ν ,x and X ν ,y such that the coupling time is equal to the exit time of a standard BM
(=starting at 0) from the interval Ĩ = Ĩ(x , y) = (− y−x

2
, (b−a)−(y−x)

2
) .

Proof: We use the same notation as in the previous proof and set τ= τx ∧τx y . For t < τ define
X ν ,x = x + Bt and X ν ,y = y − Bt . Since y = R(x), we have to distinguish

• First Case:
X ν ,x
τ = x + Bτ = y − Bτ = X ν ,y

τ = c. For t ≥ τ we define X ν ,x
t = X ν ,y

t = c+ Bt−τ.

• Second Case:
x + Bτ = a and y − Bτ = b. For t ≥ τ we define X ν ,x

t = X ν ,y
t = ν + Bt−τ

We see that as long as the path of Bt is contained in the interval Ĩ = (− y−x
2

, (b−a)−(y−x)
2

), the pro-
cesses X ν ,x and X ν ,y do not merge, but once the Brownian motion (Bt)t≥0 exits ∂ Ĩ they immediately
colesce. This yields the claim.

Remark 2. A crucial observation is that |(− y−x
2

, (b−a)−(y−x)
2

)| = b−a
2

is independent of x and that

λ
(a,b)
1 = λ

(a, a+b
2
)

0 .

Now we will show that this idea can be extended to processes with arbitrary initial values x , y
whenever the jump measure is compactly supported in (a, b).
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5.2 Construction of the coupling

Now let us built up the coupling. First of all note that by a very simple argument using the triangle
inequality and a symmetry argument we can assume without loss of generality that

0< y − x < dist(supp(ν), {a, b}) and
a+ b

2
≤

x + y

2
. (42)

Let us introduce two copies of BMJB, called X and Y in the following way:

a) Let x1 = x , y1 = y and X t = x1+ Bt , Yt = y1+ Bt . Now stop stage a) at time τ1 = τs ym ∧τb,
where τs ym = inf{t : R(x1 + Bt) = y1 + Bt} and τb = inf{t : y1 + Bt = b}, i.e. we stop when
either the copies are in a symmetric position (τ1 = τs ym) or when Y hits b (τ1 = τb). Note
that due to the assumption (42) one of these two cases has to occur.
First case: If τ1 = τs ym then at time τ1 we are in the situation to apply the coupling presented
in Proposition 4.
Second case: If τ1 = τb then we have x2 := Xτ1

= Xτ1− = x1 + (b − y) = b − (y − x)
and Yτ1

= y2 = J1, where J1 denotes the first jump with distribution ν . The construction is
continued with the next stage.

b) Let X = x2+ (Bt − Bτ1
)(= x1+ Bt) and

Y = y2− (Bt − Bτ1
) =

∫ t

0

(−1)1{τ1<t}dBs. (43)

To see that the stochastic integral in the definition of Y is well-defined, let Ft = σ(Bs, s ≤ t)
and Gt = σ(Ft ,σ(J1)) the σ-field generated by σ(J1) andFt . Now observe that (−1)1{τ1<t} is
Gt -measurable and that by independence of σ(J1) and Ft , Bt is still a Brownian motion with
respect to Gt , the integral in (43) is still well-defined. Now recall that x2− y2 = x+(b− y)−
J1 = b− (J1 + (y − x)) > 0. Stop stage at time τ2 = either copies meet or when the distance
from Y to X is b− J1.
First case: The coupling occurs and we are done.
Second case: The initial distance from Y to X is (b− J1)− (y − x). Therefore, Y moved y−x

2
to the left, i.e. y3 = y2 −

y−x
2
= J1 −

y−x
2
> a (due to (42)), and X moves y−x

2
to the right,

i.e. X stops at x3 = x2+
y−x

2
= b− y−x

2
< b. Now move to stage 3.

c) Let X = x3 + (Bt − Bτ2
), Y = y3 + (Bt − Bτ2

). Recall that x3 > y3 and x3 − y3 = b− J1. Stop
stage c) at time τ3 = either X and Y are symmetric or X hits b.
First case In the symmetric case we continue the coupling as in Proposition 4.
Second case: Here we have Xτ3− = b and Yτ3

= b− (b− J1) = J1. At time τ3 we let X jump
to J1, i.e. we use the same J1 as has earlier been used for Y . Hence the coupling occurs and
we are done.

First let us observe that the above construction is in fact a coupling for the processes, i.e. both
processes have the same marginal distributions. Denote τhit = inf{t : X t hits the boundary ∂ I}.
Then, for t < τhit we have by construction of X t

x + Bt ,
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since all changes of sign of the BM appear by definition in the Y -process. This immediately implies
that X , up to its first arrival to the boundary, is independent of J1 and behaves as a BM. It remains
to show that Y also behaves as a BM in the interior of the domain. Now let τ1

hit (τ2
hit) be the first

(second) time when Y hits ∂ I and observe that by construction for t < τ1
hit , Y can be written as

Yt = y +

∫ t

0

f (s)dBs

and similarly for τ2
hit > t ≥ τ1

hit

Yt = J1+

∫ t

τ1
hit

f (s)dBs

where f (s) is Gs-measurable and only takes values in {−1,1}, because f keeps track of the changes
of sign of the BM as defined in the coupling construction. But up to time t these changes only
depend on the Ft -history of the BM and on σ(J1). But from here it is easy to see, e.g. using Levy’s
characterization of the BM that Y also behaves as a BM in I .

5.3 Analysis of the construction

The crucial observation in the analysis of the coupling construction is that in each stage the stopping
rule is determined by an exit time of a standard BM on an interval of length less or equal to b−a

2
.

These exit times (which are not independent) can be dominated by a sum of independent exit times
of BM’s of an interval of length b−a

2
, as we will see in the sequel.

a) First case: In this case we stop the process when the two copies are symmetric about the
origin. For this to occur the BM has to arrive to (a+b)−(y−x)

2
− x (terminal − initial initial

location of X )= (a+b)−(y+x)
2

< 0.
Second case: Here we stop when the coordinate Y hits b, i.e. in the case when the BM B has
hit b− y > 0.

Thus, stage a) ends when the BM exists an interval of length b− y + (y+x)−(a+b)
2

< b−a
2

.

b) First case: We stop when X and Y arrive at the point − x2−y2

2
= (y−x)−(b−J1)

2
.

Second case: We stop when BM arrives to y−x
2
> 0.

Thus, stage b) ends when BM exists an interval of length b−J1

2
< b−a

2

c) First case: We stop when X and Y are in symmetric locations. Initially, X is in x3 = b− y−x
2

,
and X is kept b− J above Y throughout the stage. Therefore we stop when the BM arrives to
(a+b)+(b−J)

2
− x3 =

a+(y−x)−J
2

< 0.

Second case: We stop when BM hits b− x3 =
y−x

2
.

Thus, stage c) ends when BM exists an interval of length J−a
2
< b−a

2
.
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Now we are able to finish the proof of Theorem 5 by estimating the tails of the coupling time. Proof:
(Theorem 5) Now let ξ1,ξ2, . . . ,ξ5 be independent exit times of standard Brownian motion of the
interval ∂ Ĩ = (− a+b

2
, a+b

2
). Then, by Proposition 3 and Proposition 4 we can conclude that the

probability of the event

• both processes bave been coupled before time t or we have moved to stage b) before t

is dominated by P
�

ξ1 + ξ2 > t
�

. Continuing this line of reasoning we see that the coupling time
τcoupl is dominated by

∑5
i=1 ξi in the sense that

P(τcoupl > t)≤ P
� 5
∑

i=1

ξi > t
�

.

Now we obtain

P
�

τcoupl > t
�

≤ P
� 5
∑

i=1

ξi > t
�

≤ e−λtE

�

eλ
∑5

i=1 ξi

�

=
�

E
�

eλξ1
�

�5
e−λt .

Since E
�

eλξ1
�

<∞ for all λ < λ(a,b)
1 , the claim follows.

Remark 3. From a pure-coupling point of view the analytic Theorem 4 via Corollary 4 may be somewhat
unsatisfactorily; we included this result due to its applicability in the multi-dimensional setting. It seems
to be very probable that Theorem 4 may be replaced by an additional coupling argument in the proof of
Theorem 5.

6 Different jump distributions

We end this work with some remarks concerning the case of a one-dimensional BM in (a, b) with
two different jump distributions νa and νb. It is a natural question, whether one can adopt the
methods of this paper in order to prove another very recent results of Li, Leung and Rakesh [5] and
Li and Leung [4], respectively, namely

sup
νa ,νb

γ1(νa,νb) = λ
D
2 (44)

and
inf
νa ,νb

γ1(νa,νb) = λ
D
0 (45)

It is known that the supremum is (44) is attained at νa = δ((a+2b)/3 and νb = δ(2a+b)/3 and that the
infimum in (45) is never attained. Let us remark that equation (45) is from a heuristic point of view
probabilistically rather clear, as taking νa,n := δa+1/n and νb,n := δb+1/n one might expect that as
n→∞ one gets a BM in (a, b) with reflecting boundary conditions.

At the moment we can extend our methods only to certain very special classes of of jump distribu-
tions νa and νb, but these considerations indicate that with more effort one might be able to extend
our methods to the more general situation of different jump distributions. Still at the moment we
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are far from being able to present a probabilistic proof of the beautiful assertions (44) and (45),
but we believe that a solution of the following problem deepens the probabilistic understanding of
the large time behavior of the BM with jump boundary considerably.

Open Problem: Find a coupling approach to the recent results (44) and (45) of Leung and
Li.

We hope to come back to this problem in a subsequent publication.
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