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Abstract

We consider a system of independent one-dimensional random walks in a common random
environment under the condition that the random walks are transient with positive speed vP .
We give upper bounds on the quenched probability that at least one of the random walks started
in the interval [An, Bn] has traveled a distance of less than (vP−ε)n. This leads to both a uniform
law of large numbers and a hydrodynamic limit. We also identify a family of distributions on
the configuration of particles (parameterized by particle density) which are stationary under the
(quenched) dynamics of the random walks and show that these are the limiting distributions for
the system when started from a certain natural collection of distributions.
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1 Introduction and Statement of the Main Results

The object of study in this paper is a system of independent one-dimensional random walks in a
common random environment. We modify the standard notion of random walks in random envi-
ronment (RWRE) to allow for infinitely many particles. Let Ω := [0,1]Z. An environment is an
element ω = {ωx}x∈Z ∈ Ω. Given an environment ω, we let {X x ,i

· }x∈Z,i∈Z+ be an independent
collection of Markov chains with law Pω defined by

Pω(X
x ,i
0 = x) = 1, and Pω(X

x ,i
n+1 = z|X x ,i

n = y) =







ωy z = y + 1

1−ωy z = y − 1

0 otherwise.

When we are only concerned with a single random walk started at y ∈ Z we will use the notation
X y

n instead of X y,1
n . Moreover, if the walk starts at the origin we will use the notation Xn instead of

X 0
n .

The law Pω is called the quenched law of the random walks. Let P be a probability measure on Ω. The
averaged law of the random walks is defined by averaging the quenched law over all environments.
That is, P(·) =

∫

Ω
Pω(·)P(dω). Quenched and averaged expectations will be denoted by Eω and E,

respectively, and expectations according the the measure P on environments will be denoted by EP .

In this paper we will always make the following assumptions on the environment

Assumption 1. The environments are uniformly elliptic and i.i.d. That is, the random variables
{ωx}x∈Z are i.i.d. under the measure P, and P(ω0 ∈ [c, 1− c]) = 1 for some c > 0.

Assumption 2. EP[ρ0]< 1, where ρx := 1−ωx

ωx
.

Assumptions 1 and 2 imply that the random walks are transient to +∞ with positive speed [Sol75].
That is, for any x ∈ Z and i ≥ 1,

lim
n→∞

X x ,i
n − x

n
=

1− EP[ρ0]
1+ EP[ρ0]

=: vP , P− a.s. (1)

Our first main result is the following uniform version of (1).

Theorem 1.1. Let Assumptions 1 and 2 hold. Then for any A< B and γ <∞,

lim
n→∞

max
y∈(An,Bn], i≤nγ

�

�

�

�

�

X y,i
n − y

n
− vP

�

�

�

�

�

= 0, P− a.s.

An obvious strategy for proving Theorem 1.1 would be to use a union bound and the fact that the

probabilities P
�
�

�

�

�

X y,i
n −y

n
− vP

�

�

�

�

≥ ε
�

vanish for any ε > 0 as n→∞. However, if the distribution P

on environments is nestling (that is P(ω0 <
1
2
) > 0), these probabilities only vanish polynomially

fast (see [DPZ96]) which is not good enough to prove Theorem 1.1. The key to proving Theorem
1.1 is instead the following uniform analog of the quenched sub-exponential slowdown probabilities
given in [GZ98].
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Proposition 1.2. Let Assumptions 1 and 2 hold, and let EPρ
s
0 = 1 for some s > 1. Then, for any A< B,

v ∈ (0, vP), δ > 0, and γ <∞,

lim sup
n→∞

1

n1−1/s−δ log Pω
�

∃y ∈ (An, Bn], i ≤ nγ : X y,i
n − y ≤ nv

�

=−∞, P − a.s. (2)

Remark 1.3. The proofs of the quenched [GZ98] and averaged [DPZ96] subexponential rates of de-
cay for slowdown probabilities make clear why there is a difference in the rate of decay. Slowdowns
occur under the average probability by creating an atypical environment near the origin which traps
the random walk for n steps. For slowdowns under the quenched measure, an environment is fixed
and (with high probability) contains only smaller traps - making it harder to slow down the random
walk. Since particles starting at different (nearby) points in the same fixed environment encounter
essentially the same traps, it is reasonable to expect that the uniform quenched large deviations
decay at the same rate as the quenched large deviations of a single RWRE.

As an application of Theorem 1.1, we prove a hydrodynamic limit for the system of random walks.
For any N , let ηN

0 (·) ∈ (Z+)
Z be an initial configuration of particles. We will allow ηN

0 to be either
deterministic or random (even depending on ω), but we still require that given ω, the paths of the
random walks {X x ,i}x∈Z, i≤ηN

0 (x)
are independent of the ηN

0 (x). As a slight abuse of notation we will
use Pω and P to denote the expanded quenched and averaged probability measures of the systems
of RWRE with (random) initial conditions ηN

0 . Let

ηN
n (x) =

∑

y∈Z

ηN
0 (y)
∑

i=1

1{X y,i
n = x} (3)

be the number of particles at location x at time n when starting with initial configuration ηN
0 . A

hydrodynamic limit essentially says that if (when scaling space by N), the initial configurations ηN
0

are approximated by a bounded function α0(y), then (with space scaled by N) the configuration
ηN

N t is approximated by α0(y − vP t).

Theorem 1.4. Let C0 be the collection of continuous functions with compact support on R. Assume the
initial configurations ηN

0 are such that there exists a bounded function α0(·) such that for all g ∈ C0,

lim
N→∞

1

N

∑

x∈Z
ηN

0 (x)g(x/N) =

∫

R
α0(y)g(y)d y, P− a.s. (4)

Then, for all g ∈ C0 and t <∞,

lim
N→∞

1

N

∑

x∈Z
ηN

N t(x)g(x/N) =

∫

R
α0(y − vP t)g(y)d y, P− a.s. (5)

Moreover, if instead we only assume that the convergence in (4) holds in Pω-probability, then the
conclusion (5) also holds in Pω-probability as well.

Remark 1.5. An example of where assumption (4) is satisfied is when {ηN
0 (x)}x∈Z are independent

and ηN
0 (x)∼ Poisson(α0(x/N)).
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The hydrodynamic limits in Theorem 1.4 describe the behavior of the system of RWRE when time
and space are both scaled by N . If we do not rescale space, we can study the limiting distribution
of the configuration of particles as the number of steps tends to infinity. That is, given the distri-
bution of the initial configuration of particles η0 ∈ (Z+)Z, we identify the limiting distribution of
the process ηn. Before stating our last main result we need to specify the assumptions on the initial
configurations. We will allow the initial distribution to depend on the environment ω (in a mea-
surable way), but given ω we will require that the initial configuration is a product measure. To
make this precise, let Υ be the space of probability distributions on the non-negative integers Z+
equipped with the topology of weak-∗ convergence (convergence in distribution), and let ν : Ω→Υ
be a measurable function. Also, for any x ∈ Z let θ x be the shift operator on environments defined
by (θ xω)y =ωx+y . Then, for each environment ω, let η0 have distribution νω :=

⊗

ν(θ xω). That
is, given ω, {η0(x)}x∈Z is an independent family of random variables and η0(x) has distribution
ν(θ xω). Let Pω,νω denote the quenched distribution of the system of random walks with initial dis-
tribution given by νω, and let Pν(·) =

∫

Ω
Pω,νω(·)P(dω) be the corresponding averaged distribution.

The corresponding expectations are denoted by Eω,νω and Eν , respectively.

We now define the unique family of limiting distributions for initial configurations with distributions
given by Pν for some ν . For any α > 0, let πα : Ω→Υ be defined by

πα(ω) = Poisson(α f (ω)), where f (ω) =
1

ω0






1+

∞
∑

i=1

i
∏

j=1

ρ j






. (6)

The formula for vP in (1) and the fact that P is i.i.d. imply that EP[ f (ω)] = 1/vP , and therefore
Eπα[η0(0)] = EP[α f (ω)] = α/vP . Our final main result is the following.

Theorem 1.6. Let Assumptions 1 and 2 hold. If ν : Ω → Υ is such that Eν(η0(0)) < ∞, then
Pν(ηn ∈ ·) converges weakly to Pπα(η0 ∈ ·) (in the space of probability measures on (Z+)Z) as n→∞,
with α= vPEν(η0(0)).

The structure of the paper is as follows. Section 2 is devoted to the proof of Proposition 1.2. The
proof is an adaptation of the proof of the similar bounds given in [GZ98] for a single random
walk. In Section 3 we give the proof of Theorem 1.1 and we show how it can be used to prove the
hydrodynamic limits in Theorems 1.4. Finally, in Section 4 we prove Theorem 1.6 via a coupling
technique.

2 Uniform Quenched Large Deviations

In this Section, we will make the following assumption

Assumption 3. EP[ρs
0] = 1 for some s > 1.

Quenched and averaged large deviation principles for a single RWRE are known in the setting we are
considering. For speedup (that is, when Xn ≈ nv with v > vP), both P(Xn > nv) and Pω(Xn > nv)
decay exponentially fast [CGZ00] (although with different constants in the exponent). However, for
slowdown (that is, when Xn ≈ nv with v < vP) the averaged and quenched probabilities both decay
sub-exponentially. In fact the averaged rate of decay is roughly n1−s and the quenched rate of decay
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is roughly e−n1−1/s
. Precise statements (see [DPZ96; GZ98]) are, if EP[ρs

0] = 1 for some s > 1 then
for any v < vP

lim
n→∞

logP(Xn ≤ nv)
log n

= 1− s, (7)

and for any δ > 0

lim inf
n→∞

log Pω(Xn < nv)

n1−1/s+δ
= 0, and limsup

n→∞

log Pω(Xn < nv)

n1−1/s−δ =−∞, P− a.s. (8)

A uniform analog (in the form of Proposition 1.2) of the first statement in (8) can be shown to hold
quite easily. Indeed,

Pω
�

∃y ∈ (An, Bn], i ≤ nγ : X y,i
n − y < nv

�

≥ Pω(X
Bn
n − Bn< nv) = Pθ Bnω(Xn < nv).

The proof of the quenched large deviation lower bounds in [GZ98] can then be repeated for the
(deterministically) shifted environment θ Bnω.

This section is devoted to the proof of Proposition 1.2 which is the uniform analog of the second
statement in (8). We will prove Proposition 1.2 by adapting the proof of quenched subexponential
decay in [GZ98]. For clarity, we will divide the proof into a series of lemmas that progressively
reduce the problem to an easier one. As was done in [GZ98], we begin by reducing the proof of
Proposition 1.2 to the study of the large deviations of hitting times. For x , y ∈ Z, let T y

x denote the
amount of time it takes for the random walk started at y to move a distance of x . That is,

T y
x := inf{n≥ 0 : X y

n = y + x} .

Moreover, it will be enough to prove large deviation upper bounds for hitting times on a dense
enough subsequence of integers. We fix δ > 0 for the remainder of the section and let n j := b j2/δc.

Lemma 2.1. Suppose that for any A< B and any µ > v−1
P ,

lim sup
j→∞

1

n1−1/s−δ
j

log Pω
�

∃y ∈ (An j , Bn j] : T y
n j
≥ n jµ

�

=−∞, P − a.s. (9)

Then, for any A< B and v ∈ (0, vP),

lim sup
n→∞

1

n1−1/s−δ log Pω
�

∃y ∈ (An, Bn] : X y,i
n − y ≤ nv

�

=−∞, P − a.s. (10)

Moreover, for any γ <∞, (2) holds as well.

Proof. The proof that (9) implies (10) is essentially the same as the argument given on pages 181-
182 in [GZ98], and thus we only give a brief sketch. First, from the monotonicity of hitting times
and the fact that lim j→∞ n j+1/n j = 1 we can deduce that (9) implies an analogous statement for
large deviations of Tn: (not along a subsequence).

limsup
n→∞

1

n1−1/s−δ log Pω
�

∃y ∈ (An, Bn] : T y
n ≥ nµ

�

=−∞, P − a.s., (11)

The passage from large deviations of Tn to the statement (10) is accomplished by the fact that the
amount a random walk backtracks has exponential tails. That is, there exist constants C ,θ > 0 such
that P(T−x <∞)≤ Ce−θ x for all x ≥ 1.

Finally, for any γ < ∞, by a union bound and the fact that log(nγ) = o(n1−1/s−δ) we obtain that
(10) implies (2).
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By the above lemma, we may reduce ourselves to proving (11) for a fixed δ > 0, A< B and µ > v−1
P .

To this end, let k j = bn
1/s+δ
j /(1− ε)c for some small ε > 0. We next divide the environment into

blocks of length k j . Let
K j := k jZ= {mk j : m ∈ Z}.

The proof of (8) in [GZ98] was accomplished by studying the induced random walk on the lattice
K j . The averaged large deviation estimates (7) were used to analyze the tails of the amount of time
for the original random walk to produce a step in the induced random walk. Also, the fact that
backtracking probabilities decay exponentially in the distance backtracked was used to control the
number of steps the induced random walk ever backtracked. Our strategy in proving (11) will be to
adapt the techniques used in [GZ98] to study to multiple induced random walks started at different
locations in K j .

For a fixed A< B, let
M j := {m ∈ Z : mk j ∈ (An j − k j , Bn j]}.

Thus, for any y ∈ (An j , Bn j], there exists a unique m ∈ M j such that mk j ≤ y < (m+ 1)k j . The
next lemma reduces the proof of (11) to the study of random walks started at points inM j .

Lemma 2.2. Let ε > 0, and let k j andM j be defined as above. Then,

Pω
�

∃y ∈ (An j , Bn j] : T y
n j
≥ n jµ

�

≤ k j Pω(∃m ∈M j : T
mk j

n j+k j
≥ n jµ).

Proof. First note that

Pω(∃y ∈ (An j , Bn j] : T y
n j
≥ n jµ)≤

k j−1
∑

l=0

Pω(∃m ∈M j : T
mk j+l
n j

≥ n jµ)

Now, one way for the event {T mk j

n j+k j
≥ n jµ} to occur is if the random walk starting at mk j after first

hitting mk j + l then takes more than n jµ steps to reach mk j + l + n j < (m+ 1)k j + n j . Thus, the
strong Markov property implies that

Pω(∃m ∈M j : T
mk j+l
n j

≥ n jµ)≤ Pω(∃m ∈M j : T
mk j

n j+k j
≥ n jµ).

Since this last term does not depend on l, the proof of the lemma is finished.

The following lemma is the key step in the proof of Proposition 1.2.

Lemma 2.3. Let v−1
P < µ′ < µ and let ε < µ−µ′

3µ
. Then, there exists a θ > 0 such that P − a.s. for any

A< B and all j sufficiently large,

max
m∈M j

Pω(T
mk j

n j+k j
≥ n jµ)≤ e−θεn j/2+ e−λεµn1−1/s−δ

j , ∀λ > 0.

Proof. For any m ∈ Z, j ≥ 1, and i ≥ 0, define σ j,m(i) by

σ j,m(0) = 0, σ j,m(i) = inf
n

t > σ j,m(i− 1) : X
mk j
t ∈K j\{X

mk j

σ j,m(i−1)
}
o

.
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That is, σ j,m(i) are the times when the random walk started at mk j visits a point on the lattice K j

other than the one previously visited. Let Y j,m
i = 1

k j
X

mk j

σ j,m(i)
−m be the embeddeding of the random

walk X
mk j
t on the lattice K j re-centered to begin at the origin and scaled to have unit step sizes.

Let N j := bn1−1/s−δ
j c. Then, if the random walk started at mk j has not gone n j+k j steps to the right

by time n jµ then either the embedded random walk takes at least N j steps to move n j/k j + 1 steps
to the right, or it takes more than n jµ steps of the original random walk to record N j steps in the
embedded random walk. Therefore,

Pω(T
mk j

n j+k j
≥ n jµ)≤ Pω(inf{i : Y j,m

i = dn j/k je+ 1}> N j) + Pω(σ
j,m(N j)> n jµ)

≤ Pω(Y
j,m

N j
< dn j/k je+ 1) + Pω(σ

j,m(N j)> n jµ). (12)

Let I j := K j ∩ ((A− 1)n j − k j , (B + 1)n j] be the points of the lattice K j that are possible to reach
in N j steps of an embedded random walk started at a point inM j . (Note that this definition of I j is
different from the one in [GZ98], but what is important is that |I j| = O (n j/k j) is still true). Then,

it is possible to show (c.f. Lemma 6 in [GZ98]) that for any θ < − log(EPρ)
1−ε , P − a.s. there exists a

J1 = J1(ω,θ ,ε,δ) such that for all j ≥ J1

max
i∈I j

Pω(T
ik j

−k j
< T

ik j

k j
)≤ e−θn1/s+δ

j .

Let S j,θ
i be a simple random walk with

P(S j,θ
i+1 = S j,θ

i + 1|S j,θ
i ) = 1− P(S j,θ

i+1 = S j,θ
i − 1|S j,θ

i ) = 1− e−θn1/s+δ
j .

Thus, for j sufficiently large, S j,θ
i is stochastically dominated by Y j,m

i for i ≤ N j . As in Lemma 9

of [GZ98], large deviation estimates for the simple random walk S j,θ
i can be used to show that for

θ <− log EPρ

1−ε and j ≥ J1,

Pω(Y
j,m

N j
< dn j/k je+ 1)≤ e−

θε
2

n j , ∀m ∈M j . (13)

A trivial modification of Lemmas 5 and 7 in [GZ98] provides an upper bound on the quenched tails
of the amount of time it takes for a random walk starting at a point in I j to reach a neighboring
point in I j . These estimates are enough to imply that (cf. Lemma 8 in [GZ98]), P− a.s., there exists
a J0 = J0(ω, A, B,ε,µ′,δ) such that for all j ≥ J0, m ∈M j and i ≤ N j ,

Eωeλσ
j,m(i)/k j ≤

�

eλµ
′(1+ε)+ g j(λ,µ′,ε,δ)

�i
, ∀λ > 0,

for some g j(λ,µ′,ε,δ)→ 0 as j→∞. Therefore, for j ≥ J0, m ∈M j , and λ > 0,

Pω(σ
j,m(N j)> n jµ)≤ e−λµn j/k j Eeλs j,m(N j)/k j ≤

�

e−λµ(1−ε)(eλµ
′(1+ε)+ g j(λ,µ′,ε,δ))

�N j ,

where in the second inequality we used that n j/k j ≤ (1− ε)N j by the definitions of k j and N j . The

assumption that ε < µ−µ′

3µ
and the fact that g j(λ,µ′,ε,δ) → 0 as j → ∞ imply that P − a.s. for j

sufficiently large,
Pω(σ

j,m(N j)> n jµ)≤ e−λεµN j , ∀m ∈M j . (14)

Applying (13) and (14) to (12) completes the proof of the lemma.
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Corollary 2.4. For any A< B and µ > v−1
P and ε <

µ−v−1
P

3µ
,

lim sup
j→∞

1

n1−1/s−δ
j

log Pω(∃m ∈M j : T
mk j

n j+k j
≥ n jµ) =−∞, P − a.s.

Proof. Choose µ′ ∈ (vP ,µ) so that the hypothesis of Lemma 2.3 are satisfied. Then, Lemma 2.3
implies that P − a.s.,

Pω(∃m ∈M j : T
mk j

n j+k j
≥ n jµ)≤ |M j|

�

e−θεn j/2+ e−λεµn1−1/s−δ
j

�

,

for all j sufficiently large. Since the above is true for any λ > 0 and since |M j| = O (n
1−1/s−δ
j ), the

statement of the Corollary follows.

Proof of Proposition 1.2:
This follows directly from Lemmas 2.1, 2.2 and Corollary 2.4.

3 Uniform LLN and Hydrodynamic Limits for RWRE

In this section, we apply Proposition 1.2 to prove Theorem 1.1 and we then use Theorem 1.1 to
prove hydrodynamic limits for the system of RWRE.

Proof of Theorem 1.1: In [CGZ00], it was shown that an averaged large deviation principle holds
for Xn/n with a convex rate function I(v). Moreover, it was shown in [CGZ00] that I(v) > 0 for
any v > vP . Therefore, averaged probabilities of speedups ({Xn > nv} for some v > vP) decay
exponentially fast. Since we are only concerned about (B−A)nγ+1 particles, a union bound and the
Borel-Cantelli Lemma imply that

lim sup
n→∞

sup
y∈(An,Bn], i≤nγ

X y,i
n − y

n
≤ vP , P− a.s.

It remains only to show the corresponding lower bound.

lim inf
n→∞

inf
y∈(An,Bn], i≤nγ

X y,i
n − y

n
≥ vP , P− a.s. (15)

We divide the proof of (15) into three cases: Strictly positive drifts, no negative drifts, and both
positive and negative drifts.

Case I: Strictly positive drifts - P(ω0 >
1
2
+ ε) = 1 for some ε > 0.

In the case of strictly positive drifts, it was shown in [CGZ00] that I(v) > 0 for all v < vP as well.
Therefore, averaged probabilities of slowdowns ({Xn < nv} for some v < vP) decay exponentially
fast as well. Again, a union bound and the Borel-Cantelli Lemma can be used to obtain (15).

Case II: No negative drifts - P(ω0 <
1
2
) = 0 but P(ω0 ≤

1
2
+ ε)> 0 for all ε > 0.

When P(ω0 ≤
1
2
+ ε) > 0 for all ε > 0, it was shown in [CGZ00] that I(v) = 0 for all v ∈ [0, vP].
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Therefore, averaged probabilities of slowdowns decay subexponentially. However, if P(ω0 =
1
2
)> 0,

then it was shown in [DPZ96] that for any v ∈ (0, vP),

lim sup
n→∞

1

n1/3
logP(Xn < nv)< 0.

That is, averaged probabilities of slowdowns decay on an exponential scale like e−Cn1/3
. If P(ω0 ≤

1
2
+ ε) > 0 for all ε > 0 but P(ω0 =

1
2
) = 0, then a coupling argument implies that changing

all the sites with ωx ∈ (1/2, 1/2+ ε) to have ωx = 1/2 instead only increases the probability of
a slowdown. Therefore, the averaged probabilities of slowdowns still decrease at least as fast as
e−Cn1/3

, and again a union bound and the Borel-Cantelli Lemma imply (15).

Case III: Positive and Negative Drifts - P(ω0 <
1
2
)> 0.

As mentioned previously, in this case the averaged probabilities for slowdowns decay only polyno-
mially fast and so the above strategy of a union bound and the Borel-Cantelli Lemma no longer
works with the averaged measure. The uniform ellipticity assumption in Assumption 1 implies that
t 7→ EP[ρ t

0] is a convex function of t and is finite for all t. Also, the assumption in this case that
P(ω0 < 1/2) > 0 is equivalent to P(ρ0 > 1) > 0, so that EP[ρ t

0] → ∞ as t → ∞. Therefore,
EP[ρs

0] = 1 for some s > 1, and we may apply the uniform quenched large deviation estimates from
Proposition 1.2. That is, if

Ωv,δ :=
�

Pω

�

max
y∈(An,Bn], i≤nγ

X y,i
n − y < nv

�

≤ e−n1−1/s−δ
for all large n

�

,

then P(Ωv,δ) = 1 for any v ∈ (0, vP) and δ > 0. Thus, if Ωδ :=
⋂

v∈(0,vP )∩Q
Ωv,δ, we have that

P(Ωδ) = 1. Moreover, a union bound and the Borel-Cantelli Lemma imply that for any ω ∈ Ωδ,

lim inf
n→∞

inf
y∈(An,Bn], i≤nγ

X y,i
n − y

n
≥ vP , Pω− a.s.

Since P(Ωδ) = 1, this implies that (15) holds as well.

Remark 3.1. There are known conditions for multi-dimensional RWRE in uniformly elliptic i.i.d en-
vironments that imply a law of large numbers with limn→∞ Xn/n =: vP 6= 0 (for example, Kalikow’s
condition or conditions (T) and (T′) of Sznitman [Szn00; Szn01; Szn02]). Under these conditions, it
is known that the probabilities of large deviations decay faster than any polynomial [Ber09; Szn02].
Thus, it is easy to see that under these conditions, the multi-dimensional analogue of Theorem 1.1
holds.

We now show how the uniform law of large numbers in Theorem 1.1 can be used to prove the
hydrodynamic limits for the system of RWRE as stated in Theorem 1.4.

Proof of Theorem 1.4: For any g ∈ C0 we may choose a < b such that the support of g is contained
in (a, b] and the sums and the integrals in both (4) and (5) may be restricted to x ∈ (aN , BN] and
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y ∈ (a, b], respectively. Note that the representation of ηN
N t in (3) implies that

1

N

bN bc
∑

x=bNac+1

ηN
N t(x)g(x/N) =

1

N

bN bc
∑

x=bNac+1

∑

y∈Z

ηN
0 (y)
∑

i=1

1{X y,i
N t = x}g(x/N)

=
1

N

∑

y∈Z

ηN
0 (y)
∑

i=1

bN bc
∑

x=bNac+1

1{X y,i
N t = x}g(x/N)

=
1

N

∑

y∈Z

ηN
0 (y)
∑

i=1

1{X y,i
N t ∈ (Na, N b]}g(X y,i

N t/N) (16)

Let At = a− tvP and B = b− tvP . The law of large numbers implies that the indicator function on
the last line above should be almost the same as 1{y ∈ (At N , Bt N]}. We can make this precise by
applying Theorem 1.1. Let

EN ,t,a,b,δ :=
n

|X y,i
N t − y − N tvP |< N tδ, ∀y ∈ (Na− N t, N b+ N t], ∀i ≤ ηN

0 (y)
o

.

We claim that for any for any δ > 0, P − a.s., the event EN ,t,a,b,δ occurs for all N large enough.

First, note that if C >
∫ b+t

a−t
α0(y)d y then the assumptions on the initial configurations imply that,

P− a.s., for all N sufficiently large, ηN
0 (y)< CN for all y ∈ ((a− t)N , (b+ t)N]. Indeed,

lim sup
N→∞

1

N
max

y∈((a−t)N ,(b+t)N]
ηN

0 (y)≤ lim
N→∞

1

N

bN(b+t)c
∑

x=bN(a−t)c+1

ηN
0 (y)

=

∫ b+t

a−t

α0(y)d y < C , P− a.s.

This in turn implies by Theorem 1.1 that, P− a.s, for any δ > 0 the event EN ,t,a,b,δ occurs for all N
sufficiently large.

Now, on the event EN ,t,a,b,δ,

y ∈ ((At +δ)N , (Bt −δ)N] =⇒ X y,i
N t ∈ (Na, N b],

and
X y,i

N t ∈ (Na, N b] =⇒ y ∈ ((At −δ)N , (Bt +δ)N].

Note that for the second implication above we used that the random walks are nearest neighbor
random walks. Recalling (16), for any δ > 0 and for all N large enough, P− a.s.,

1

N

bN bc
∑

x=bNac+1

ηN
N t(x)g(x/N) =

1

N

bNBtc
∑

y=bNAtc+1

ηN
0 (y)
∑

i=1

g(X y,i
N t/N)

−
1

N

bN(At+δ)c
∑

y=bN(At−δ)c+1

ηN
0 (y)
∑

i=1

1{X y,i
N t /∈(Na,N b]}g(X

y,i
N t/N)

−
1

N

bN(Bt+δ)c
∑

y=bN(Bt−δ)c+1

ηN
0 (y)
∑

i=1

1{X y,i
N t /∈(Na,N b]}g(X

y,i
N t/N). (17)
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On the event EN ,t,a,b,δ,

|g(X y,i
N t/N)− g(y/N + vP t)| ≤ γ(g,δ), ∀y ∈ ((a− t)N , (b+ t)N], (18)

where γ(g,δ) = sup{|g(x)− g(y)| : |x − y| < δ} is the modulous of continuity of the function g.
Recalling (17), for any δ > 0 and for all N large enough, P− a.s.,
�

�

�

�

�

�

1

N

bN bc
∑

x=bNac+1

ηN
N t(x)g(x/N)−

∫ b

a

α0(y − vP t)g(y)d y

�

�

�

�

�

�

≤

�

�

�

�

�

�

1

N

bNBtc
∑

y=bNAtc+1

ηN
0 (y)g(y/N + vP t)−

∫ b

a

α0(y − vP t)g(y)d y

�

�

�

�

�

�

+
1

N

bNBtc
∑

y=bNAtc+1

ηN
0 (y)γ(g,δ)

+
1

N

bN(At+δ)c
∑

y=bN(At−δ)c+1

ηN
0 (y)‖g‖∞+

1

N

bN(Bt+δ)c
∑

y=bN(Bt−δ)c+1

ηN
0 (y)‖g‖∞.

Recalling that At = a− tvP and Bt = b− tvP , we may do a change of variables to re-write

∫ b

a

α0(y − vP t)g(y)d y =

∫ Bt

At

α0(y)g(y + vP t)d y.

Thus, the assumptions on the initial configurations imply that P− a.s.,

lim sup
N→∞

�

�

�

�

�

�

1

N

bN bc
∑

x=bNac+1

ηN
N t(x)g(x/N)−

∫ b

a

α0(y − vP t)g(y)d y

�

�

�

�

�

�

≤ γ(g,δ)

∫ Bt

At

α0(y)d y + ‖g‖∞

∫ At+δ

At−δ
α0(y)d y + ‖g‖∞

∫ Bt+δ

Bt−δ
α0(y)d y.

Since g is uniformly continuous and α0 is a bounded function, the right hand side can be made
arbitrarily small by taking δ → 0. This proves (5) and thus finishes the strong version of the
hydrodynamic limit. The proof of the weaker version of they hydrodynamic limit where (4) and (5)
both hold in Pω-probability is similar and is thus omitted.

4 Stationary Distribution of the Particle Process

We now change our focus away from the spatial scaling present in hydrodynamic limits and instead
study the limiting distribution of particle configurations ηn as n → ∞. Recall that the initial con-
figurations we are considering are such that given ω the η0(x) are independent with distribution
ν(θ xω) where ν is a measurable function ν : Ω→Υ from the space of environments to the space of
probability measures on Z+. We begin with a couple of easy lemmas giving some properties of the
system of RWRE under such initial conditions.

Lemma 4.1. Let ν : Ω→Υ. Then the sequence {η0(x)}x∈Z is ergodic under the measure Pν .
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Proof. Let F :Υ× [0,1]→ Z+ be defined by

F(Q, u) := inf{n ∈ Z+ : Q([0, n])≥ u}.

F is a measureable function, and if U ∼ U(0, 1) then F(Q, U) has distribution Q for any Q ∈Υ. Now,
let {Ux}x∈Z be an i.i.d. sequence of uniform [0, 1] random variables that are also independent of the
random environmentω= {ωx}x∈Z. Then, the joint sequence {(θ xω, Ux)}x∈Z is ergodic. Finally, we
can construct η0 by letting

η0(x) = F(ν(θ xω), Ux).

Since η0 can be constructed as a measurable function of an ergodic sequence which respects shifts
of the original sequence, η0 is ergodic as well.

Lemma 4.2. Let ν : Ω→Υ. Then Eν(η0(0)) = Eν(ηn(0)) for all n ∈ N.

Proof. For any environment ω and n ∈ N,

Eω,νω(ηn(0)) =
∑

x∈Z
Eω,νω(η0(x))Pω(X

x
n = 0) =

∑

x∈Z
Eθ xω,νθ

xω(η0(0))Pθ xω(Xn =−x).

Therefore, the shift invariance of P implies that

Eν(ηn(0)) = EP





∑

x∈Z
Eω,νω(η0(0))Pω(Xn =−x)



= EP

�

Eω,νω(η0(0))
�

= Eν(η0(0)).

Recall the definitions of πα : Ω→Υ and f (ω) from (6). The significance of the functions πα is that
the distributions πωα are stationary under the (quenched) dynamics of the system of RWRE.

Lemma 4.3. Let πα be defined as in (6) for some α > 0. Then, for P − a.e. environment ω, πωα is
a stationary distribution for the sequence of random variables ηn. That is, if η0 ∼ πωα , then for any
n ∈ N, ηn ∼ πωα as well.

The analog of Lemma 4.3 for a system of continuous time RWRE was previously shown by Chayes
and Liggett in [CL07]. The proof for the discrete time model is essentially the same and is therefore
ommitted. The key observation is that f (θ xω) = ωx−1 f (θ x−1ω) + (1 −ωx+1) f (θ x+1ω) for all
x ∈ Z, which can easily be checked by the definition of f in (6).

4.1 The coupled process

To complete the proof of Theorem 1.6 we will introduce a coupling of two systems of RWRE in the
same environment. Let ν ,σ : Ω→ Υ be measurable functions, and let ηt and ζt be two systems of
independent RWRE with initial configurations Pν and Pσ respectively. We will introduce a coupling
of two systems of RWRE, ηt and ζt , that have marginal distributions Pν and Pσ, respectively, and
which maximizes the agreement between the two processes. We will follow the coupling procedure
outlined in [JS09] (also in [Sep08]). To this end, given ω, let η0 and ζ0 be independent with
distributions νω and σω, respectively. Then, given the initial configurations (η0,ζ0), define

ξ0(x) := η0(x)∧ ζ0(x), β+0 = (η0(x)− ζ0(x))
+, and β−0 = (η0(x)− ζ0(x))

− . (19)
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ξ0(x) is the number of common particles at site x , and β±(x) is the excess number of η0 or ζ0
particles at x . We will refer to the unmatched η0 or ζ0 particles as + or − particles, respectively.
(To make this rigorous, the particles in the initial configurations should be well ordered in some
predetermined way and then the matchings at each site should be done with lowest labels matched
first). At each time step the matched particles move together according to the law Pω, while the
excess + and − particles each move independently according to the law Pω. After all the particles
have moved we again match as many pairs of + and − particles at each site as possible.

After n time steps we denote the number of matched and unmatched + or − particles by

ξn(x) := ηn(x)∧ ζn(x), β+n = (ηn(x)− ζn(x))
+, and β−n = (ηn(x)− ζn(x))

− . (20)

We will denote the quenched and averaged distributions of the coupled process (ηn,ζn) by Pω,νω×σω

and Pν×σ, respectively. An easy adaptation of the proof of Lemma 4.1 shows that the joint se-
quence {(η0(x),ζ0(x))}x∈Z is ergodic under Pν×σ. Therefore, from (19) it is clear that the triple
{(ξ0(x),β

+
0 (x),β

−
0 (x))}x∈Z is an ergodic sequence under Pν×σ as well.

Lemma 4.4. Let ν ,σ : Ω→ Υ. Then, for any n ∈ N the triple {(ξn(x),β+n (x),β
−
n (x))}x∈Z is ergodic

under the measure Pν×σ.

Proof. We will give a more explicit construction of the coupling described above which makes the
conclusion of the Lemma obvious. For each x ∈ Z and n≥ 0 let

Ξx
n(ω) := {Y x ,0

n ( j), Y x ,+
n ( j), Y x ,−

n ( j) : j ≥ 1}

be a collection of i.i.d. random variables with distributionωxδ1+(1−ωx)δ−1, and let the collection
Ξ(ω) := {Ξx

n(ω)}x∈Z,n≥0 be independent and independent of everything else as well. Assuming
some determinstic rule for well-ordering the matched and unmatched + or − particles at each site,
the random varibles Y x ,0

n ( j), Y x ,+
n ( j), and Y x ,−

n ( j) give the steps from time n to n + 1 of the j th

matched and unmatched + and − particles at site x , respectively. Thus, we have that

ξn+1(x) =
∑

z∈Z

ξn(z)
∑

j=1

1{z+ Y z,0
n ( j) = x}

+







∑

z∈Z

β+n (z)
∑

j=1

1{z+ Y z,+
n ( j) = x}






∧







∑

z∈Z

β−n (z)
∑

j=1

1{z+ Y z,−
n ( j) = x}






,

β+n+1(x) =







∑

z∈Z

β+n (z)
∑

j=1

1{z+ Y z,+
n ( j) = x} −

∑

z∈Z

β−n (z)
∑

j=1

1{z+ Y z,−
n ( j) = x}







+

,

and

β−n+1(x) =







∑

z∈Z

β+n (z)
∑

j=1

1{z+ Y z,+
n ( j) = x} −

∑

z∈Z

β−n (z)
∑

j=1

1{z+ Y z,−
n ( j) = x}







−

From the above construction of the coupled process, it is clear that for each n there exists a mea-
sureable function Gn such that

(ξn(x),β
+
n (x),β

−
n (x)) = Gn(θ

xη0,θ xζ0,Ξ(θ xω)), (21)
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where the shift operator θ x acts on configurations by (θ xη0)(y) = η0(x + y). Finally, since Ξ(ω) is
independent of (η0,ζ0) (given ω), another simple adaptation of the proof of Lemma 4.1 gives that
�

(θ xη0,θ xζ0,Ξ(θ xω)
	

x∈Z is an ergodic sequence under the measure Pν×σ. This fact combined
with (21) finishes the proof.

Corollary 4.5. Let ν ,σ : Ω→ Υ. Then Eν×σ(β+n (x)) and Eν×σ(β−n (x)) do not depend on x and are
non-increasing in n.

Proof. Since β+n and β−n are both ergodic (and thus stationary), the expectations do not depend on
x . Also, two applications of Birkhoff’s ergodic theorem and the fact that the number of unmatched+
particles in [−m, m] at time n+1 is at most the number of unmatched + particles in [−m−1, m+1]
at time n imply that

Eν×σ(β+n+1(0)) = lim
m→∞

1

2m+ 1

m
∑

x=−m

β+n+1(x)≤ lim
m→∞

1

2m+ 1

m+1
∑

x=−m−1

β+n (x) = Eν×σ(β
+
n (0)).

The same argument shows that Eν×σ(β−n (x)) is non-increasing as well.

Proposition 4.6. Let ν ,σ : Ω→Υ, and let Eν×σ(ζ0(0))≤ Eν×σ(η0(0))<∞. Then,

lim
n→∞
Eν×σ

�

β−n (0)
�

= lim
n→∞
Eν×σ

�

(ηn(0)− ζn(0))
−
�

= 0.

Proof. By Corollary 4.5 it is enough to show that for any δ > 0, Eν×σ
�

β−n (0)
�

< δ for some n.

Assume for contradiction that there exists a δ > 0 such that Eν×σ
�

β−n (0)
�

≥ δ for all n. Lemma
4.2 and the assumptions of the proposition imply that

Eν×σ(β+n (0))−Eν×σ(β
−
n (0)) = Eν×σ

�

ηn(0)− ζn(0)
�

= Eν×σ(η0(0))−Eν×σ(ζ0(0))≥ 0.

Therefore, Eν×σ
�

β+n (0)
�

≥ δ for all n as well.

Given η0 and ζ0, well-order the unmatched + and − particles and let w+j (·) and w−j (·) be the

trajectories of the j th initially unmatched + or minus particle, respectively. Then, for each j, denote
the amount of time until w+j is matched by τ+j ∈ [1,∞], and similalry let τ−j be the amount of time
until w−j is matched. If τ±j =∞, then the particle is said to be immortal. Let

λ±n (x) =
∑

j

1{w±j = x , τ±j > n},

be the number of ± particles initially at site x that are not matched after n steps. A similar argument
to the proof of Lemma 4.4 implies that {(λ+n (x),λ

−
n (x))}x∈Z is ergodic as well. In fact, because of

certain periodicity issues that will arise later what we really need is that {(β+n (x),β
−
n (x))}x∈2Z

and {(λ+n (x),λ
−
n (x))}x∈2Z are ergodic. However, this also holds by essentially the same proof by

noting that {θ xω}x∈2Z is an ergodic sequence since the environments are i.i.d. Two applications of
Birkhoff’s Ergodic Theorem imply that

δ ≤ Eν×σ[β±n (0)] = lim
M→∞

1

2M + 1

M
∑

x=−M

β±n (2x)

≤ lim
M→∞

1

2M + 1

M+n
∑

x=−M−n

λ±n (2x) = Eν×σ[λ±n (0)]. (22)
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Let λ±∞(x) = limn→∞λ
±
n (x) be the number of immortal ± particles originally at x . Again, as was

shown for λ±n it can be shown that {(λ+∞(x),λ
−
∞(x))}x∈2Z is ergodic. Then (22) and the monotone

convergence theorem imply that

lim
M→∞

1

2M + 1

M
∑

x=−M

λ±∞(2x) = Eν×σ[λ±∞(0)] = lim
n→∞
Eν×σ[λ±n (0)]≥ δ.

That is, there is a positive initial density of immortal + and − particles. Therefore, Pν×σ−a.s., there
exists an M <∞ such that there exists at least one + and − immortal particle in [−2M , 2M]∩ 2Z.
In particular, this implies that there exists an M <∞, points y, z ∈ [−2M , 2M] ∩ 2Z, and random
walks starting at y and z that never meet. Since there are only finitely many particles initially in any
finite interval, the following lemma gives a contradiction and thus finishes the proof of Proposition
4.6.

Lemma 4.7. Let y, z ∈ Z be of the same parity (that is z − y ∈ 2Z). Then, P − a.s., two random
walks in the same environment and starting at y and z, respectively, must eventually meet. That is,
P
�

∃n≥ 0 : X y
n = X z

n

�

= 1.

Proof of Lemma 4.7: By the shift invariance of P, without loss of generality we may assume that
x = 0 and that y < 0. Then, it is enough to prove that with P-probability one, there is some site
z > 0 that the random walk started at y < 0 reaches before the random walk started at 0 does. That
is,

P
�

∃z > 0 : T y
z−y < T0

z

�

= 1.

Now, we may re-write T0
z =

∑z
i=1τi and T y

z−y =
∑z

i=y+1 τ̃i , where τi and τ̃i are the amount of
time it takes to reach i + 1 after first reaching i for the walks X 0

· and X y
· , respectively. (That is,

τi = T0
i − T0

i−1 and τ̃i = T y
i−y − T y

i−y−1 for the i appearing in each of the above sums.) Note that
for any i ≥ 1, given the environment ω (that is under Pω) τi and τ̃i are independent and have the
same distribution. Now, for any z > 0 we have that

T y
z−y < T0

z ⇐⇒
z
∑

i=y+1

τ̃i <

z
∑

i=1

τi ⇐⇒
0
∑

i=y+1

τ̃i <

z
∑

i=1

�

τi − τ̃i
�

Therefore, we wish to show that P
�

∃z > 0 :
∑0

i=y+1 τ̃i <
∑z

i=1

�

τi − τ̃i
�

�

= 1. Since
∑0

i=y+1 τ̃i is
finite, P− a.s., it is enough to show that

P

 

sup
z>0

z
∑

i=1

(τi − τ̃i) =∞

!

= 1. (23)

It is known that the sequence {τi}i∈Z+ is ergodic under the averaged measure P (see [Sol75]). This
same argument shows that {(τi , τ̃i)}i∈Z+ is ergodic as well. In particular, this implies that τi − τ̃i
is an ergodic sequence. Since the event in (23) is shift invariant, it is enough to prove that the
right-hand side of (23) is non-zero.

Let ik be the sequence of indices where the τi and τ̃i are different. That is,

i1 =min{i ≥ 1 : τi 6= τ̃i}, ik+1 = inf{i > ik : τi 6= τ̃i}, k ≥ 1.
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Define for any integers l, M ≥ 1 the event

El,M :=
l+2M
⋂

k=l

{τik > τ̃ik}.

Since τi and τ̃i are independent and identically distributed under Pω, given that they are different
they are each equally likely to be the larger than the other. That is, Pω(τik > τ̃ik) = 1/2 for all
k ≥ 1. Also, {τi − τ̃i}i≥1 is an independent sequence of random variables under Pω, and thus by
comparison with an infinite sequence of fair coin tosses we obtain that for any M ≥ 1,

Pω

 ∞
⋃

l=1

El,M

!

= 1, P − a.s. (24)

Note that the event El,M implies that supz>0

�

�

∑z
i=1(τi − τ̃i)

�

� > M . Indeed, for z = il+2M we obtain
that

il+2M
∑

i=1

(τi − τ̃i) =
l+2M
∑

k=1

(τik − τ̃ik) =
l−1
∑

k=1

(τik − τ̃ik) +
l+2M
∑

k=l

(τik − τ̃ik).

El,M implies that the second sum on the right above is at least 2M+1. Therefore, either the first sum
is less than −M or the first and second sum together on the right are greater than M . Therefore,
since (24) holds for any M ≥ 1 we obtain that

1= P

 

sup
z>0

�

�

�

�

�

z
∑

i=1

(τi − τ̃i)

�

�

�

�

�

=∞

!

≤ P

 

sup
z>0

z
∑

i=1

(τi − τ̃i) =∞

!

+ P

 

inf
z>0

z
∑

i=1

(τi − τ̃i) =−∞

!

.

Since the τi and τ̃i are identically distributed this implies that P
�

supz>0

∑z
i=1(τi − τ̃i) =∞

�

≥ 1
2
.

However, as noted above, the ergodicity of τi − τ̃i implies that this last probability is in fact equal
to 1. This completes the proof of (23) and thus also the proof of the Lemma.

We now return to the proof of Theorem 1.6.

Proof of Theorem 1.6: Let (ηn,ζn) be the coupled process as described above with law Pν×πα ,
where α= vPEν(ζ0(0)) so that Eν(η0(0)) = Eπα(ζ0(0)). Proposition 4.6 then implies that

lim
n→∞
Pν×πα(ηn(0) 6= ζn(0))≤ lim

n→∞
Eν×πα |ηn(0)− ζn(0)|= 0.

Therefore, for any cylinder set E ⊂ (Z+)Z, limn→∞
�

�Pν(ηn ∈ E)− Pπα(ζn ∈ E)
�

� = 0. However,
Lemma 4.3 implies that Pπα(ζn ∈ E) = Pπα(ζ0 ∈ E), and thus

lim
n→∞
Pν(ηn ∈ E) = Pπα(ζ0 ∈ E).

It remains only to show that the sequence {ζn}n≥0 is tight. Indeed, for any positive integer M let

KM := {z = (zx)x∈Z ∈ (Z+)Z : zx < M2, ∀x ∈ [−M , M]}.
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Then, KM is a compact subset of (Z+)Z. Moreover,

Pν(ζn /∈ KM )≤
M
∑

x=−M

Pν(ζn(x)≥ M2)≤ Eν(ζ0(0))
2M + 1

M2 . (25)

where the last equality is from Chebychev’s Inequality, Lemma 4.2, and the fact that ζ0(x) is a
stationary sequence under Pν . Therefore, since the expectation on the right is finite by assumption,
limM→∞ supn Pν(ζn /∈ KM ) = 0.
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