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Abstract

We investigate a new model for populations evolving in a spatial continuum. This model can
be thought of as a spatial version of the Λ-Fleming-Viot process. It explicitly incorporates both
small scale reproduction events and large scale extinction-recolonisation events. The lineages
ancestral to a sample from a population evolving according to this model can be described in
terms of a spatial version of the Λ-coalescent. Using a technique of Evans (1997), we prove
existence and uniqueness in law for the model. We then investigate the asymptotic behaviour of
the genealogy of a finite number of individuals sampled uniformly at random (or more generally
‘far enough apart’) from a two-dimensional torus of sidelength L as L → ∞. Under appropri-
ate conditions (and on a suitable timescale) we can obtain as limiting genealogical processes a
Kingman coalescent, a more general Λ-coalescent or a system of coalescing Brownian motions
(with a non-local coalescence mechanism) .
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1 Introduction

In 1982, Kingman introduced a process called the coalescent. This process provides a simple and
elegant description of the genealogical (family) relationships amongst a set of neutral genes in a
randomly mating (biologists would say panmictic) population of constant size. Since that time,
spurred on by the flood of DNA sequence data, considerable effort has been spent extending King-
man’s coalescent to incorporate things like varying population size, natural selection and spatial
(and genetic) structure of populations. Analytic results for these coalescent models can be very hard
to obtain, but it is relatively easy, at least in principle, to simulate them and so they have become
fundamental tools in sequence analysis. However, models of spatial structure have largely concen-
trated on subdivided populations and a satisfactory model for the ancestry of a population evolving
in a two-dimensional spatial continuum has remained elusive. Our aim in this paper is to present
the first rigorous investigation of a new model that addresses some of the difficulties of existing
models for spatially extended populations while retaining some analytic tractability. The rest of this
introduction is devoted to placing this research in context. The reader eager to skip straight to the
model and a precise statement of our main results should proceed directly to Section 2.

Our concern here is with the extension of the coalescent to spatially structured populations. In this
setting it is customary to assume that the population is subdivided into demes of (large) constant
size, each situated at a vertex of a graph G, and model the genealogical trees using the structured co-
alescent. As we trace backwards in time, within each deme the ancestral lineages follow Kingman’s
coalescent, that is each pair of lineages merges (or coalesces) into a single lineage at a constant rate,
but in addition lineages can migrate between demes according to a random walk on the graph G.
The genealogical trees obtained in this way coincide with those for a population whose forwards in
time dynamics are given by Kimura’s stepping stone model (Kimura 1953) or, as a special case, if G
is a complete graph, by Wright’s island model (Wright 1931).

The stepping stone model is most easily described when the population consists of individuals of just
two types, a and A say. It can be extended to incorporate selection, but let us suppose for simplicity
that these types are selectively neutral. Labelling the vertices of the graph G by the elements of the
(finite or countable) set I and writing pi for the proportion of individuals in deme i of type a, say,
we have

dpi(t) =
∑

j∈I

m ji

�

p j(t)− pi(t)
�

d t +
p

γpi(t)
�

1− pi(t)
�

dWi(t) (1)

where {Wi(t); t ≥ 0}i∈I is a collection of independent Wiener processes, γ is a positive constant
and {mi j}i, j∈I specifies the rates of a continuous time random walk on G. The graph G, chosen
to caricature the spatial structure of the population, is typically taken to be Z2 (or its intersection
with a two-dimensional torus) and then one sets mi j = κ1{‖i− j‖=1}, corresponding to simple random
walk.

Although the stepping stone model is widely accepted as a model for structured populations, in re-
ality, many populations are not subdivided, but instead are distributed across a spatial continuum.
Wright (1943) and Malécot (1948) derived expressions for the probability of identity of two individ-
uals sampled from a population dispersed in a two-dimensional continuum by assuming on the one
hand that genes reproduce and disperse independently of one another, and on the other hand that
they are scattered in a stationary Poisson distribution. However, these assumptions are incompatible
(Felsenstein 1975, Sawyer & Fleischmann 1979). The assumption of independent reproduction will
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result in ‘clumping’ of the population and some local regulation will be required to control the local
population density.

A closely related approach is to assume that the genealogical trees can be constructed from Brownian
motions which coalesce at an instantaneous rate given by a function of their separation. The position
of the common ancestor is typically taken to be a Gaussian centred on the midpoint between the
two lineages immediately before the coalescence event (although other distributions are of course
possible). However, the coalescent obtained in this way does not exhibit sampling consistency. That
is, if we construct the genealogical tree corresponding to a sample of size n and then examine the
induced genealogical tree for a randomly chosen subsample of size k < n, this will not have the
same distribution as the tree we obtain by constructing a system of coalescing lineages directly from
the subsample. The reason is that whenever one of the lineages in the subsample is involved in a
coalescence event in the full tree it will jump. Furthermore, just as in Malécot’s setting, there is no
corresponding forwards in time model for the evolution of the population.

Barton et al. (2002) extend the formulae of Wright and Malécot to population models which in-
corporate local structure. The probability of identity is obtained from a recursion over timeslices
of length ∆t. Two related assumptions are made. First, the ancestral lineages of genes that are
sufficiently well separated are assumed to follow independent Brownian motions (with an effective
dispersal rate which will in general differ from the forwards in time dispersal rate) and their chance
of coancestry in the previous timeslice is negligible. Second, it must be possible to choose ∆t suf-
ficiently large that the changes in the population over successive timeslices are uncorrelated. (For
general ∆t this will not be the case. The movements of ancestral lineages in one time step may
be correlated with their movements in previous steps if, for example, individuals tend to disperse
away from temporarily crowded clusters.) Over all but very small scales, the resulting probability
of identity can be written as a function of three parameters: the effective dispersal rate, the neigh-
bourhood size and the local scale. However the usefulness of this result is limited due to a lack
of explicit models for which the assumptions can be validated and the effective parameters estab-
lished. Moreover, as explained in Barton et al. (2002), although one can in principle extend the
formula to approximate the distribution of genealogies amongst larger samples of well-separated
genes, additional assumptions need to be made if such genealogies are to be dominated by pairwise
coalescence. If several genes are sampled from one location and neighbourhood size is small then
multiple coalescence (by which we mean simultaneous coalescence of three or more lineages) could
become significant.

Multiple merger coalescents have received considerable attention from mathematicians over the
last decade. Pitman (1999) and Sagitov (1999) introduced what we now call Λ-coalescents, in which
more than two ancestral lineages can coalesce in a single event, but simultaneous coalescence events
are not allowed. Like Kingman’s coalescent, these processes take their values among partitions of N
and their laws can be prescribed by specifying the restriction to partitions of {1,2, . . . , n} for each
n ∈ N. For our purposes, the Λ-coalescent describes the ancestry of a population whose individuals
are labelled by N. Each block in the partition at time t corresponds to a single ancestor at time t
before the present, with the elements of the block being the descendants of that ancestor. Tracing
backwards in time, the evolution of the Λ-coalescent is as follows: if there are currently p ancestral
lineages, then each transition involving j of the blocks merging into one happens at rate

βΛp, j =

∫

[0,1]
u j−2(1− u)p− jΛ(du), (2)
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and these are the only possible transitions. Here, Λ is a finite measure on [0, 1]. Kingman’s coales-
cent corresponds to the special case Λ = δ0, the point mass at the origin.

Remark 1.1. More generally, one can consider processes with simultaneous multiple coalescence events.
Such coalescents were obtained as the genealogies of suitably rescaled population models by Möhle &
Sagitov (2001). Independently, Schweinsberg (2000) obtained the same class of coalescents and char-
acterised the possible rates of mergers in terms of a single measure Ξ on an infinite simplex. Coalescents
which allow simultaneous multiple mergers are now generally referred to as Ξ-coalescents.

Kingman’s coalescent can be thought of as describing the genealogy of a random sample from a
Fleming-Viot process. In the same way, a Λ-coalescent describes the genealogy of a random sample
from a generalised Fleming-Viot process. This process takes its values among probability measures
on [0, 1]. We shall describe it in terms of its generator, R acting on functions of the form

F(ρ) =

∫

f (x1, . . . , xp)ρ(d xp) . . .ρ(d x1),

where p ∈ N and f : [0,1]p → R is measurable and bounded. First we need some notation. If
x = (x1, . . . , xp) ∈ [0,1]p and J ⊆ {1, . . . , p} we write

x J
i = xmin J if i ∈ J , and x J

i = x i if i /∈ J , i = 1, . . . , p.

Then for Λ a finite measure on [0, 1], a Λ-Fleming-Viot process has generator

RF(ρ) =
∑

J⊆{1,...,p},|J |≥2

βΛp,|J |

∫

�

f (x J
1 , . . . , x J

p)− f (x1, . . . , xp)
�

ρ(d xp) . . .ρ(d x1),

where βΛp, j is defined in Equation (2). When Λ({0}) = 0, this can also be written

RF(ρ) =

∫

(0,1]

∫

[0,1]

�

F
�

(1− u)ρ+ uδk
�

− F(ρ)
�

ρ(dk)u−2Λ(du).

(When Λ({0}) > 0, one must add a second term corresponding to a classical Fleming-Viot process
and somehow dual to the Kingman part of the Λ-coalescent.) In this case, an intuitive way to
think about the process is to consider a Poisson point process on R+× (0,1] with intensity measure
d t ⊗ u−2Λ(du), which picks jump times and sizes for ρ(t). At a jump time t with corresponding
jump size u, a type k is chosen according to ρ(t−), an atom of mass u is inserted at k and ρ(t−) is
scaled down by (1− u) so that the total mass remains equal to one, i.e.,

ρ(t) = (1− u)ρ(t−) + uδk. (3)

The duality between Λ-coalescents and Λ-Fleming-Viot processes was first proved by Bertoin & Le
Gall (2003). Their approach uses a correspondence between the Λ-coalescents and stochastic flows
of bridges. The duality can also be understood via the Donnelly & Kurtz (1999) ‘modified look-
down construction’ and indeed is implicit there. An explicit explanation can be found in Birkner et
al. (2005).

In recent work (described briefly in Etheridge 2008), Barton & Etheridge have proposed a new class
of consistent forwards and backwards in time models for the evolution of allele frequencies in a

166



population distributed in a two-dimensional (or indeed d-dimensional) spatial continuum which, in
the simplest setting, can be thought of as spatial versions of the Λ-Fleming-Viot and Λ-coalescent
models (although we emphasize that these are not the same as the spatial Λ-coalescents considered
by Limic & Sturm 2006). They share many of the advantages of the classical models for spatially
structured populations while overcoming at least some of the disadvantages. The idea is simple. Just
as in the Λ-Fleming-Viot process, reproduction events are determined by a Poisson point process but
now, in addition to specifying a time and a value u, this process prescribes a region of space which
will be affected by the event. In what follows, the region will be a ball with random centre and
radius. Within that region the effect is entirely analogous to Equation (3).

This approach differs from existing spatial models in three key ways. First, density dependent
reproduction is achieved by basing reproduction events on neighbourhoods (whose locations are
determined by the Poisson point process), rather than on individuals. Second, the offspring of
a single individual can form a significant proportion of the population in a neighbourhood about
the parent, capturing the essentially finite nature of the local population size. Third, large scale
extinction-recolonisation events are explicitly incorporated. This reflects the large scale fluctuations
experienced by real populations in which the movement and reproductive success of many individ-
uals are correlated. For example, climate change has caused extreme extinction and recolonisation
events that dominate the demographic history of humans and other species (e.g. Eller et al. 2004).

The spatial Λ-Fleming-Viot process, like its classical counterpart, can be obtained as a limit of in-
dividual based models. Those prelimiting models are discussed in Berestycki et al. (2009). In the
(backwards in time) spatial Λ-coalescent, ancestral lineages move around according to dependent
Lévy processes (in fact they will be compound Poisson processes), jumping whenever they are af-
fected by a reproduction event. Two or more lineages can coalesce if they are all affected by the
same reproduction event.

Our first aim here is to provide a precise mathematical description of the spatial Λ-Fleming-Viot
process and the corresponding spatial Λ-coalescent model and address questions of existence and
uniqueness. This is achieved through adapting the work of Evans (1997). The idea is to first
construct the dual (backwards in time) process of coalescing Lévy processes corresponding to a
finite sample from the population at time zero, and then to use a functional duality to define the
forwards in time model. The principal difference between our setting and that of Evans is that, in
his work, ancestral lineages evolve independently until they meet.

The system of coalescing Lévy processes that describes the genealogy of a sample from the pop-
ulation, mirrors the system of coalescing random walks that plays the same rôle for the stepping
stone model. For systems of coalescing walks a number of studies have investigated conditions
under which, when viewed on an appropriate timescale, and for sufficiently well-separated sam-
ples, the effect of the geographical structure of the population can be summarised as a single ‘ef-
fective’ parameter and the system of coalescing lineages converges to Kingman’s coalescent. One
of the first works along these lines is due to Cox (1989), who considers random walks on a torus
T(L)∩Zd of sidelength L with the walks coalescing instantly on meeting. This corresponds to taking
G = T(L)∩Zd and γ=∞ in Equation (1). He shows that if one starts walks from any finite number
n ∈ N of points chosen independently and uniformly at random from T(L) ∩ Zd , then in suitable
time units, as L→∞, the number of surviving lineages is determined by Kingman’s coalescent. For
two spatial dimensions, this analysis was extended by Cox & Durrett (2002) and Zähle et al. (2005)
to random walks on T(L) ∩ Z2 with delayed coalescence (corresponding to γ < ∞). It is natural
to ask whether similar results are true here. Our second aim then is to establish conditions under
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which the genealogy of a sample taken at random from a large torus will converge to a non-spatial
coalescent. We shall concentrate on the most difficult, but also most biologically relevant, case
of two spatial dimensions. If reproduction events only affect bounded neighbourhoods, then, not
surprisingly, we recover a Kingman coalescent limit. However, we also consider the more general
situation in which in addition to ‘small’ events that affect only bounded neighbourhoods we allow
‘large’ extinction-recolonisation events (see Section 3 for the precise setting). Unless these events
affect a non-negligible proportion of the torus, on a suitable timescale, asymptotically we once again
recover a Kingman coalescent. The timescale is determined by the relative rates of ‘large’ and ‘small’
events. However, if we have extinction-recolonisation events that affect regions with sidelength of
order O (L), then, again depending on the relative rates of ‘large’ and ‘small’ events, we can obtain
a more general (non-spatial) Λ-coalescent limit or a system of coalescing Brownian motions (where
the coalescence is non-local).

The rest of the paper is laid out as follows. In Section 2 we define the model. In Section 3, we
give a precise statement of the conditions under which we obtain convergence of the genealogy of
a random sample from a (two-dimensional) torus of side L as L →∞. The corresponding conver-
gence results are Theorem 3.3 and Theorem 3.7. In Section 4 we establish existence of the process
and prove uniqueness in law. In Section 5 we gather the necessary results on Lévy processes in
preparation for our proofs of Theorem 3.3 and Theorem 3.7 in Sections 6 and 7. Finally, Appendices
A and B contain the proofs of the technical lemmas stated in Sections 5 and 6.

2 The model

First we describe a prelimiting model. Individuals in our population are assumed to have a type
taken from [0,1] and a spatial position in a metric space E that we shall usually take to be R2 (or
the torus T(L) in R2). Even though it will be clear that existence and uniqueness of the process
holds in much greater generality, the model is primarily motivated by considerations for populations
evolving in two-dimensional continua. The dynamics are driven by a Poisson point process Π on
R+ × R2 × (0,∞) with intensity d t ⊗ d x ⊗ µ(dr). If (t, x , r) ∈ Π, the first component represents
the time of a reproduction event. The event will affect only individuals in B(x , r), the closed ball of
centre x and radius r. We require two more ingredients. The first, m, is a fixed positive constant
which we shall refer to as the intensity of the model. Second, associated to each fixed radius r > 0
there is a probability measure νr on [0,1]. In the sequel, we assume that the mapping r 7→ νr is
measurable with respect to µ.

For definiteness, suppose that the population is initially distributed according to a spatially homo-
geneous Poisson process. The dynamics of our prelimiting model are described as follows. Suppose
that (t, x , r) ∈ Π. Consider the population in B(x , r) at time t−. If the ball is empty, then nothing
happens. Otherwise, independently for each event:

1. Select a ‘parent’ uniformly at random from those individuals in B(x , r) at time t− and sample
u ∈ [0, 1] at random according to νr .

2. Each individual in B(x , r), independently, dies with probability u, otherwise it is unaffected
by the reproduction event.

3. Throw down offspring in the ball, with the same type as the selected parent (who may now be
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dead), according to an independent Poisson point process with intensity u m Leb|B(x ,r) where
Leb denotes Lebesgue measure.

We shall refer to these events as reproduction events, even though they are also used to model large-
scale extinction-recolonisation events. Notice that recolonisation is modelled as being instantaneous
even after a large scale extinction.

Remark 2.1. For simplicity we have described only a special version of the model in which, even when
the reproduction event affects a large region, recolonisation is through a single founder. This guarantees
that if we look at the genealogy of a sample from this population, although we may see more than
two lineages coalescing in a single event, we do not see simultaneous mergers. More generally it would
be natural to take a random number of colonists and then, on passing to the limit, the corresponding
model would yield a spatial Ξ-coalescent.

Any reproductive event has positive probability of leaving the corresponding region empty, but be-
cause the neighbourhoods determined by different reproduction events overlap, an empty region
can subsequently become recolonised. Provided the measure µ(dr) decays sufficiently quickly as
r → ∞, Berestycki et al. (2009) show that there is a critical value of m above which the popula-
tion, when started from a translation invariant initial condition, survives with probability one. The
difficulty is that it is not easy to find an explicit expression for the distribution of the genealogical
trees relating individuals in a sample from the population. Knowing that an ancestral lineage is in
a given region of space gives us information about the rate at which that region was hit by repro-
duction events as we trace backwards in time. On the other hand, simulations reveal that this effect
is rarely significant. Mathematically, we overcome this difficulty by considering a model in which
the intensity m is infinite, but we preserve some of the signature of a finite local population size by
retaining the reproduction mechanism so that a non-trivial proportion of individuals in a neighbour-
hood are descended from a common ancestor. In particular, this will result in multiple coalescences
of ancestral lineages.

Now let us describe the model that arises from letting m→∞. (That the prelimiting model really
does converge to this limit will be proved elsewhere.) At each point x ∈ R2, the model specifies
a probability measure on type space which we shall write ρ(t, x , ·), or sometimes for brevity ρx .
The interpretation is that if we sample an individual from x , then its type will be determined by
sampling from ρx . The reproduction mechanism mirrors that for our discrete time model:

Definition 2.2 (Spatial Λ-Fleming-Viot process). The spatial Λ-Fleming-Viot process, {ρ(t, x , ·), x ∈
R2, t ≥ 0} specifies a probability measure on the type space [0, 1] for every t ≥ 0 and every x ∈ R2.
With the notation above, the dynamics of the process are as follows. At every point (t, x , r) of the Poisson
point process Π, we choose u ∈ [0, 1] independently according to the measure νr(du). We also select a
point z at random from B(x , r) and a type k at random according to ρ(t−, z, ·). For all y ∈ B(x , r),

ρ(t, y, ·) = (1− u)ρ(t−, y, ·) + uδk.

Sites outside B(x , r) are not affected, that is ρ(t, y, ·) = ρ(t−, y, ·) for every y /∈ B(x , r).

Remark 2.3. There are many variants of this model, some of which are outlined in Etheridge (2008).
The model presented here should be regarded as fitting into a general framework in which the key
feature is that reproduction events are driven by a Poisson point process determining their times and
spatial locations, rather than on individuals. Barton et al. (2009) investigate a version of the model in
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which, instead of replacing a portion u of the population in a disc at the time of a reproduction event,
the proportion of individuals affected decays (in a Gaussian distribution) with the distance from the
‘centre’ x of the event. Whereas in the disc based approach in the prelimiting (individual based) model
we had to suppress reproduction events that affected empty regions, this is not necessary in the Gaussian
model. Moreover, (in contrast to the disc model) in that setting the prelimiting model has the Poisson
point process in R2 with constant intensity m as a stationary distribution. Although the proofs would
be rather involved, analogues of our results here should carry over to the Gaussian setting.

Of course we must impose restrictions on the intensity measure if our process is to exist. To see
what these should be, consider first the evolution of the probability measure ρ(t, x , ·) defining the
distribution of types at the point x . This measure experiences a jump of size y ∈ A⊆ (0,1] at rate

∫

(0,∞)

∫

A

πr2νr(du)µ(dr).

By analogy with the Λ-Fleming-Viot process, we expect to require that

Λ(du) =

∫

(0,∞)
u2r2νr(du)µ(dr) (4)

defines a finite measure on [0, 1]. In fact, in the spatial setting we require a bit more. To see
why, suppose that ψ is a bounded measurable function on [0, 1] and consider the form that the
infinitesimal generator of the process must take on test functions of the form 〈ρ(x , dk),ψ(k)〉 (with
angle brackets denoting integration). Denoting the generator, if it exists, by G we shall have

G(〈ρ,ψ〉) =
∫

R2

∫

(0,∞)

∫

[0,1]

∫

[0,1]

Lr(x , y)
πr2

�

〈(1− u)ρ(x , ·) + uδk,ψ〉 − 〈ρ(x , ·),ψ〉
�

ρ(y, dk)νr(du)µ(dr)d y

=

∫

R2

∫

(0,∞)

∫

[0,1]

Lr(x , y)
πr2 u

�

〈ρ(y, ·),ψ〉 − 〈ρ(x , ·),ψ〉
�

νr(du)µ(dr)d y,

where Lr(x , y) denotes the volume of the set B(x , r)∩ B(y, r). Notice in particular that Lr(x , y) ≤
πr21{|x−y|≤2r}. In the non-spatial case, this term vanishes (set y = x), but here if we want the
generator to be well-defined on these test functions we make the stronger

Assumption 2.4.

Λ̃(du) =

∫

(0,∞)
ur2νr(du)µ(dr) (5)

defines a finite measure on [0, 1].

Condition (5) controls the jumps of ρ at a single point. Since we are going to follow Evans (1997)
in constructing our process via the dual process of coalescing lineages ancestral to a sample from
the population, we should check that such a process is well-defined. First we define the coalescent
process more carefully.

In order to make sense of the genealogy of a sample at any time, we extend the Poisson point process
Π of reproduction events to the whole time line (−∞,+∞). We need some notation for (labelled)
partitions.
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Notation 2.5 (Notation for partitions). 1. For each integer n ≥ 1, let Pn denote the set of parti-
tions of {1, . . . , n}, and define a labelled partition of {1, . . . , n}, with labels from a set E, to be a
set of the form {(π1, xπ1

), . . . , (πk, xπk
)}, where {π1, . . . ,πk} ∈ Pn and (xπ1

, . . . , xπk
) ∈ Ek. Let

P `
n be the set of all labelled partitions of {1, . . . , n}.

2. For each n ∈ N, let ℘n denote the partition of {1, . . . , n} into singletons. Moreover, if E is the
space of labels and x ≡ (x1, . . . , xn) ∈ En, let ℘n(x) denote the element {({1}, x1), . . . , ({n}, xn)}
of P `

n .

3. If π ∈ P `
n for some n ∈ N, then bl(π) will refer to the unlabelled partition of {1, . . . , n} induced

by π and if a ∈ bl(π), xa will be our notation for the label of a.

Our genealogical process will be a labelled partition. As in classical representations of genealogical
processes, a block of the partition at genealogical time t ≥ 0 contains the indices of the initial
lineages which share a common ancestor t units of time in the past, and its label gives the current
location of this ancestor in E = R2.

From the description of the forwards-in-time dynamics, the evolution of a sample of ancestral lin-
eages represented by a labelled partition should be the following. We start with a finite collection
of lineages at time 0. At each point (−t, x , r) ∈ Π (with t ≥ 0 here, since genealogical time points
towards the past), given that u ∈ [0,1] is the result of the sampling according to νr each lineage
present in the ball B(x , r), independently, is affected (resp., is not affected) with probability u (resp.,
1−u). A site y is chosen uniformly in B(x , r), and the blocks of all affected lineages merge into a sin-
gle block labelled by y . The other blocks and their labels are not modified. We write {A (t), t ≥ 0}
for the Markov process of coalescing lineages described in this way. Its state space is

⋃

n≥1P
`

n .
Note that A is constructed on the same probability space as that of the Poisson point process of
reproduction events. Writing P for the probability measure on that space, we abuse notation slightly
by writing PA to indicate that A (0) = A, PA-a.s. Now let us verify that our Condition (5) is suf-
ficient to ensure that the process {A (t), t ≥ 0} is well-defined. Since two lineages currently at
separation y ∈ R2 will coalesce if they are both involved in a replacement event, which happens at
instantaneous rate

∫

(|y|/2,∞)
Lr(y, 0)

 

∫

[0,1]
u2νr(du)

!

µ(dr), (6)

Condition (5) is more than enough to bound the rate of coalescence of ancestral lineages. To
guarantee that we can fit together the measures ρ at different points in a consistent way, we also
need to be able to control the spatial motion of ancestral lineages. Consider the (backwards in time)
dynamics of a single ancestral lineage. It evolves in a series of jumps with intensity

d t ⊗
∫

(|x |/2,∞)

∫

[0,1]

Lr(x , 0)
πr2 uνr(du)µ(dr)d x (7)

on R+×R2. If we want this to give a well-defined Lévy process, then we require
∫

R2

(1∧ |x |2)

 

∫

(|x |/2,∞)

∫

[0,1]

Lr(x , 0)
πr2 uνr(du)µ(dr)

!

d x <∞. (8)

But Condition (5) certainly guarantees this. In fact it ensures that the rate of jumps of each ancestral
lineage is finite. In other words, ancestral lineages follow compound Poisson processes.
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Remark 2.6. At first sight it is disappointing that we have to take Condition (5) and hence obtain a
system of coalescing compound Poisson processes rather than more general symmetric Lévy processes that
(4) and (8) would allow. However, biologically there is not much loss. The ‘gap’ between Condition (5)
and the weaker Condition (4) is that the latter would allow one to include very large numbers of
extremely small jumps (in which only a tiny proportion of the population is affected) as the radius of
the area affected by a reproduction event tends to zero. But in our population model, for small r we
expect that a large proportion of the population in the neighbourhood be replaced.

Remark 2.7. Notice that the locations of ancestral lineages are not independent of one another. Know-
ing that one lineage has jumped tells us that a reproduction event has taken place that could have
affected other lineages ancestral to our sample. Wilkins & Wakeley (2002) consider a somewhat anal-
ogous model in which a linear population evolves in discrete generations (see Wilkins 2004 for a two-
dimensional analogue). Each individual in the parental generation scatters an infinite pool of gametes
in a Gaussian distribution about themselves, and the next generation is formed by sampling from the
pool of gametes at each point. Individuals are assumed to have a finite linear width to avoid the patholo-
gies that arise when common ancestry in a continuum model requires two ancestral lineages to have a
physical separation of zero. They observe that “conditional on not coalescing in the previous generation,
two lineages are slightly more likely to be further apart than closer together”. In their setting a change
of coordinates settles the problem: the distance apart and the average position of two lineages do evolve
independently. For us the dependencies between lineages are more complex because the presence of a
jump contains the information that a reproduction event has taken place, whereas the conditioning
obviously tells us nothing about the timing of events in the discrete generation model.

3 The genealogy of points sampled uniformly from a large torus

We now turn our attention to populations evolving on a two-dimensional torus of sidelength L. Our
goal is to describe the genealogy of a finite number of individuals sampled uniformly at random
from the torus and subject to events of very different scales, as L→∞
To this end, we now consider a family of models indexed by N. For each L ∈ N, we consider a
population evolving on the torus T(L) ⊂ R2 of sidelength L. We identify T(L) with the subset
[−L/2, L/2]2 of R2 and use the Euclidean norm | · | induced on T(L) by this identification. Although
BT(L)(x , r) will be our notation for the ball in T(L) centred in x and with radius r, we shall omit the
subscript when there is no risk of confusion.

The population will be subject to two different classes of events that we call small and large. The
region affected by each small event will be uniformly bounded (independently of the size of the
torus). Large events will affect regions whose diameter is on the order of ψL which will be taken to
grow with L, but they will be less frequent. We shall assume that the rate at which a given ancestral
lineage is affected by a large event is proportional to 1/ρL with ρL also chosen to grow with L.

Now let us make the model more precise. Let (ψL)L≥1 be an increasing sequence such that there
exists α ∈ (0,1] satisfying

lim
L→∞

logψL

log L
= α, (9)

and assume that |α log L− logψL|= o((log L)−1/2) as L→∞.
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Remark 3.1. The latter assumption is not necessary since all our results would still hold with each
occurrence of (1−α) log L replaced by log(Lψ−1

L ) (see the end of the proof of Proposition 6.2), but it is
weak and considerably simplifies the presentation.

Let (ρL)L≥1 be an increasing sequence with values in (0,+∞], tending to infinity as L→∞. Finally,
let µs(dr) and µB(dr) be two σ-finite Borel measures on (0,∞), independent of L, such that there
exist some positive constants Rs and RB satisfying

inf
�

R : µs�(R,∞)
�

= 0
	

= Rs <∞ and inf
�

R : µB�(R,∞)
�

= 0
	

= RB <∞.

(For convenience, we ask that RB ≤ 1/
p

2 if α = 1.) To every r ≥ 0, we associate two probability
measures ν s

r(du) and νB
r (du) on [0, 1], and we assume that for ? ∈ {B, s} and for each ε ∈ (0, R?),

µ?
��

r ∈ [R?− ε, R?] : ν?r 6= δ0
	�

> 0. (10)

If Condition (10) does not hold, we decrease the corresponding radius R? since otherwise the largest
events never affect a lineage.

Let us suppose that for each L ≥ 1, the reproduction events of the forwards in time model can be of
two types :

• Small events, given by a Poisson point process Πs
L on R×T(L)×(0,∞) with intensity measure

d t ⊗ d x ⊗ µs(dr). If (t, x , r) is a point of Πs
L , then the centre of the reproduction event is x ,

its radius is r and the fraction of individuals replaced during the event is chosen according to
ν s

r .

• Large events, given by a Poisson point process ΠB
L on R×T(L)× (0,∞), independent of Πs

L
and with intensity measure (ρLψ

2
L)
−1d t ⊗ d x ⊗ µB(dr). If (t, x , r) is a point of ΠB

L , then the
centre of the reproduction event is x , its radius is ψL r and the fraction of individuals replaced
during the event is chosen according to νB

r .

Notice that we allow ρL to be infinite, in which case large events do not occur. Since Πs
L and ΠB

L
are independent, the reproduction events could be formulated in terms of a single Poisson point
process to fit into the Definition 2.2 of the spatial Λ-Fleming-Viot process. However, our aim here
is to disentangle the effects of events of different scales, hence our decomposition into two point
processes.

Remark 3.2. Observe that, although the intensity of ΠB
L is proportional to (ρLψ

2
L)
−1, the rate at which

a lineage is affected by (that is, jumps because of) a large event is of order O (ρ−1
L ). Indeed, the volume

of possible centres for such an event is proportional to ψ2
L , so that the jump rate of a lineage due to the

large events is given by

1

ρLψ
2
L

∫ RB

0

∫ 1

0

π(ψL r)2u νB
r (du)µB(dr) =

π

ρL

∫ RB

0

∫ 1

0

r2u νB
r (du)µB(dr).

In order for the genealogical processes, which we now denote by A L to emphasize dependence on
L, to be well-defined for every L ∈ N, we assume that Condition (5) is fulfilled. In this setting, the
condition can be written

∫ Rs

0

∫ 1

0

r2u ν s
r(du)µs(dr) +

1

ρL

∫ RB

0

∫ 1

0

r2u νB
r (du)µB(dr)<∞.
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Let us introduce some more notation. We write

Γ(L, 1)≡
�

x ∈ T(L) : |x | ≥
L

log L

�

,

and for each integer n≥ 2,

Γ(L, n) ≡
n

{x1, . . . , xn} ∈ T(L)n : |x i − x j| ≥
L

log L
for all i 6= j

o

,

ΓA (L, n) ≡
n

�

(a1, xa1
), . . . , (ak, xak

)
	

∈ P `
n : {xa1

, . . . , xak
} ∈ Γ(L, k)

o

,

where as before P `
n denotes the labelled partitions of {1, . . . , n}. When we require an element A of

ΓA (L, n) to have exactly n blocks, we shall write A∈ ΓA (L, n)∗.

In order to obtain a non-trivial limit, we rescale time for the processA L by a factor that we denote
$L . Recall that if A ∈ P `

n for some n ∈ N, bl(A) stands for the unlabelled partition of {1, . . . , n}
induced by A. For each L ∈ N, let us define the (non-Markov) processA L,u by

A L,u(t) = bl
�

A L($L t)
�

, t ≥ 0.

Note that for each L ∈ N, if we start A L from AL , a labelled partition of {1, . . . , n} with labels from
T(L), thenA L,u takes its values in the Skorohod space DPn

[0,∞) of all càdlàg paths with values in
Pn (the set of partitions of {1, . . . , n}), PAL

-a.s.

Recall the definition of α given in (9). In the absence of large events, our model is similar in many
respects to the two-dimensional stepping stone model and so it comes as no surprise that just as for
the stepping stone model, the genealogy of a random sample from the torus should converge (on a
suitable timescale) to a Kingman coalescent as the size of the torus tends to infinity (see in particular
Cox & Griffeath 1986,1990, Cox & Durrett 2002 and Zähle et al. 2005 for precise statements of this
result in different contexts). Our first result says that if α < 1, then we still obtain a Kingman
coalescent, but the timescale will be influenced by the large events: the latter reduce the effective
population size.

Before stating the result formally, let us try to understand why we should expect something like this
to be true. To understand the appropriate timescale we just need to consider two lineages. The
time they need to coalesce will be decomposed into two phases. If ρL is not too big, the first phase
will be the time until they first come within distance 2RBψL and the second will be the additional
time required for them to coalesce. During the first phase they evolve according to independent
compound Poisson processes. If ρL is small enough, the coalescence event that will eventually occur
during the second phase will, with probability close to one, be triggered by a large event. For larger
values of ρL , large events will not be frequent enough to hit the two lineages when they are at a
distance that would allow them to coalesce (i.e., less than 2RBψL), and coalescence will instead
be caused by a small-scale event. The first phase is then taken to be the time until the lineages
first come within distance 2Rs of one another. The fact that with high probability they will not be
hit by the same large-scale event means that once again they evolve (almost) independently of one
another during this first phase. The second phase is now the time taken for them to coalesce due to
a small event. The transition between these two regimes is when ρL ∝ ψ2

L log L. Now suppose that
we start from a sample in Γ(L, n). The first phase is then long enough that, when it ends, the spatial
location of lineages is no longer correlated with their starting points. Finally, why do large-scale

174



events not lead to multiple mergers? The key point is that, when a pair of lineages ancestral to our
sample first comes within 2RBψL of one another, all other pairs are still well-separated. So if ρL is
not too big, this pair will coalesce before a third lineage can come close enough to be affected by a
common event. If we take larger ρL , the reason is exactly the same but now lineages have to come
within distance 2Rs and coalescence is driven by small events.

Here then is the formal result which makes explicit the convergence in distribution of our spatial
genealogies to a nonspatial coalescent process. In the following, σ2

s (resp., σ2
Bψ

2
Lρ
−1
L ) is the variance

of the displacement of a lineage during one unit of time due to small (resp., large) events, see (20)
below.

Theorem 3.3. Let K denote Kingman’s coalescent, and recall that for each n ∈ N, ℘n denotes the
partition of {1, . . . , n} into singletons. In the notation of (9), suppose α < 1 (and (10) holds). Then,
for each integer n≥ 2 and any sequence (AL)L∈N such that AL ∈ ΓA (L, n)∗ for every L,

LPAL
(A L,u)⇒LP℘n

(K ) as L→∞,

where

$L =















(1−α)ρL L2 log L
2πσ2

Bψ
2
L

if ρ−1
L ψ

2
L →∞,

(1−α)L2 log L
2π(σ2

s+bσ2
B)

if ρ−1
L ψ

2
L → b ∈ [0,∞) and

ψ2
L log L
ρL

→∞,

L2 log L
2πσ2

s
if (ρ−1

L ψ
4
L)L≥1 is bounded or L2 log L

ρL
→ 0.

Here LP(X ) denotes the law under the probability measure P of the random variable X and⇒ refers to
weak convergence of probability measures.

For α= 1, things are more complicated. When ψL is commensurate with L, large scale events cover
a non-negligible fraction of the torus. If they happen too quickly, then they will be able to capture
multiple lineages while the locations of those lineages are still correlated with their starting points.
For intermediate ranges of ρL , lineages will have homogenised their positions on T(L) through small
events, but not coalesced, before the first large event occurs and we can expect a Λ-coalescent limit.
If the large events are too rare, then coalescence will be through small events and we shall recover
the Kingman coalescent again.

To give a precise result we need to define the limiting objects that arise. In the case α = 1, for each
L ∈ N, we set

$L =







ρL if ρL/(L2 log L) has a finite limit,
L2 log L
2πσ2

s
if ρL/(L2 log L)→+∞,

and define A L,u as before. Since we shall need to keep track of the labels (spatial positions) of the
ancestral lineages in some cases, it will also be convenient to introduce the following rescaling of
A L , evolving on T(1) for all L ∈ N:

Ā L(t) =
1

L
A L($L t), t ≥ 0,

where by this notation we mean that the labels are rescaled by a factor L−1. Similarly, for x ∈ T(1)n

we write Lx for (Lx1, . . . , Lxn) ∈ T(L)n. Finally, let us introduce the processes which will appear as
the limits of our rescaled genealogical processes.
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Definition 3.4. Let b ∈ [0,∞) and c > 0. We call Ā∞,b,c the Markov process with values in
⋃

n∈NP
`

n
(with labels in T(1)) such that

1. The labels of the lineages perform independent Brownian motions on T(1) at speed bσ2
s (if b = 0,

the labels are constant), until the first large event occurs.

2. Large events are generated by a Poisson point process Π
B

on R×T(1)× (0,1/
p

2] with intensity
measure c−2d t⊗d x⊗µB(dr). At a point (t, x , r) of Π

B
, a number u ∈ [0, 1] is sampled from the

probability measure νB
r , and each lineage whose label belongs to BT(1)(x , cr) is affected (resp., is

not affected) by the event with probability u (resp., 1− u), independently of each other. A label z
is chosen uniformly at random in BT(1)(x , cr), and all the lineages affected merge into one block
which adopts the label z. The other lineages (blocks and labels) remain unchanged.

3. The evolution of the labels starts again in the same manner.

Remark 3.5. Notice that this process looks like another spatial Λ-coalescent, except that now ancestral
lineages perform independent spatial motions in between coalescence events. This process is dual (in
the obvious way) to a spatial Λ-Fleming-Viot process in which, during their lifetimes, individuals move
around in space according to independent Brownian motions.

For each r ∈ [0, 1/
p

2], let Vr denote the volume of the ball BT(1)(0, r).

Definition 3.6. Let β ∈ [0,∞) and c > 0. We use Λ(β ,c) to denote the Λ-coalescent, defined on
⋃

n∈NPn, for which if there are currently m ancestral blocks, then each transition involving k of them
merging into one happens at rate

λ
(β ,c)
m,k = c−2

∫ (
p

2)−1

0

∫ 1

0

(Vcru)
k(1− Vcru)

m−kνB
r (du)µB(dr) + β δ{k=2}.

Recall the notation ℘n and ℘n(x) introduced in Notation 2.5, and LP(X ) and ⇒ introduced in the
statement of Theorem 3.3. We can now state the result for α= 1.

Theorem 3.7. Suppose there exists c > 0 such that for every L ∈ N, ψL = cL. Let n ∈ N, x ∈ T(1)n

such that x i 6= x j whenever i 6= j, and let (AL)L∈N be such that for every L, AL ∈ ΓA (L, n)∗. Then, as
L→∞,

(a) If ρL L−2→ b ∈ [0,∞),
LP℘n(Lx)

�

Ā L�⇒LP℘n(x)

�

Ā∞,b,c�,

(b) If ρL L−2 → ∞,
2πσ2

s ρL

L2 log L
→ β ∈ [0,∞) and if the total rate of occurrence of large events is finite

(i.e., µB has finite total mass),
LPAL

�

A L,u�⇒LP℘n

�

Λ(β ,c)�.

(c) If ρL
L2 log L

→∞,

LPAL

�

A L,u�⇒LP℘n

�

K
�

.
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Notice that the case (a) differs from all other cases in that the influence of space does not disappear
as L →∞ and the evolution of the limiting genealogy still depends on the precise locations of the
lineages.

The intuition behind Theorem 3.7 is as follows. If ψL ∝ L large events cover a non-negligible
fraction of the torus, and so only a few large events are sufficient to gather two lineages at a distance
at which they can coalesce. However, a local central limit theorem will give us that on a timescale
of order at most O (L2), a lineage subject to only small events behaves approximately like Brownian
motion, whereas after a time tL � L2, its distribution is nearly uniform on T(L) (for L large enough,
see Lemma 5.4). Since the mean time before a large event affects a lineage is of order O (ρL),
the limiting genealogical process (when we include both large and small reproduction events) will
depend on how ρL scales with L2. If ρL is of order at most O (L2), then space matters and the process
A L rescaled to evolve on T(1) on the timescale ρL converges to a system of coalescing Brownian
motions, whereas if ρL � L2, the homogenisation of the labels/locations of the lineages before the
occurrence of the first large event which affects them leads to a limiting unlabelled genealogical
process given by an exchangeable coalescent with multiple mergers.

Remark 3.8. It is somehow disappointing that we must impose a finite rate of large events to obtain
the convergence of Theorem 3.7(b). Indeed, it seems that case (a) should give us the right picture: in
the limit, in between large events lineages perform Brownian motions on the torus of sidelength 1 due
to small events, except that now the time required for at least one lineage to be affected by a large event
is so long that lineages exhaust space and their locations become uniformly distributed over the torus
before they are taken by a coalescence event. However, when µB has infinite mass, lineages are infinitely
often in the (geographical) range of a large reproduction event over any interval of time, and we need
good control of their complete paths to actually be able to say something about the epoch and outcome
of the first potential coalescence event. Now, observe that Equation (54) can only be generalized to the
finite-dimensional distributions of these paths, and does not guarantee that a large event cannot capture
some of the lineages at a time when they are not uniformly distributed over T(1).

Theorem 3.7 deals with the case where ψL is proportional to L. Let us now comment on the
remaining cases, in which α = 1 but ψL � L. First, it is easy to see that the convergence in (c) still
holds, since it is based on the fact that large events are so rare that none of them occurs before small
events reduce the genealogical process to a single lineage.

Second, since the total rate of large events on the timescale ρL is µB(R+)L2/ψ2
L , it cannot be

bounded unless µB ≡ 0 (a situation we excluded in (10)). On the other hand, for the reason
expounded in Remark 3.8 we are unable to derive a limiting behaviour for the genealogy when
large events can accumulate, and so the result of Theorem 3.7(b) has no counterpart when ψL � L.

Third, as explained above, when ρL ≤ bL2 any limiting process will necessarily have a spatial
component. Now, because we start with lineages at distance O (L) of each other, we need to rescale
space by L in order to obtain a non trivial initial condition. The last parameter we need is the
timescale $L on which to consider the genealogical process. But a separation of timescales will
not occur here, and so the computations done in Section 5 will show that the suitable choice of $L
depends on the precise behaviour of ρL/L2 and ρL/ψ

2
L . Several limiting processes are thus possible,

and since all the arguments needed to derive these limits are scattered in Sections 5 and 7, we chose
not to detail them here.
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4 Existence and uniqueness of the forwards-in-time process

Our spatial Λ-Fleming-Viot process associates a probability measure on type space to each point in
R2. In other words, it takes its values among functions from R2 toM1([0,1]). Evans (1997) uses
duality with a system of coalescing Borel right processes on a Lusin space E to construct a family
of Markov processes with values in the set of functions from E to M1({0,1}N) (or equivalently, to
M1([0, 1])). He also obtains uniqueness in distribution of the process. In his setting, coalescing
particles evolve independently until they meet, at which point they instantly coalesce. In our case,
the particles in the candidate dual do not move independently and nor do two particles hit by the
same reproduction event necessarily coalesce, but nonetheless the key ideas from his construction
remain valid. Note that, although we present the result in two dimensions, the proof carries over to
other dimensions.

First we give a formal description of the coalescing dual and then we use the Evans’ construction to
give existence and uniqueness in law of a process ρ which assigns a probability measure on [0, 1]
to each point in R2. We then identify ρ as the spatial Λ-Fleming-Viot process in which we are
interested.

4.1 State-space of the process and construction via duality

We shall only present the main steps of the construction, and refer to Evans (1997) for more details.

Let us define Ξ̃ as the space of all Lebesgue-measurable maps ρ : R2 →M1([0, 1]). Two elements
ρ1 and ρ2 of Ξ̃ are said to be equivalent if Leb({x ∈ R2 : ρ1(x) 6= ρ2(x)}) = 0. Let Ξ be the quotient
space of Ξ̃ by this equivalence relation. If E is a compact space, let us write C(E) for the Banach
space of all continuous functions on E, equipped with the supremum norm ‖·‖∞. For each n ∈ N, let
L1(C([0,1]n)) be the Banach space of all Lebesgue-measurable maps Φ : (R2)n → C([0, 1]n) such
that

∫

(R2)n
‖Φ(x)‖∞ d x <∞. A remark in Section 3 of Evans (1997) tells us that the separability of

L1(C([0, 1])) and a functional duality argument guarantee that Ξ, equipped with the relative weak*
topology, is a (compact) metrisable space. Finally, if λ is a measure on a space E′, let us write L1(λ)
for the set of all measurable functions f : E′→ R such that

∫

E′
| f (e)|λ(de)<∞.

Let n ∈ N. Given Φ ∈ L1(C([0, 1]n)), let us define a function In(· ;Φ) ∈ C(Ξ) by

In(ρ;Φ)≡
∫

(R2)n

D
⊗

1≤i≤n

ρ(x i),Φ(x1, . . . , xn)
E

d x1 . . . d xn,

where as before the notation 〈ν , f 〉 stands for the integral of the function f against the measure ν .
We have the following lemma, whose proof is essentially that of Lemma 3.1 in Evans (1997).

Lemma 4.1. The linear subspace spanned by the constant functions and functions of the form In(· ;Φ),
with Φ = ψ⊗

�
∏n

i=1χi
�

, ψ ∈ L1(d x⊗n) ∩ C((R2)n) and χi ∈ C([0, 1]) for all 1 ≤ i ≤ n is dense in
C(Ξ).

We need a last definition before stating the existence and uniqueness result. Let n ∈ N. For any ρ ∈
Ξ, π ∈ P `

n such that bl(π) = {a1, . . . , ak}, and any bounded measurable function F : [0, 1]n → R,
we set

Υn(ρ;π; F)≡
∫

[0,1]k
F(va−1(1), . . . , va−1(n))ρ(xa1

)(dva1
) . . .ρ(xak

)(dvak
),
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where a−1(i) is the (unique) block a j which contains i and va j
is the variable used for the measure

ρ(xa j
). In words, we assign the same variable to all coordinates which belong to the same block

in the partition π. (Recall that xa is our notation for the label of block a.) Recall also the notation
℘n(x) andA introduced in Notation 2.5 and the following paragraph.

Theorem 4.2. There exists a unique, Feller, Markov semigroup {Q t , t ≥ 0} on Ξ such that for all n ∈ N
and Φ ∈ L1(C([0, 1]n)), we have

∫

Q t(ρ, dρ′)In(ρ
′;Φ) =

∫

(R2)n
E℘n(x)

�

Υn
�

ρ;A (t);Φ(x1, . . . , xn)
��

d x1 . . . d xn. (11)

Consequently, there exists a Hunt process {ρ(t), t ≥ 0} with state-space Ξ and transition semigroup
{Q t , t ≥ 0}.

Before proving Theorem 4.2, let us make two comments on this result. First, since the Ξ-valued
process we obtain is a Hunt process it is càdlàg and quasi-left continuous, that is, it is almost surely
left-continuous at any previsible stopping time (see e.g. Rogers & Williams 1987 for a definition
of quasi-left continuous filtrations). However, more precise statements on its space-time regularity
seem to be a delicate question, which will require a thorough investigation.

Second, as in Kimura’s stepping stone model introduced in (1), the duality relation (11) can be
interpreted in terms of genealogies of a sample of individuals. Indeed, recall the stepping stone
model is dual to the system ({ni(t); i ∈ I})t≥0 of particles migrating from deme i to deme j at rate
m ji and coalescing in pairs at rate 1/Ne when in the same deme: for any t ≥ 0, we have

E
�

∏

i∈I

pi(t)
ni(0)
�

= E
�

∏

i∈I

pi(0)
ni(t)
�

.

These equations show that a function (here the ni(0)-th moments) of the frequencies at different
sites of Z2 and at (forward) time t can be expressed in terms of the genealogy of a sample made
of ni(0) individuals in deme i for every i ∈ I , and run for a (backward) time t: all lineages having
coalesced by time t necessarily carry the same type, whose law is given by the type distribution at
the site where their ancestor lies at backward time t (or forward time 0). Equation (11) can be
interpreted in exactly the same manner, but holds for a much wider collection of functions of ρ and
A .

Proof of Theorem 4.2: The observation that the construction of Evans (1997) can also be justified
in our setting follows from Remark (a) at the end of his Section 4.

Existence and uniqueness of A are easy from Assumptions (6) and (8). Next, we must verify
consistency ofA in the sense of his Lemma 2.1. In fact, this is the ‘sampling consistency’ described
in the introduction and was a primary consideration in writing down our model. It follows since
the movement of the labels of a collection of blocks does not depend on the blocks themselves and
from the fact that a coalescence event of the form {({1}, x1), ({2}, x2)} → {({1,2}, x)} for a pair of
particles corresponds to a jump {({1}, x1)} → {({1}, x)} onto the same site x ∈ R2 if we restrict our
attention to the first particle.

The next property needed in the construction is that provided it is true at t = 0, for every t > 0 the
distribution of the labels in A (t) has a Radon-Nikodym derivative with respect to Lebesgue mea-
sure, and furthermore an analogue of Evans’ Equation (4.2) holds. In the setting of Evans (1997),
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the first requirement stems from the independence of the spatial motions followed by different labels
and the corresponding result for a single label. Here, since the motion of all lineages is driven by the
same Poisson process of events, their movements are correlated. However, the desired property is
still satisfied. To see this, note that each jump experienced by a lineage in the interval [−t, 0] takes
it to a position that is uniformly distributed over the open ball affected by the corresponding repro-
duction event. Thus, ifA (t) has k blocks and D ⊂ (R2)k has zero Lebesgue measure, the probability
that the labels of the blocks ofA (t) belong to D is equal to 0. Equation (4.2) of Evans (1997) then
still holds, without Evans’ additional assumption of the existence of a dual process for the motion of
one lineage (which anyway is satisfied since our lineages perform symmetric Lévy processes).

The last step is to check the strong continuity of the semigroup {Q t , t ≥ 0}, but this readily follows
from the relation (11) and the Feller property of A (which is itself evident since jumps do not
accumulate in our dual process).

The desired conclusion now follows from Theorem 4.1 in Evans (1997). �

4.2 Identification of the process

We can use (11) to derive an expression for the infinitesimal generator of {ρ(t), t ≥ 0} acting on
the functions In(· ;Φ) considered in Lemma 4.1. This lemma and the uniqueness result stated in
Theorem 4.2 guarantee that it will be sufficient to characterize the process ρ and to show that
it corresponds to the evolution we described in Section 2 in terms of a Poisson point process of
reproduction events.

Let n ∈ N and Φ ∈ C(Ξ) be such that Φ = ψ⊗
�
∏n

i=1χi
�

, where ψ ∈ L1(d x⊗n) ∩ C((R2)n) and
χi ∈ C([0,1]) for all 1≤ i ≤ n. Writing G for the generator of the process ρ and Gn for the generator
of the coalescing Lévy processesA acting on functions of P `

n , we obtain from (11) that

GIn( ρ ;Φ) = lim
t→0

Eρ[In(ρ(t),Φ)]− In(ρ,Φ)

t

= lim
t→0

1

t

∫

(R2)n
ψ(x1, . . . , xn)

�

E℘n(x)

h

Υn

�

ρ;A (t);
n
∏

i=1

χi

�i

−
n
∏

i=1

〈ρ(x i),χi〉
�

d x⊗n

=

∫

(R2)n
ψ(x1, . . . , xn) Gn

h

Υn

�

ρ; · ;
n
∏

i=1

χi

�i

(℘n(x)) d x⊗n. (12)

Note that the quantity on the right-hand side of (12) is well-defined (and the interchange of limit
and integral is valid) since ψ belongs to L1(d x⊗n) and the rate at which at least one of k ≤ n
blocks is affected by a reproduction event is bounded by n times the integral in (5), so that A is a
jump-hold process and its generator satisfies





Gn

h

Υn

�

ρ; · ;
n
∏

i=1

χi

�i






∞
≤ 2Cn





Υn

�

ρ; · ;
n
∏

i=1

χi

�






∞
≤ 2Cn

n
∏

i=1

‖χi‖∞ <∞

for a given constant C <∞.

Using the description of the evolution of A in terms of events in Π, the right-hand side of (12) is
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equal to

∫

(R2)n
d x⊗nψ(x1, . . . , xn)

∫

R2

d y

∫ ∞

0

µ(dr)

∫ 1

0

νr(du)

∫

B(y,r)

dz

πr2

×
∑

I⊂{1,...,n}

�

∏

i∈I

1B(y,r)(x i)
∏

i′ /∈I

1B(y,r)c (x i′)
�

×
∑

J⊂I

u|J |(1− u)|I |−|J |
�

∏

i /∈J




ρ(x i),χi
�

��

D

ρ(z),
∏

j∈J

χ j

E

−
∏

j∈J




ρ(x j),χ j
�

�

, (13)

where | · | stands for cardinality. Indeed, given x1, . . . , xn in (13), only one term in the sum over
I ⊂ {1, . . . , n} is non-zero. For this particular term, each of the |I | blocks whose labels lie in B(y, r)
belong to the set J of the blocks affected by the event with probability u (independently of one
another), and the affected blocks adopt the label z. After some algebra and several uses of Fubini’s
theorem, we obtain that (13) is equal to

∫

R2

d y

∫ ∞

0

µ (dr)

∫ 1

0

νr(du)

∫

B(y,r)

dz

πr2

∫ 1

0

ρz(dk)

∫

d x1 . . . d xn ψ(x1, . . . , xn)

×
∑

I⊂{1,...,n}

∏

j /∈I

�

1B(y,r)c (x j)〈ρx j
,χ j〉

	

∏

i∈I

1B(y,r)(x i)

×
�

∏

i∈I




(1− u)ρx i
+ uδk,χi

�

−
∏

i∈I




ρx i
,χi
�

�

, (14)

which is precisely the generator of the forwards in time process of Section 2. Using Theorem 4.2,
we arrive at the following result.

Proposition 4.3. The martingale problem associated to the operator G defined by (14) on functions
of the form given in Lemma 4.1 is well-posed. Furthermore, the spatial Λ-Fleming-Viot process ρ of
Theorem 4.2 is the solution to it.

5 Some estimates for symmetric Lévy processes

In this section, we gather some results on symmetric Lévy processes that we shall need to call upon
in our proofs of Theorem 3.3 and Theorem 3.7. For the sake of clarity, the proofs of the three lemmas
are given in Appendix A.

First, we introduce some notation that we shall use repeatedly.

Notation 5.1. 1. In the following, we shall suppose that all the random objects considered are con-
structed on the same probability space (Ω,F ,P), and if X is a process defined on Ω with state-
space E and x ∈ E, we shall write Px for the probability measure on Ω under which X (0) = x
a.s.

2. For a stochastic process {X t}t≥0 evolving in T(L), we shall write T(R, X ) for the first entrance
time of X into BT(L)(0, R). When there is no ambiguity, we write simply T (R).
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Let (`L)L≥1 be a sequence of Lévy processes such that for each L ∈ N, `L evolves on the torus T(L)
and `L(1)− `L(0) has a covariance matrix of the form σ2

LId. Assume that the following conditions
hold.

Assumption 5.2. (i) There exists σ2 > 0 such that σ2
L → σ

2 as L→∞.

(ii) E0
�

|`L(1)|4
�

is bounded uniformly in L.

Our first lemma describes the time `L needs to reach a ball of radius dL � L around 0, when it starts
at distance O (L) of the origin (recall the definition of Γ(L, 1) given in Section 3).

Lemma 5.3. Let (dL)L≥1 be such that lim infL→∞ dL > 0 and log+(dL)
log L

→ γ ∈ [0,1) as L→∞. Then,

lim
L→∞

sup
t≥0

sup
xL∈Γ(L,1)

�

�

�

�

�

PxL

�

T (dL ,`L)>
(1− γ)L2 log L

πσ2 t

�

− e−t

�

�

�

�

�

= 0. (15)

The proof of Lemma 5.3 follows that of Theorem 2 in Cox & Durrett (2002). In particular, we shall
use the following local central limit theorem (which is the counterpart in our setting of Lemma 3.1
in Cox & Durrett 2002). Let bzc denote the integer part of z ∈ R, and write pL(x , t) for Px[`L(t) ∈
B(0, dL)].

Lemma 5.4. (a) Let εL = (log L)−1/2. There exists a constant C1 <∞ such that for every L ≥ 2,

sup
t≥bεL L2c

sup
x∈T(L)

bεL L2c
d2

L

pL(x , t)≤ C1. (16)

(b) If vL →∞ as L→∞, then

lim
L→∞

sup
t≥bvL L2c

sup
x∈T(L)

L2

d2
L

�

�

�

�

�

pL(x , t)−
πd2

L

L2

�

�

�

�

�

= 0. (17)

(c) If uL →∞ as L→∞ and I(dL , x)≡ 1+ (|x |2 ∨ d2
L), then

lim
L→∞

sup
x∈T(L)

sup
uL I(dL ,x)≤t≤εL L2

�

�

�

�

�

2σ2
L t

d2
L

pL(x , t)− 1

�

�

�

�

�

= 0. (18)

(d) There exists a constant C2 <∞ such that for every L ≥ 1,

sup
t≥0

sup
x∈T(L)

�

1+
|x |2

d2
L

�

pL(x , t)≤ C2. (19)

In essence, Lemma 5.4 says that on the timescale d2
L � t � L2, the Lévy process `L behaves like two-

dimensional Brownian motion, whereas at any given time t � L2, its location is roughly uniformly
distributed over T(L).
Another consequence of Lemma 5.4 is the following result, which bounds the probability that `L hits
a ball of bounded radius during a ‘short’ interval of time in the regime t � L2.

Lemma 5.5. Fix R > 0. Let (UL)L≥1 and (uL)L≥1 be two sequences increasing to infinity such that
UL L−2→∞ as L →∞ and 2uL ≤ L2(log L)−1/2 for every L ≥ 1. Then, there exist C > 0 and L0 ∈ N
such that for every sequence (U ′L)L≥1 satisfying U ′L ≥ UL for each L, every L ≥ L0 and all x ∈ T(L),

Px

h

T (R,`L) ∈ [U ′L − uL , U ′L
�

i

≤
CuL

L2 .
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6 Proof of Theorem 3.3

Armed with the estimates of Section 5, we can now turn to the proofs of our main results.

Notation 6.1. For each L ≥ 1, let {ξL(t), t ≥ 0} be the Lévy process on T(L) whose distribution is
the same as that of the motion of a single lineage subject to the large and small reproduction events
generated by Πs

L and ΠB
L .

In the rest of this section, we assume that the assumptions of Theorem 3.3 are satisfied.

6.1 Coalescence time for two lineages

We begin by studying the genealogical process of a pair of lineages starting at distance O (L) from
each other. Since the motions ξL

1 and ξL
2 of the lineages are distributed like two independent copies

of the process ξL until the random time TL at which they come at distance less than 2RBψL , the
difference

X L(t)≡ ξL
1(t)− ξ

L
2(t), 0≤ t ≤ TL

has the same distribution as
�

ξL(2t), 0 ≤ t ≤ 1
2

T (2RBψL ,ξL)
	

. We shall use Lemma 5.3 to derive
the limiting distribution of TL , but first we need to introduce the relevant variances. Consider a
single lineage. Because it jumps at a finite rate owing to small and large events, the following two
quantities are well-defined and finite :

σ2
s ≡
∫

y2 χ s(d y, dz) and σ2
B ≡

∫

y2 χB(d y, dz), (20)

where χ s stands for the intensity measure of the small jumps experienced by the lineage and χB for
that of the large jumps renormalised by ψ−1

L (the form of these two measures is given in (7)). We
now have all the ingredients we need to describe the asymptotic ‘gathering time’ of two lineages.

Proposition 6.2. (a) If ρ−1
L ψ

2
L →∞ as L→∞, then

lim
L→∞

sup
t≥0

sup
AL∈ΓA (L,2)∗

�

�

�

�

PAL

�

TL >
(1−α)ρL L2 log L

2πσ2
Bψ

2
L

t

�

− e−t

�

�

�

�

= 0.

(b) If ρ−1
L ψ

2
L → b ∈ [0,∞) as L→∞, then

lim
L→∞

sup
t≥0

sup
AL∈ΓA (L,2)∗

�

�

�

�

PAL

�

TL >
(1−α)L2 log L

2π(σ2
s + bσ2

B)
t

�

− e−t

�

�

�

�

= 0.

Proof of Proposition 6.2: Let us first recall two results on Poisson point processes, which are conse-
quences of the exponential formula given, for instance, in Section 0.5 of Bertoin (1996). Following
Bertoin’s notation, let {e(t), t ≥ 0} be a Poisson point process on R× R+ with intensity measure
κ(d y)⊗ d t, where the Borel measure κ satisfies

∫

R
|1− e y |κ(d y)<∞ and

∫

R
ymκ(d y) = 0, m ∈ {1, 3}. (21)

183



Under these conditions, we have for each fixed t > 0

E
�

�
∑

s≤t

e(s)
�2
�

= t

∫

R
y2κ(d y), (22)

E
�

�
∑

s≤t

e(s)
�4
�

= 3t2
�
∫

R
y2κ(d y)

�2

+ t

∫

R
y4κ(d y). (23)

These properties will be useful in computing the variances and fourth moments of the random
variables considered below.

Let us start with the proof of (a). Consider the process `L defined by: for every t ≥ 0,

`L(t) =
1

ψL
ξL�2ρL t

�

.

This process evolves on the torus of sidelength ψ−1
L L, and makes jumps of size O (ψ−1

L ) at a rate of
order O (ρL), as well as jumps of size O (1) at a rate of order O (1).
Let us check that `L satisfies the assumptions of Lemma 5.3. To this end, we view `L(1) starting
at 0 as the sum of its jumps and adapt the problem to use the results on Poisson point processes
given above. First, let us define ˆ̀L as the Lévy process on R2 evolving like `L (but without periodic
conditions). For i ∈ {0,1} and each L ≥ 1, t ≥ 0, let ˆ̀L,i(t) denote the i-th coordinate of ˆ̀L(t). Note
that the distance reached by `L up to a given time t is less than or equal to the distance at which ˆ̀L

traveled up to t, and so we can write

E0
�

|`L(1)|4
�

≤ E0
�

|ˆ̀L(1)|4
�

=E0

hn

ˆ̀L,1(1)2+ ˆ̀L,2(1)2
o2i

≤ 2
n

E0
�ˆ̀L,1(1)4

�

+E0
�ˆ̀L,2(1)4

�

o

.

By symmetry, we need only bound E0
�ˆ̀L,1(1)4

�

. Let us denote by a1, a2, . . . ∈ [−2Rs/ψL , 2Rs/ψL]2

(resp., b1, b2, . . . ∈ [−2RB, 2RB]2) the sequence of the jumps of ˆ̀L,1 before time 1 due to small (resp.,
large) events. Using the convexity of y 7→ y4, we have

E0
�ˆ̀L,1(1)4

�

= E0

�

�
∑

i

ai +
∑

j

b j

�4
�

≤ 8 E0

�

�
∑

i

ai

�4
+
�
∑

j

b j

�4
�

. (24)

Applying (23) to each term on the right-hand side of (24) yields

E0
�

(ˆ̀L,1(1))4
�

≤ 96
ρ2

L

ψ4
L

σ4
s + 16

ρL

ψ4
L

∫

y4χ s(d y, dz) + 96σ4
B + 16

∫

y4χB(d y, dz), (25)

which is bounded uniformly in L since ρLψ
−2
L vanishes as L grows to infinity, and each integral

is finite. Coming back to the original problem, we obtain that Assumption 5.2 (ii) holds for the
sequence of processes (`L)L≥1.

Concerning Assumption 5.2 (i), observe that σ2
L is simply the variance of `L,1(1). To obtain the

asymptotic behaviour of σ2
L , we show that up to time 1, `L does not see that it is on a torus. Hence,

with high probability `L,1(1)2 = ˆ̀L,1(1)2 and so

E0
�

`L,1(1)2
�

≈ E0
�ˆ̀L,1(1)2

�

= 2
ρL

ψ2
L

∫

y2χ s(d y, dz) + 2

∫

y2χB(d y, dz) = 2σ2
B + o(1)
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as L→∞, where the second equality uses (22). To make the first equality rigorous, we apply Doob’s
maximal inequality to the submartingale |ˆ̀L|4. This yields, with a constant C > 0 which may change
from line to line,

P0

�

sup
0≤s≤1

|ˆ̀L(s)|>
L

3ψL

�

≤
Cψ4

L

L4 E0
�

|ˆ̀L(1)|4
�

.

But the calculation in (25) shows that the latter expectation is finite, and so

P0

�

sup
0≤s≤1

|ˆ̀L(s)|>
L

3ψL

�

≤ C
ψ4

L

L4 . (26)

On the event EL ≡
�

sup0≤s≤1 |ˆ̀L(s)| ≤ L
3ψL

	

, the paths of `L and ˆ̀L can be coupled so that `L(s) =
ˆ̀L(s) for every s ∈ [0, 1], and since these quantities are bounded for each L we can write

E0
�

(`L,1(1))2
�

=E0
�

(ˆ̀L,1(1))2 1EL

�

+E0
�

(`L,1(1))2 1E c
L

�

=E0
�

(ˆ̀L,1(1))2
�

−E0
�

(ˆ̀L,1(1))2 1E c
L

�

+E0
�

(`L,1(1))2 1E c
L

�

. (27)

By (26) and the fact that `L evolves on the torus of size Lψ−1
L , the last term on the right-hand side

of (27) is bounded by

C
L2

ψ2
L

×
ψ4

L

L4 = C
ψ2

L

L2 → 0 as L→∞.

For the second term on the right-hand side of (27), let ŝL(1) ≡ sup0≤s≤1 |ˆ̀L(s)|. Using Fubini’s
theorem on the second line, we have

E0
�

(ˆ̀L,1(1))2 1E c
L

�

≤E0
�

ŝL(1)
2 1E c

L

�

=

∫ ∞

0

P0

h

ŝL(1)>
L

3ψL
∨
p

y
i

d y

=
L2

9ψ2
L

P0

h

ŝL(1)>
L

3ψL

i

+

∫ ∞

L2

9ψ2
L

P0
�

ŝL(1)>
p

y
�

d y. (28)

Now, by the argument leading to (26), P0[ŝL(1) >
p

y] is bounded by C y−2 for each y > 0, where
C is a constant independent of y . Consequently, the right-hand side of (28) is bounded by

C ′
ψ2

L

L2 + C

∫ ∞

L2/(9ψ2
L)

d y

y2 → 0 as L→∞.

Coming back to (27), we can conclude that

σ2
L = 2σ2

B + o(1) as L→∞.

If we now recall the equality in distribution described at the beginning of the section, we can use
Lemma 5.3 applied to `L on the torus of size Lψ−1

L and the entrance time into B(0,2RB) to write
that

lim
L→∞

sup
t≥0

sup
AL∈ΓA (L,2)∗

�

�

�

�

�

PAL

�

TL >
ρL(L/ψL)2 log(L/ψL)

2πσ2
B

t

�

− e−t

�

�

�

�

�

= 0. (29)
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By the assumption on |α log L − log(ψL)| introduced just after (9) and Lemma 5.5 applied to `L to

bound the probability that TL lies between ρL L2 log(L/ψL)
2πσ2

Bψ
2
L

and (1−α)ρL L2 log L
2πσ2

Bψ
2
L

, (a) of Proposition 6.2

follows from (29).

Let us now turn to the proof of (b). This time, we define `L for every t ≥ 0 by

`L(t) =
1

ψL
ξL(2ψ2

L t).

Similar calculations give, as L→∞,

E0

�

|`L(1)|2
�

= 2σ2
s + 2bσ2

B + o(1) if ρ−1
L ψ

2
L → b ∈ [0,∞).

and E0

�

|`L(1)|4
�

is bounded uniformly in L. We can therefore apply Lemma 5.3 to `L as above. �

Having established the time that it takes for two lineages starting from distance L apart to come close
enough together that they have a chance to coalesce, we now calculate the additional time required
for them to actually do so. We shall have to distinguish between several regimes, depending on
whether large or small events prevail in the evolution of the pair of lineages. Our goal in the rest of
this section is to prove the following result.

Theorem 6.3. For each L ∈ N, let tL denote the coalescence time of the pair of lineages under consid-
eration. Then,

(a) If
ψ2

L
ρL
→∞ as L→∞,

lim
L→∞

sup
t≥0

sup
AL∈ΓA (L,2)∗

�

�

�

�

�

PAL

�

tL >
(1−α)ρL L2 log L

2πσ2
Bψ

2
L

t

�

− e−t

�

�

�

�

�

= 0.

(b) If
ψ2

L
ρL
→ b ∈ [0,∞) and

ψ2
L log L
ρL

→∞ as L→∞,

lim
L→∞

sup
t≥0

sup
AL∈ΓA (L,2)∗

�

�

�

�

�

PAL

�

tL >
(1−α)L2 log L

2π(σ2
s + bσ2

B)
t

�

− e−t

�

�

�

�

�

= 0.

(c) If (
ψ4

L
ρL
)L≥1 is bounded or L2 log L

ρL
→ 0 as L→∞ (and so

ψ2
L log L
ρL

→ 0), then

lim
L→∞

sup
t≥0

sup
AL∈ΓA (L,2)∗

�

�

�

�

�

PAL

�

tL >
L2 log L

2πσ2
s

t

�

− e−t

�

�

�

�

�

= 0.

The cases (a) and (b) are separated only because the timescales of interest are not of the same
order, but the reasons why they hold are identical: in both cases, large jumps are frequent enough
that, once the lineages have been gathered at distance 2RBψL , they coalesce in a time negligible
compared to TL . In contrast, in (c) we assume that the rate at which the lineages are affected by
large events is so slow that we have to wait for the lineages to be gathered at distance less than 2Rs

before they have a chance to coalesce (and they do so in a negligible time compared to L2 log L).
If none of the above conditions hold, then the proof of (c) will show that, also in this case, the
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probability that a large event affects the lineages when they are at distance less than 2RBψL and
before a time of order O (L2 log L) vanishes as L tends to infinity. However, we are no longer able to
describe precisely the limiting behaviour of tL , see Remark 6.8.

Let us first make more precise the sense in which the additional time to coalescence is negligible
once the lineages have been gathered at the right distance.

Proposition 6.4. Let (ΦL)L≥1 be a sequence tending to infinity as L→∞.

(a) If (ΦL)L≥1 is such that ρL
ψ2

L logΦL
→ 0 as L→∞, we have

lim
L→∞

sup
AL

PAL

�

tL > ΦLρL
�

= 0, (30)

where the supremum is taken over all samples AL =
�

({1}, x L
1 ), ({2}, x L

2 )
	

such that |x L
1−x L

2 | ≤ 2RBψL .

(b) Under no additional condition, we have

lim
L→∞

sup
A′L

PA′L

�

tL > ΦL
�

= 0, (31)

where the supremum is now taken over all samples A′L =
�

({1}, x L
1 ), ({2}, x L

2 )
	

such that |x L
1 − x L

2 | ≤
2Rs.

Taking ΦL =
L2

ρL log L
(1 ∧ ρLψ

−2
L ), the result in (a) shows that when

ψ2
L log L
ρL

→ ∞, the coalescence

time of two lineages at distance at most 2RBψL is indeed much smaller than TL (which is of order
L2 log L×

�

1∧ρLψ
−2
L

�

by Proposition 6.2).

Proof of Proposition 6.4: Recall that for each L ∈ N, we defined X L as the difference between the
locations of the lineages ξL

1 and ξL
2 on the torus T(L). In the following, if both lineages are affected

by the same event, we shall consider that X L hits 0 but the number of lineages remains equal to 2,
which means that they can separate again later (if the measures ν s

r and νB
r are not all the point mass

at 1). However, it is the first time at which such an event occurs which will be of interest, and we
keep the notation tL to denote this time. As we already noticed, X L behaves like {ξL(2t), t ≥ 0}
outside B

�

0,2RBψL
�

, whereas inside the ball it can hit 0 owing to reproduction events affecting
both lineages ξL

1 and ξL
2 .

Case (a). For each L ∈ N, set qL
0 =QL

0 ≡ 0 and for every i ≥ 1,

QL
i ≡ inf

n

t > qL
i−1 : X L(t) /∈ B

�

0,
7

4
RBψL

�o

and

qL
i ≡ inf

n

t >QL
i : X L(t) ∈ B

�

0,
3

2
RBψL

�o

,

with the convention that inf ; = +∞. We shall use the following lemmas, which will enable us to
describe how X L wanders around in T(L), independently of whether it ever hits 0 or not.

Lemma 6.5. There exist a function g : R+→ R+ vanishing at infinity, Cq > 0, uq > 1 and Lq ∈ N such
that for every L ≥ Lq and u≥ uq,

sup
x∈B(0,4RB)\B(0,(7/4)RB)

PψL x
�

qL
1 > ρLu

�

≤ g(u) if ρL = O (ψ2
L),
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sup
x∈B(0,4RB)\B(0,(7/4)RB)

PψL x
�

qL
1 >ψ

2
Lu
�

≤
Cq

log u
if ρ−1

L ψ
2
L → 0.

Lemma 6.5 will give us good control of the probability of a long excursion outside B(0, (3/2)RBψL).

Lemma 6.6. Suppose that

Leb
��

r ∈ [0, RB] : νB
r /∈ {δ0,δ1}

	�

> 0. (32)

Then, there exists a constant CQ <∞ such that for each L ≥ 1,

sup
x∈B(0,(3/2)RB)

1

ρL
EψL x

�

QL
1

�

< CQ.

Condition (32) guarantees that, whenever X L hits 0, it has a chance not to remain stuck at this value
for all times. Lemma 6.6 then tells us that X L starting within B((3/2)RBψL) needs an average time
of order O (ρL) to reach distance (7/4)RBψL from the origin.

Lemma 6.7. Suppose that ρLψ
−2
L remains bounded as L→∞. Then, there exists θ1 ∈ (0,1) such that

for every L ≥ 1,

inf
x∈B(0,(3/2)RB)

PψL x
�

X L hits 0 before leaving B
�

0, (7/4)RBψL
��

≥ θ1. (33)

If lim infL→∞ρ
−1
L ψ

2
L = 0, there exist θ2 ∈ (0, 1) and θ3 > 0 such that

inf
x∈B(0,(3/2)RB)

PψL x
�

X L hits 0 before leaving B
�

0, (7/4)RBψL
��

≥ θ2

�

1− exp
n

− θ3
ψ2

L

ρL

o

�

. (34)

The proofs of these lemmas are given in Appendix B.

The following technique is inspired by that used in Cox & Durrett (2002) and Zähle et al. (2005),
although the motions of the lineages and the mechanism of coalescence here are more complex and
require slightly more work. Our plan is first to find a good lower bound on the number of times
the lineages meet at distance less than (3/2)RBψL (and then separate again) before time ΦLρL . In
a second step, we use the estimates on the probability that during such a gathering the lineages
merge before separating again derived in Lemma 6.7, and obtain that coalescence does occur before
ΦLρL with probability tending to 1. For the sake of clarity, we show (30) in the case where ρLψ

−2
L

remains bounded, and then comment on how to adapt the arguments in the general case.

Assume first that Condition (32) holds. Recall the definition of QL
i and qL

i given above, and define
kL by

kL ≡max
�

n : QL
n ≤ ΦLρL

	

.

By Lemma 6.7, there exists a positive constant θ1 such that for every L ≥ 1 and x ∈ B(0, (3/2)RBψL),

Px
�

X L hits 0 before leaving B
�

0, (7/4)RBψL
��

≥ θ1.
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Hence, for every x ∈ B
�

0, 2RBψL
�

, we have

Px
�

tL > ΦLρL
�

≤ Px
�

tL >QL
kL

�

≤ Ex
��

1− θ1
�kL
�

. (35)

Let us fix x ∈ B
�

0,2RBψL
�

and show that kL →∞ as L →∞, in Px -probability. The fact that the
bounds obtained below do not depend on x ∈ B

�

0,2RBψL
�

will then give us the desired uniformity.
Let M ∈ N. We have

Px
�

kL < M
�

= Px
�

QL
M > ΦLρL

�

= Px

� M
∑

i=1

(QL
i − qL

i−1) +
M−1
∑

i=1

(qL
i −QL

i )> ΦLρL

�

≤
M
∑

i=1

Px

�

QL
i − qL

i−1 >
ΦLρL

2M

�

+
M−1
∑

i=1

Px

�

qL
i −QL

i >
ΦLρL

2(M − 1)

�

, (36)

where the last inequality uses the fact that at least one of the 2M − 1 terms of the sums on the
second line must be larger than a fraction (2M − 1)−1 of the total time. Now, using the Markov
inequality, the strong Markov property at time qL

i−1 and then Lemma 6.6, we can write for each i

Px

�

QL
i − qL

i−1 >
ΦLρL

2M

�

≤
2M

ΦLρL
Ex
�

QL
i − qL

i−1

�

≤
2M

ΦLρL
sup

y∈B(0,(3/2)RB)
EψL y

�

QL
1

�

≤
2MCQ

ΦL
.

If we now apply the strong Markov property to X L at time QL
i and use Lemma 6.5 together with the

fact that X L(QL
i ) ∈ B(0,4RBψL) with probability one, we obtain for each i, and L large enough

Px

�

qL
i −QL

i >
ΦLρL

2(M − 1)

�

≤ g
�

ΦL

2(M − 1)

�

.

Coming back to (36), we arrive at

Px
�

kL < M
�

≤
2M2CQ

ΦL
+ (M − 1)g

�

ΦL

2(M − 1)

�

→ 0, as L→∞.

To complete the proof of (a) when Condition (32) holds and ρLψ
−2
L remains bounded, let ε > 0 and

fix M = M(ε) ∈ N such that
(1− θ1)

M < ε.

Splitting the expectation in (35) into the integral over {kL ≥ M} and {kL < M} yields

lim sup
L→∞

sup
x∈B(0,2RBψL)

Px
�

tL > ΦLρL
�

≤ ε+ lim sup
L→∞

sup
x∈B(0,2RBψL)

Px
�

kL < M
�

= ε,

and since ε was arbitrary, the desired result follows.
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When Condition (32) is fulfilled but ρLψ
−2
L is unbounded as L →∞, we can apply the same tech-

nique to obtain (30). This time, using the second result of Lemma 6.7 we can write as in (35) that,
for every x ∈ B

�

0, 2RBψL
�

,

Px
�

tL > ΦLρL
�

≤ Ex

��

1− θ2

�

1− exp
n

− θ3
ψ2

L

ρL

o�

�kL
�

.

The same arguments as above (using the second part of Lemma 6.5) yield, for L large enough,

sup
x∈B(0,2RBψL)

Px

�

kL < M
ρL

ψ2
L

�

≤
2CQM2ρ2

L

ψ4
LΦL

+
CqMρL

ψ2
L log(ΦL/2M)

,

which tends to 0 as L tends to infinity by our assumption of (ΦL)L≥1. We conclude in the same
manner, using the fact that when ψ2

L/ρL →∞,

�

1− θ2

�

1− exp
n

− θ3
ψ2

L

ρL

o�

�MρL/ψ
2
L

∼ e−θ2θ3M .

Let us finish the proof of (a) by removing the assumption (32). In the preceding proof, the main idea
is that each time X L passes through B

�

0, (3/2)RBψL
�

, the two lineages have an opportunity to try
to coalesce and their success probability is bounded from below by the quantity obtained in Lemma
6.7. However, if we do not assume that (32) holds, X L may become stuck at 0 once it has hit it, and
so the number kL of such sojourns in B

�

0, (3/2)RBψL
�

may be finite. This makes our arguments
break down. Nevertheless, X L can only hit 0 through a coalescence event, and so this issue is merely
an artefact of the technique of the proof. To overcome it, let us increase the rate of reproduction
events by a factor 2, but divide each probability to be affected by 2. Overall, coalescence will take
a longer time in this new setting, but the motions of the lineages before their coalescence time will
remain identical in distribution.

More precisely, assume that (32) does not hold. Define Π̂B
L as a Poisson point process on R×T(L)×

(0,∞), independent of Πs
L and ΠB

L and with intensity measure 2(ρLψ
2
L)
−1d t⊗d x⊗µB(dr), and for

each r > 0 such that νB
r = δ1, set ν̂B

r ≡ δ1/2. Let also Π̂s
L be a Poisson point process with the same

distribution as Πs
L and independent of all the other point processes. Call X̂ L the process defined in

the same manner as X L but with ΠB
L (resp., Πs

L , νB
r ) replaced by Π̂B

L (resp., Π̂s
L , ν̂B

r ). By computing
the intensity of the jumps of a single lineage, one can observe that it is equal to

d t ⊗
�

2

ρL

∫ RB

|x |/2

Lr(x)
2πr2 1{νB

r =δ1}µ
B(dr)d(ψL x) +

∫ Rs

|x |/2

∫ 1

0

Lr(x)
πr2 u ν s

r(du)µs(dr)d x
�

,

which is precisely that of ξL . Here, Lr(x) stands for the volume of B(0, r) ∩ B(x , r). If we now
compute the coalescence rate of two lineages at distance z ∈ [0, 2RBψL], we obtain the same term
due to small events for X L and X̂ L , to which is added the respective contributions of large events

1

ρL

∫ RB

z/2

Lr(z)1{νB
r =δ1}µ

B(dr) and
1

2ρL

∫ RB

z/2

Lr(z)1{νB
r =δ1}µ

B(dr).

Hence, the evolutions of both processes follow the same law outside B(0, 2RBψL), the contribu-
tion of large events whose area encompasses only one of the two lineages is identical even within
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B(0,2RBψL), and coalescence occurs at a higher rate for X L than for X̂ L . This gives us for every
L ≥ 1 and x ∈ T(L),

Px
�

tL > ΦLρL
�

≤ Px
�

t̂L > ΦLρL
�

,

where t̂L is defined in an obvious manner. But Condition (32) holds for X̂ L , and so we can use the
result obtained in the previous paragraph to complete the proof of (a) when (32) does not hold.

Case (b). The arguments are essentially the same. First of all, since we assumed that ρL grows to
infinity as L→∞, and because

Px
�

tL > ΦL
�

≤ Px
�

tL > Φ
′
L

�

whenever ΦL ≥ Φ′L , we can restrict our attention to sequences (ΦL)L≥1 such that ρ−1
L ΦL → 0 as

L →∞. Let EL denote the event that no large events affected any of the lineages before time ΦL .
Let θmax ∈ (0,∞) be such that the maximal rate at which at least one of the two lineages of the
sample is affected by a large event is less than θmaxρ

−1
L (recall that the total rate at which at least

one of two lineages is affected is smaller than twice the corresponding rate for a single lineage,
which is finite and independent of the location of the lineage). For each L ∈ N, define eL as an
exponential random variable, with parameter θmaxρ

−1
L . By our assumption on ΦL , we can write

Px[E c
L]≤ P[eL ≤ ΦL] = 1− exp

�

−
θmaxΦL

ρL

�

→ 0, as L→∞.

The distribution of the process X L up to the first time at which it is affected by a large event is
equal to that of X̃ L (defined as the process experiencing only small events) up to the random time
e(X̃ L), so that if ρ−1

L θB,L(x) is the rate at which at least one of two lineages at separation x ∈ T(L)
is affected by a large event, then for each t ≥ 0 and y ∈ T(L)

Py
�

e(X̃ L)> t
�

= Ey

�

exp
�

−
∫ t

0

θB,L
�

X̃ L(s)
�

ρL
ds
��

.

By the definition of θmax, for each L ∈ N the variable eL is stochastically bounded by e(X̃ L). Conse-
quently, if t̃L denotes the coalescence time associated to X̃ L (or, more precisely, to the model where
lineages are affected only by small events), we have for each x ∈ B(0,2Rs)

Px
�

tL ≥ ΦL
�

≤ Px
�

tL ≥ ΦL; EL
�

+ Px
�

E c
L

�

≤ Px
�

t̃L ≥ ΦL
�

+ o(1) as L→∞,

where the remaining terms converge to 0 uniformly in x ∈ T(L). Then, an easy modification of the
proof of (a) with “ψL = ρL = 1” yields the desired result and completes the proof of Proposition
6.4. �

We can now turn to the proof of Theorem 6.3.

Proof of Theorem 6.3:

Cases (a) and (b). For (a), let us define ΦL for each L ∈ N by

ΦL =
ρL L2

ψ2
L log L

.
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Let t > 0 and (AL)L≥1 be such that AL ∈ ΓA (L, 2)∗ for each L ∈ N. Introducing the time TL needed
for the two lineages of the sample to come at distance less than 2RBψL , we can write

PAL

�

tL >
(1−α)ρL L2 log L

2πσ2
Bψ

2
L

t
�

= PAL

�

tL >
(1−α)ρL L2 log L

2πσ2
Bψ

2
L

t; TL >
(1−α)ρL L2 log L

2πσ2
Bψ

2
L

t −ΦL

�

(37)

+PAL

�

tL >
(1−α)ρL L2 log L

2πσ2
Bψ

2
L

t; TL ≤
(1−α)ρL L2 log L

2πσ2
Bψ

2
L

t −ΦL

�

. (38)

Using the strong Markov property at time TL and the uniform convergence derived in Proposition
6.4(a), we obtain that the expression in (38) tends to 0 as L → ∞ independently of the choice of
t > 0 and (AL)L∈N. For (37), note that

�

�

�

�

PAL

�

tL >
(1−α)ρL L2 log L

2πσ2
Bψ

2
L

t; TL >
(1−α)ρL L2 log L

2πσ2
Bψ

2
L

t −ΦL

�

−PAL

�

TL >
(1−α)ρL L2 log L

2πσ2
Bψ

2
L

t
�
�

�

�

�

≤ PAL

�

(1−α)ρL L2 log L

2πσ2
Bψ

2
L

t −ΦL ≤ TL ≤
(1−α)ρL L2 log L

2πσ2
Bψ

2
L

t
�

. (39)

Since X L (defined at the beginning of Section 6.1) has the same law as {ξL(2t), t ≥ 0} until the
random time TL , we can bound the quantity in (39) by working directly with the latter process. In
order to apply Lemma 5.5 to

�

ψ−1
L ξ

L(2ρL t), t ≥ 0
	

, with

UL =
(1−α)L2 log L

4πσ2
Bψ

2
L

, uL =
ΦL

2ρL
=

L2

2ψ2
L log L

and R= 2RB,

we need to check that ULψ
2
L L−2→∞ and uL ≤

L2

ψ2
L

p
log(L/ψL)

(recall that this process evolves on the

torus of size ψ−1
L L.) Both conditions are fulfilled here, and so by Lemma 5.5, the right-hand side of

(39) is bounded by
CΦLψ

2
L

ρL L2 =
C

log L
→ 0 as L→∞.

Hence, coming back to (37), we can use the result of Proposition 6.2 and the uniformity in t > 0
and (AL)L≥1 of our estimates to obtain

lim
L→∞

sup
t≥0

sup
AL∈ΓA (L,2)∗

�

�

�

�

�

PAL

�

tL >
(1−α)ρL L2 log L

2πσ2
Bψ

2
L

t
�

− e−t

�

�

�

�

�

= 0.

The proof of (b) follows exactly the same lines, with ΦL ≡ L2(log L)−1 and Lemma 5.5 applied to
ψ−1

L ξ
L(2ψ2

L·).

Case (c). In contrast with the two previous cases, where coalescence in the limit is due to large
events only, here the pair of lineages can coalesce only through a small event. To see this, let us
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define T ∗L as the first time at which the two lineages (indexed by L) come at distance less than 2Rs

from each other, and τL as the first time at which at least one of them is affected by a large event
while they are at distance less than 2RBψL (i.e., while X L ∈ B(0,2RBψL)). Note that for each L,
T ∗L and τL are stopping times with respect to the filtration {Ft , t ≥ 0} associated to Πs

L ∪Π
B
L as we

trace backwards in time. In addition, define T̃ ∗L as the entrance time of ξL into B(0,2Rs) and τ̃L as
the first time ξL makes a jump of size O (ψL) while it is lying in B(0,2RBψL). These two random
times are stopping times with respect to the filtration {F̃t , t ≥ 0} associated to ξL . We claim that
for each L ∈ N,

�

X L(t), t < τL ∧ T ∗L
	 (d)
=
�

ξL(2t), 2t < τ̃L ∧ T̃ ∗L
	

, (40)

where the notation
(d)
= refers to equality in distribution. Indeed, as long as X L has not entered

B(0,2Rs) and no large event has affected it while it lay in B(0,2RBψL), coalescence events are
impossible and the rates and distributions of the jumps of both processes are identical. We cannot
include the terminal times in (40) since the values of the processes will differ if τL ∧ T ∗L = τL and
the corresponding event is a coalescence, but since X L and ξL are jump processes with finite rates,
we can easily see that the event {τL ∧ T ∗L = τL} (resp., τ̃L ∧ T̃ ∗L = τ̃L) is F(τL∧T ∗L )− (resp., F̃(τ̃L∧T̃ ∗L )−

)
-measurable. Hence, for each L ∈ N, A= ℘2(x1, x2) and x ≡ x1− x2 ∈ T(L), we have

PA
�

τL < T ∗L
�

= Px
�

τ̃L < T̃ ∗L
�

. (41)

Let us now bound the right-hand side of (41) under the assumption that (ρ−1
L ψ

4
L)L∈N is bounded.

Analogous computations to those in the proof of Proposition 6.2 show that {ξL(2t), t ≥ 0} itself
satisfies Assumption 5.2 with σ2

L = 2σ2
s + o(1) as L→∞. Hence, Lemma 5.3 applied with dL = 2Rs

gives us

lim
L→∞

sup
t≥0

sup
xL∈Γ(L,1)

�

�

�

�

PxL

�

T̃ ∗L >
L2 log L

2πσ2
s

t
�

− e−t

�

�

�

�

= 0. (42)

Let θmax < ∞ be such that for every L ∈ N, the rate at which ξL makes a jump of size O (ψL) is
bounded by θmax/ρL . Fixing ε > 0 and K > 0 such that e−2πσ2

s K < ε, we have for L large enough
and any sequence (xL)L≥1 such that xL ∈ Γ(L, 1) for every L:

PxL

�

τ̃L < T̃ ∗L
�

= PxL

�

τ̃L < T̃ ∗L ≤ K L2 log L
�

+ PxL

�

τ̃L < T̃ ∗L ; T̃ ∗L > K L2 log L
�

≤ PxL

�

τ̃L < K L2 log L
�

+ PxL

�

T̃ ∗L > K L2 log L
�

≤ ExL

�

1− exp
n

−
θmax

ρL

∫ K L2 log L

0

1B(0,2RBψL)
�

ξL(2s)
�

ds
o

�

+ ε. (43)

Splitting the integral below into the sum
∫ψ2

L

p
log L

0
+
∫ L2/
p

log L

ψ2
L

p
log L

+
∫ L2
p

log L

L2/
p

log L
+
∫ K L2 log L

L2
p

log L
and using

the four results of Lemma 5.4, there exists L0 ∈ N, and a1, a2 > 0 independent of L, (xL)L≥1 and
K > 0, such that for every L ≥ L0,

ExL

�
∫ K L2 log L

0

1B(0,2RBψL)
�

ξL(2s)
�

ds
�

≤ (a1+ a2K)ψ2
L log L.
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Hence, the first term on the right-hand side of (43) is bounded by

ExL

�

θmax

ρL

∫ K L2 log L

0

1B(0,2RBψL)
�

ξL(2s)
�

ds
�

≤ θmax(a1+ a2K)
ψ2

L log L

ρL
,

which tends to 0 as L → ∞, independently of the sequence (xL)L≥1 considered. As ε in (43) is
arbitrary, we can conclude that

lim
L→∞

sup
xL∈Γ(L,1)

PxL

�

τ̃L < T̃ ∗L
�

= 0,

and by (41), the same result holds for X L and any sequence (AL)L∈N such that AL ∈ ΓA (L, 2)∗ for
every L. In words, we have obtained that with probability tending to 1, any pair of lineages starting
at distance O (L) from each other gather at distance 2Rs before having a chance to coalesce through
a large reproduction event. By using the same method as in (a) but this time with the result of
Proposition 6.4 (b) and with Proposition 6.2 replaced by (42), we obtain the desired conclusion
under the assumption that (ρ−1

L ψ
4
L)L∈N is bounded.

When ρL � L2 log L, with probability increasing to 1 no large events at all affect any of the lineages
by the time they are gathered at distance 2Rs by small events. The result then follows from the same
arguments, with ξL replaced by the motion of a single lineage subject to only small reproduction
events. �

Remark 6.8. Let us comment on the cases not covered by the theorem, that is ψ4
L � ρL , ρL is of order

at most L2 log L and ρ−1
L ψ

2
L log L has a finite limit (possibly 0). When the latter limit is positive, from

the results obtained so far coalescence events due to small and to large reproduction events occur on the
same timescale and depend on the precise paths of the two lineages. Therefore, we do not expect tL to
be exponentially distributed (with a deterministic parameter). When ρ−1

L ψ
2
L log L tends to 0, the same

reasoning as in the proof of (c) gives us that the probability that a large reproduction event causes the
two lineages to coalesce before a time of order L2 log L vanishes as L→∞. However, X L does not satisfy
the conditions of Section 5 (Assumption 5.2) as it does when the assumptions of (c) hold. Using instead
`L ≡ ψ−1

L X L(ψ2
L·), the time needed for the lineages to come at distance less than 2Rs translates into

T (`L , 2Rs/ψL), which is not covered by Lemma 5.3 and requires estimates of the entrance time of the
jump process into a ball of shrinking radius, which we have been unable to obtain.

6.2 Convergence to Kingman’s coalescent

To complete the proof of Theorem 3.3, we now turn to the genealogy of a finite sample, starting at
distance O (L) from each other on T(L).
We can already see from our analysis for a single pair of lineages that our spatial Λ-coalescent
is similar in several respects to the coalescing random walks dual to the two-dimensional voter
and stepping-stone models with short-range interactions (see e.g. Cox & Griffeath 1986, 1990 for
a study on Z2, and Cox 1989 or Zähle et al. 2005 for examples on the torii T(L) ∩ Z2). It will
therefore be no surprise that the analogy carries over to larger samples. In most of the papers
cited above, the authors are interested in the sequence of processes giving the number of blocks in
the ancestral partition. They show that, when the initial distance between the lineages grows to
infinity, the finite-dimensional distributions of these counting processes converge to those of a pure
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death process corresponding to a time-change of the number of blocks of Kingman’s coalescent. In
Cox & Griffeath (1990), more elaborate arguments yield the convergence of the finite-dimensional
distributions of the unlabelled genealogical processes to those of Kingman’s coalescent. Instead of
adding a new instance of such proofs to the literature, we shall simply explain why the same method
applies to our case. This will also enable us to prove the tightness of the unlabelled genealogical
processes.

Proof of Theorem 3.3: (i) Convergence of the finite-dimensional distributions.

We follow here the proofs in Cox & Griffeath (1986) (for the number of blocks of the ancestral parti-
tion) and Cox & Griffeath (1990) (for the unlabelled genealogical process of a system of coalescing
simple random walks on Z2). Notice that, since we work on the torii T(L), our rescaling of time dif-
fers from Cox and Griffeath’s. Another significant difference is the fact that, in their model, lineages
move independently of each other until the first time two of them are on the same site, upon which
they coalesce instantaneously. In our setting, the movements of lineages are defined from the same
Poisson point processes, and two lineages having reached a distance that enables them to coalesce
can separate again without coalescing.

Despite these differences, Lemma 6.9 below shows that a key ingredient of their proof is still valid
here: at the time when two lineages coalesce, the others are at distance O (L) from each other and
from the coalescing pair. To state this result, we need some notation. Let τi j be the first time lineages
i and j come within distance less than 2RBψL (resp., 2Rs) if ρL � ψ2

L log L (resp., ρL � ψ2
L log L)

and τ be the minimum of the τi j ’s over all pairs considered. Let also τ∗i j be the coalescence time of
the ancestral lines of i and j, and τ∗ be the minimum of the τ∗i j over all lineages considered. Finally,
for each i we shall denote the motion in T(L) of the block containing i by ξL

i .

Lemma 6.9. Under the conditions of Theorem 3.3, we have

lim
L→∞

sup
AL∈ΓA (L,4)∗

PAL

�

τ∗ = τ∗12 ; |ξL
1(τ

∗)− ξL
3(τ

∗)| ≤
L

log L

�

= 0, (44)

lim
L→∞

sup
AL∈ΓA (L,4)∗

PAL

�

τ∗ = τ∗12 ; |ξL
3(τ

∗)− ξL
4(τ

∗)| ≤
L

log L

�

= 0. (45)

The proof of Lemma 6.9 is deferred to Appendix B.

The other ingredients required to apply Cox and Griffeath’s techniques are a control on the proba-
bility of “collision” for two lineages during a short interval of time, obtained here in Lemma 5.5, and
the uniform convergence of the coalescence time of two lineages, which constitutes our Theorem
6.3. With these estimates, one can obtain the limiting rates of decrease of the number of blocks of
A L,u (namely those of the number of blocks in Kingman’s coalescent), and the fact that mergers are
only binary as in Cox & Griffeath (1986). In particular, the counterpart of their Proposition 2 here
gives us that for each n ∈ N,

lim
L→∞

sup
t≥0

sup
AL∈ΓA (L,n)∗

�

�

� PAL

�

|A L,u(t)|= n
�

− exp
n

−
n(n− 1)

2
t
o
�

�

�= 0, (46)

which we state here because we shall need it for the case α = 1 (observe that our L corresponds to
their t). Note that in Proposition 2 of Cox & Griffeath (1986), the right-hand side of their equation
gives the probability that the number of blocks is less than n, instead of equal to n as it is stated.
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Furthermore, in (46) the supremum is over t ≥ 0 instead of t ∈ [0, T] for some T > 0 (as in Cox
& Griffeath 1986). Our argument for this modification is the fact that the two quantities we are
comparing are monotone decreasing in t and both tend to 0.

Then, the same arguments lead to the proof that any pair of lineages is equally likely to be the first
one to coalesce, as in Lemma 1 of Cox & Griffeath (1990). The uniformity of the estimates obtained
enables us to proceed by induction to show the uniform convergence (on a compact time-interval)
of the one-dimensional distributions of A L,u to those of K , which translate into the uniform con-
vergence of the finite-dimensional distributions, still on intervals of the form [0, T]. We refer to Cox
& Griffeath (1990) for the complete proof of these results.

(ii) Tightness.

This follows easily from the fact that the labelled partition A L with initial value in ΓA (L, n)∗ for
some n ∈ N lies in ΓA (L, n) immediately after each coalescence event, with probability tending to 1.
Indeed, for each L ∈ N, let γL

1 < . . .< γL
n−1 be the ranked epochs of jumps ofA L,u (if less than n−1

jumps occur, then the last times are equal to +∞ by convention). Let also n ∈ N, AL ∈ ΓA (L, n)∗

for every L ≥ 1, and following Ethier & Kurtz (1986), for every δ, T > 0 let w′(A L,u, T,δ) denote
the modulus of continuity of the processA L,u on the time interval [0, T] and with time-step δ. Let
ε > 0. With the convention that (+∞)− (+∞) = +∞, we have

PAL

�

w′(A L , T,δ)> ε
�

≤
n
∑

k=2

PAL
[γL

k − γ
L
k−1 < δ]. (47)

An easy recursion using the fact that we consider only finitely lineages and the uniform bounds
obtained in Lemma 6.9 enables us to write that for all k ∈ {1, . . . , n− 1},

sup
A′L∈ΓA (L,n)∗

PA′L
[γL

k <∞ ; A L($Lγ
L
k) /∈ ΓA (L, n)]→ 0, as L→∞.

This result and an application of the strong Markov property at time γL
k−1 yield

PAL
[γL

k − γ
L
k−1 < δ] =EAL

[1{A L($Lγ
L
k−1)∈ΓA (L,n)}PA L($Lγ

L
k−1)
[γL

1 < δ]] + o(1)

≤
(n− k)(n− k− 1)

2
sup

A′L∈ΓA (L,2)∗
PA′L
[γL

1 < δ] + o(1) (48)

as L→∞, where the last line uses the consistency of the genealogy to bound the probability that a
first coalescence event occurs to the sample of lineages before δ by the sum over all pairs of lineages
of this sample of the probability that they have coalesced by time δ (note that there are at most
(n− k)(n− k − 1)/2 possible pairs just after γL

k−1). But these probabilities converge uniformly to
1− e−δ by Theorem 6.3, and so for δ small enough, we can make the right-hand side of (48) less
than ε/(n3) for L large enough (n is fixed here). Coming back to (47), this gives us

limsup
L→∞
PAL
[w′(A L , T,δ)> ε]≤ ε.

Since Pn is a compact metrisable space, we can apply Corollary 3.7.4 in Ethier & Kurtz (1986) to
complete the proof. �
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7 Proof of Theorem 3.7

We now turn to the caseψL ∝ L. We still have small reproduction events of size O (1), but now large
events have sizes O (L) (and rate O (ρ−1

L )), so that they cover a non-negligible fraction of the torus
T(L). By Lemma 5.4, if the lineages were only subject to small reproduction events, the location of
a single lineage would be nearly uniformly distributed on T(L) after a time tL � L2. This suggests
several limiting behaviours for the genealogical processA L , according to how ρL scales with L2:

• If ρL is order at most O (L2), then large reproduction events occur at times when the locations
of the lineages are still correlated with their starting points, and so we expect space (i.e., labels
in the representation we adopted) to matter in the evolution ofA L .

• If L2� ρL � L2 log L, then the lineages have the time to homogenise their locations over T(L)
before the first large event occurs, but not to come at distance 2Rs from each other. Hence,
large events should affect lineages independently of each other, and bring the genealogy down
to the common ancestor of the sample before any pair of lineages experiences a coalescence
due to small events.

• If ρL ≈ L2 log L, the fact that pairs of lineages have now the time to gather at distance 2Rs

should add a Kingman part (i.e., almost surely binary mergers) to the genealogical process
obtained in the previous point.

• If ρL � L2 log L, Kingman’s coalescent due to small reproduction events should bring the
ancestry of a sample of lineages down to a single lineage before any large event occurs, so
that the limiting genealogy will not see these large events.

Proof of Theorem 3.7: For (a), let us write down the generator G L of ĀL applied to functions of the
T(1)-labelled partitions of {1, . . . , n}. Recall the notation xa for the label of the block a of a labelled
partition A∈ P `

n (introduced in Notation 2.5), and write |A| for the number of blocks of A. For each
L ≥ 1, f of class C3 with respect to the labels and A ∈ P `

n such that any pair (a1, a2) of blocks of A
satisfies |xa1

− xa2
| ≥ (2Rs)/L, we have

G L f (A) =ρL

|A|
∑

i=1

∫

T(L)
d y

∫ Rs

0

µs(dr)
Lr(y)
πr2

∫ 1

0

ν s
r(du)u

×
h

f
�

A\
�

(ai , xai
)
	

∪
n�

ai , xai
+

y

L

�o�

− f (A)
i

+G (B)(A), (49)

where we wrote A=
�

(a1, xa1
), . . . , (a|A|, xa|A|)

	

and

G (B) (A)

=
1

c2

∫

T(1)
dz

∫ (
p

2)−1

0

µB(dr)

∫

B(z,cr)

d y

Vcr

∑

I⊂{1,...,|A|}

∏

i∈I

1{x i∈B(z,cr)}

∏

j /∈I

1{x j /∈B(z,cr)}

×
∑

J⊂I

∫ 1

0

u|J |(1− u)|I |−|J |νB
r (du)

�

f
�

A\
�
⋃

i∈J

{(ai , xai
)}
�

∪
n�
⋃

i∈J

ai , y
�o

�

− f (A)
�

is the generator of the coalescence events due to large reproduction events (recall Vr is the volume
of the ball BT(1)(0, r)). Note that G (B) does not depend on L. Let us look at a particular term in the
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sum on the right-hand side of (49). Since f is of class C3 with respect to the labels of the blocks, a
Taylor expansion and the symmetry of the jumps due to small events give us

ρL

∫

d y

∫ Rs

0

µs(dr)
Lr(y)
πr2

∫ 1

0

νr(du)u
h

f
�

A\
�

(ai , xai
)
	

∪
n�

ai , xai
+

y

L

�o�

− f (A)
i

=
ρL

L2

σ2
s

2
∆i f (A) +O

�ρL

L3

�

,

where ∆i is the Laplacian operator on T(1) applied to the label of the block ai only. Since ρL L−2→
b ∈ [0,∞) by assumption and because f is continuous on a compact space, we obtain that G L f
defined on the compact set EL ≡

�

A∈ P `
n : L|xai

− xa j
| ≥ 2Rs ∀i 6= j} converges uniformly towards

G f (A)≡
bσ2

s

2

|A|
∑

i=1

∆i f (A) +G (B) f (A).

Now, by the same technique as in Section 5, one can prove that the gathering time at distance 2Rs of
two lineages starting at distance O (L) on T(L) and subject only to small events converges uniformly

on the time scale L2 log L
πσ2

s
to an Exp(1) random variable (in the sense of Lemma 5.3). In addition,

since the new location of a lineage affected by a large event is chosen uniformly over a ball of T(L)
whose radius is of order O (L), if a large event affects a pair of lineages but does not lead to their
coalescence, then the probability that the lineages are at distance less than L(log L)−1 just after the
event vanishes as L → 0. If we call Ť ∗L the first time at which two lineages on T(L) are gathered at
distance 2Rs and t∗L their coalescence time in the original timescale, we readily obtain that for any
u> 0, and x ′1 6= x ′2 ∈ T(1)

2,

lim
L→∞
P℘2(Lx ′1,Lx ′2)

�

t∗L > Ť ∗L ; Ť ∗L ≤ ρLu
�

= 0.

Indeed, as we already mentioned, if a large event does not make the lineages coalesce then with
probability tending to one, the latter start at separation O (L) and do not have the time to meet at
distance 2Rs before the next large event. Now, the number of large reproduction events that the pair
of lineages experiences before time ρLu can be stochastically bounded by a Poisson random variable
whose parameter is finite and independent of L. Hence, if none of them leads to a coalescence then
with probability tending to 1, Ť ∗L > ρLu. It follows that, if u> 0 is fixed, we can use the consistency
of the genealogy and write

P℘n(Lx)[∃t ∈ [0, u] : Ā L(t) /∈ EL]≤
n
∑

i< j=1

P{({i},Lx i),({ j},Lx j)}
�

t∗L > Ť ∗L ; Ť ∗L ≤ ρLu
�

→ 0.

Consequently, one can use Corollary 4.8.7 in Ethier & Kurtz (1986) (with EL as the subspace of
interest in condition ( f )) to conclude that the law under P℘n(Lx) of ĀL converges to that of Ā∞,b,c

as processes in the Skorohod space of all càdlàg paths with values in the T(1)-labelled partitions of
{1, . . . , n}.
Let us now prove (b). Recall the assumption that the total rate at which large events occur is finite,
that is M ≡ c−2µB([0, (

p
2)−1])<∞. Let us first analyse what happens during the first event which

may affect the unlabelled ancestral partition.
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Define for each L ≥ 1 the stopping time eL
1 by the following property: ρLeL

1 is the first time on the
original timescale at which either a large event occurs, or A L undergoes a coalescence event due
to small reproduction events. Since large and small reproduction events are independent, ρLeL

1 has
the same distribution as the minimum of two following independent random times:

• the first time of occurrence of a large event, that is an Exp
�

M/ρL
�

-random variable.

• the time t∗L at which a first coalescence event occurs between lineages of the genealogical
process Ã L evolving only owing to small reproduction events.

By (46) applied to the case ρL ≡ +∞ (i.e., no large events occur),
2πσ2

s

L2 log L
t∗L converges to an

Exp
�

n(n − 1)/2
�

-random variable under PAL
, uniformly in (AL)L∈N such that AL ∈ ΓA (L, n)∗ for

every L. It is then straightforward to obtain

lim
L→∞

sup
t≥0

sup
AL∈ΓA (L,n)∗

�

�

�

�

PAL
[eL

1 > t]− exp
�

−
n

M + β
n(n− 1)

2

o

t
�

�

�

�

�

= 0, (50)

where the formulation is also valid for β = 0. Also, by the independence of Πs
L and ΠB

L , for every
(AL)L∈N as above we have (with an abuse of notation)

PAL

�

ρLeL
1 = t∗L

�

= EAL

h

exp
n

−
M

ρL
t∗L
oi

.

Using Fubini’s theorem and a change of variable, we can write

EAL

h

exp
n

−
M

ρL
t∗L
oi

=

∫ 1

0

PAL

h

exp
n

−
M

ρL
t∗L
o

> s
i

ds

=

∫ 1

0

PAL

�

2πσ2
s

L2 log L
t∗L <−

2πσ2
sρL

M L2 log L
log s

�

ds

=
M L2 log L

2πσ2
sρL

∫ ∞

0

e
− M L2 log L

2πσ2
s ρL

u
PAL

�

2πσ2
s

L2 log L
t∗L < u

�

du

= 1−
M L2 log L

2πσ2
sρL

∫ ∞

0

e
− M L2 log L

2πσ2
s ρL

u
PAL

�

2πσ2
s

L2 log L
t∗L ≥ u

�

du.

When β > 0, we have M L2 log L
2πσ2

s ρL
→ M

β
and so we can use the uniform convergence derived in (46)

and the fact that the distribution of t∗L does not charge points to conclude that

lim
L→∞

sup
AL∈ΓA (L,n)∗

�

�

�

�

PAL

�

ρLeL
1 = t∗L

�

−
βn(n− 1)

βn(n− 1) + 2M

�

�

�

�

= 0.

The limit holds also for β = 0 by a trivial argument. A byproduct of this result is the existence of a
constant C0 > 0 and L0 ∈ N such that, for all L ≥ L0 and (AL)L∈N as above, PAL

[ρLeL
1 < t∗L] ≥ C0.

We shall need this fact in the next paragraph.

By Theorem 3.3 in the case ρL ≡ ∞, up to an error term tending uniformly to 0, on the event
�

ρLeL
1 = t∗L

	

the transition occurring to A L,u at time ρLeL
1 is the coalescence of a pair of blocks,
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each pair having the same probability to be the one which coalesces. Let us show that, conditioned
on
�

ρLeL
1 < t∗L

	

, the locations of the lineages at time (ρLeL
1 )− are approximately distributed as n

independent uniform random variables on T(L). We use again the notation τi j ,τ
∗
i j and τ,τ∗(=

t∗L here) introduced in the proof of Theorem 3.3 for the gathering time at distance 2Rs and the
coalescence time of lineages i and j, and their minima (once again on the original timescale). These
quantities depend on L but, for the sake of clarity, we do not reflect that in our notation. In order
to use our results on Lévy processes, we need to make sure that no pairs of lineages have come at
distance less than 2Rs before time ρLeL

1 . We have for each L ∈ N

PAL

�

τ < ρLeL
1

�

� ρLeL
1 < t∗L

�

≤
n
∑

i< j=1

PAL

�

τi j < ρLeL
1

�

� ρLeL
1 < t∗L

�

, (51)

Each term (i, j) on the right-hand side of (51) is bounded by

PAL

�

τi j < ρLeL
1 − log L

�

� ρLeL
1 < t∗L

�

+PAL

�

ρLeL
1 − log L ≤ τi j < ρLeL

1

�

� ρLeL
1 < t∗L

�

≤ C−1
0

n

PAL

�

τ̃∗i j > τ̃i j + log L
�

+ PAL

�

τ̃i j ∈ [ςL − log L,ςL)
�

o

, (52)

where for each L ∈ N, ςL is an Exp(M/ρL)-random variable independent of all other variables, and
τ̃i j and τ̃∗i j are defined as above, but for the process Ã L . By the strong Markov property applied at
time τ̃i j and the result of Proposition 6.4 (b), the first term on the right-hand side of (52) converges
to 0 uniformly in AL ∈ ΓA (L, n)∗. By a simple change of variable, the second term is equal to

M

∫ ∞

0

e−Ms PAL

�

τ̃i j ∈ [ρLs− log L,ρLs)
�

ds ≤ M

∫ ∞

0

e−Ms C
log L

L2 ds → 0,

where the inequality comes from Lemma 5.5. Therefore, back to (51) we obtain that

lim
L→∞

sup
AL∈ΓA (L,n)∗

PAL

�

τ < ρLeL
1

�

� ρLeL
1 < t∗L

�

= 0. (53)

Now, let D1, . . . , Dn be n measurable subsets of T(1), and for each i ∈ {1, . . . , n} and L ≥ 1, let
LDi ⊂ T(L) be the dilation of Di by a factor L. Let us show that

lim
L→∞

sup
AL∈ΓA (L,n)∗

�

�

� PAL

h

(ξL
1 , . . . ,ξL

n)(ρLeL
1−) ∈ (LD1)× . . .× (LDn)

�

�ρLeL
1 < t∗L

i

−
n
∏

i=1

Leb(Di)
�

�

�= 0, (54)

where ξL
i (t) denotes the location of the i-th lineage ofA L at time t. To do so, let us use the fact that

on the event
�

ρLeL
1 < t∗L

	

, the genealogical process A L up to time ρLeL
1 has the same distribution
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as Ã L up to time ςL and on the event {τ̃∗ > ςL}. We have

PAL

h

(ξL
1 , . . . ,ξL

n)(ρLeL
1−) ∈

n
∏

i=1

(LDi)
�

�

�ρLeL
1 < t∗L

i

=
1

PAL
[ρLeL

1 < t∗L]
PAL

h

(ξL
1 , . . . ,ξL

n)(ρLeL
1−) ∈

n
∏

i=1

(LDi); ρLeL
1 < t∗L

i

=
1

PAL
[ρLeL

1 < t∗L]
PAL

h

(ξ̃L
1 , . . . , ξ̃L

n)(ςL−) ∈
n
∏

i=1

(LDi); ςL < τ̃
∗
i

=
1

PAL
[ρLeL

1 < t∗L]
PAL

h

(ξ̃L
1 , . . . , ξ̃L

n)(ςL−) ∈
n
∏

i=1

(LDi); ςL < τ̃
i

+ηL(AL)

=
M

PAL
[ρLeL

1 < t∗L]

∫ ∞

0

ds e−MsPAL

h

(ξ̃L
1 , . . . , ξ̃L

n)(ρLs−) ∈
n
∏

i=1

(LDi);

τ̃ > ρLs
i

+ηL(AL), (55)

where ηL(AL) tends to 0 uniformly in (AL)L∈N by (53) and the fact that PAL

�

ρLeL
1 < t∗L

�

does not
vanish.

Let us fix s > 0 for a moment, and consider the corresponding probability within the integral. Up
to time τ̃, the movements of the lineages are distributed as n independent copies ξ̂L

1 , . . . , ξ̂L
n of the

motion of a single lineage, for which an easy modification of Lemma 5.4 (b) tells us that, if (εL)L∈N
is such that εL → 0 but εLρL � L2 as L→∞,

lim
L→∞

sup
v≥εL

sup
x∈T(L)

�

�Px
�

ξ̂L(vρL) ∈ (LD)
�

− Leb(D)
�

�= 0. (56)

However, it is not entirely clear that this convergence will still hold for n independent lineages on
the event {τ̂ > ρLs} (where τ̂ is the first time at which at least two of them come at distance less
than 2Rs). Keeping the notation AL for the initial value of the set of lineages and denoting the set of
n (non-coalescing) motions by Â L , we have

PAL

�

(ξ̂L
1 , . . . , ξ̂L

n)(ρLs−) ∈ (LD1)× . . .× (LDn); τ̂≤ ρLs
�

= EAL

�

1{τ̂≤ρLs} PÂ L(τ̂)

h

(ξ̂L
1 , . . . , ξ̂L

n)
�

(ρLs− τ̂)−
�

∈ (LD1)× . . .× (LDn)
i

�

.

Splitting the preceding integral into
�

ρL(s− εL)≤ τ̂≤ ρLs
	

and
�

τ̂ < ρL(s− εL)
	

, we can use (56)
in the latter case to write

EAL

�

1{τ̂≤ρLs} PÂ L(τ̂)

h

(ξ̂L
1 , . . . , ξ̂L

n)
�

(ρLs− τ̂)−
�

∈
n
∏

i=1

(LDi)
i

�

= EAL

�

1{ρL(s−εL)≤τ̂≤ρLs} PÂ L(τ̂)

h

(ξ̂L
1 , . . . , ξ̂L

n)
�

(ρLs− τ̂)−
�

∈
n
∏

i=1

(LDi)
i

�

+
�

n
∏

i=1

Leb(Di)
�

PAL
[τ̂ < ρL(s− εL)] +δL(AL), (57)
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where (δL(AL))L∈N tends to zero uniformly in (AL)L∈N as L tends to infinity (we still impose that
AL ∈ ΓA (L, n)∗ for every L). By the convergence of the distribution function of τ̃

L2 log L
to that of

an exponential random variable, uniformly in the time variable and in (AL)L∈N, we obtain that
PAL
[ρL(s − εL) ≤ τ̂ ≤ ρLs] converges to 0 uniformly in (AL)L∈N (which is also true if β = 0, i.e.,

ρL � L2 log L). Hence, we can find a sequence (δ′L(AL))L∈N decreasing to 0 uniformly in (AL)L∈N,
such that the whole sum on the right-hand side of (57) is equal to

�
n
∏

i=1

Leb(Di)
�

PAL
[τ̂≤ ρLs] +δ′L(AL).

Likewise, we can find another sequence (δ′′L )L∈N decreasing to zero uniformly in (AL)L∈N such that

PAL

�

(ξ̂L
1 , . . . , ξ̂L

n)(ρLs−) ∈ (LD1)× . . .× (LDn)
�

=
n
∏

i=1

Leb(Di) +δ
′′
L (AL).

Subtracting the two last equalities, we obtain

PAL

h

(ξ̂L
1 , . . . , ξ̂L

n)(ρLs−) ∈
n
∏

i=1

(LDi); τ̂ > ρLs
i

=
� n
∏

i=1

Leb(Di)
�

PAL
[τ̂ > ρLs] + o(1),

where the remainder decreases to 0 uniformly in s > 0 and (AL)L≥1 such that AL ∈ ΓA (L, n)∗ for
each L. Coming back to (55), we obtain that it is equal to

M

PAL
[ρLeL

1 < t∗L]

∫ ∞

0

ds e−Ms
�

�
n
∏

i=1

Leb(Di)
�

PAL
[τ̃ > ρLs] + o(1)

�

=
PAL
[τ̃ > ςL]

PAL
[τ̃∗ > ςL]

n
∏

i=1

Leb(Di) + o(1)

=
PAL
[τ̃∗ > ςL] + o(1)

PAL
[τ̃∗ > ςL]

n
∏

i=1

Leb(Di) + o(1),

where the last line uses (53). We can thus conclude that (54) holds.

Condition on the first event being a large reproduction event. By the description of such an event,
the result for the genealogical process is the merger of at most one group of blocks into a bigger
block. Furthermore, the transitions depend only on the number of blocks and their labels, so for
convenience we derive the transition probabilities for AL of the form ℘n(x) only, although we shall
use the result later for more general labelled partitions. Let π be a partition of {1, . . . , n} such that π
has exactly one block of size greater than 1, which we call J . Then if the large event has centre x and
radius cr in T(1), the probability that the transition undergone byA L,u is ℘n→ π is the probability
that at this time, at least all the lineages in J have labels in B(x , cr) and are really affected by the
event, and all the other lineages present in B(x , cr) are not affected by the event. Summing over
all possible choices I ⊂ {1, . . . , n} \ J for these “other lineages” (I can be empty) and using (54), the
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probability of the transition ℘n→ π up to a vanishing error is given by

∑

I

V |J |+|I |cr (1− Vcr)
n−|J |−|I |

∫ 1

0

u|J |(1− u)|I |νB
r (du)

=

∫ 1

0

(uVcr)
|J |

n−|J |
∑

i=0

�

n− |J |
i

�

V i
cr(1− Vcr)

n−|J |−i(1− u)iνB
r (du)

=

∫ 1

0

(uVcr)
|J |((1− u)Vcr + 1− Vcr)

n−|J |νB
r (du)

=

∫ 1

0

(uVcr)
|J |(1− uVcr)

n−|J |νB
r (du). (58)

We now have the results we need to show (b). For every L ∈ N, let us consider again the time eL
1

introduced earlier, and define for each integer i ≥ 2,

eL
i = inf

�

t > eL
i−1 : ρL t ∈ ΠB

L or ρL t is the epoch of a coalescence

due to small events
	

.

Let us also define similar times corresponding to Λ(β ,c). From the expression of its rates given in
Definition 3.6, Λ(β ,c) is composed of a Kingman part (i.e., only binary mergers) run at rate β , and
of a set of multiple mergers due to the part Λ(0) of its Λ-measure with the atom at 0 removed.
Furthermore, the finite measure Λ(0) on [0,1] is given by

Λ(0)(dv) = c−2v2

∫ (
p

2)−1

0

νB
r

��

u : uVcr ∈ dv
	�

µB(dr)

= c−2v2

∫ (
p

2)−1

0

1{Vcr≥v}ν
B
r

�

d
v

Vcr

�

µB(dr).

Following Pitman’s Poissonian construction of a coalescent with multiple mergers (whose Λ-measure
has no atom at 0, see Pitman 1999), let us define Π as a Poisson point process on R+ × [0, 1]
with intensity d t ⊗ v−2Λ(0)(dv). Note that because of our assumption on M , v−2Λ(0)(dv) is also a
finite measure, with total mass M . The atoms of Π constitute the times at which Λ(β ,c) acting on
the partitions of N experiences a multiple collision, and the probabilities that any given lineage is
affected by the event. The Kingman part of Λ(β ,c) is superimposed on this construction by assigning
to all pairs of blocks of the current partition independent exponential clocks with parameter β ,
giving the time at which the corresponding pair merges into one block.

From now on, we consider only the restriction of Λ(β ,c) to Pn, although we do not make it appear
in the notation. Let e1 be the minimum of the first time a pair of blocks of Λ(β ,c) merges due to the
Kingman part and of the time corresponding to the first point of Π. Define ei in a similar manner
for all i ≥ 2, so that (ei)i∈N is an increasing sequence of random times at which Λ(β ,c) may undergo
a transition. Our goal is to show that the finite-dimensional distributions of

�

(eL
i ,A L,u(eL

i )), i ∈ N
	

under PAL
converge to those of

�

(ei ,Λ(β ,c)(ei)), i ∈ N
	

under P℘n
, as L → ∞. Since A L,u (resp.,

Λ(β ,c)) can jump only at the times eL
i (resp., ei), the fact that only finitely many jumps occur to Λ(β ,c)

in any compact time interval, together with Proposition 3.6.5 in Ethier & Kurtz (1986) enable us to
conclude that this convergence yields (b). We proceed by induction, by showing that for each i ∈ N:
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H(i) : if aL ∈ ΓA (L, n) for each L and there exists π0 ∈ Pn such that for all L ∈ N, bl(aL) = π0, then
as L→∞

LPaL

��

(eL
1 ,A L,u(eL

1 )), . . . , (eL
i ,A L,u(eL

i ))
	�

⇒LPπ0

��

(e1,Λ(β ,c)(e1)), . . . , (ei ,Λ
(β ,c)(ei))

	�

.

(Note that aL can have less than n blocks).

Let us start by H(1). Let t ≥ 0, π ∈ Pn and write n0 for the number of blocks of π0. We have, in the
notation used in the previous paragraph (and with Ã L,u defined as the unlabelled partition induced
by Ã L on the timescale ρL),

PaL

�

eL
1 ≤ t; A L,u(eL

1 ) = π
�

= PaL

�

eL
1 ≤ t; A L,u(eL

1 ) = π; ρLeL
1 = t∗L

�

+ PaL

�

eL
1 ≤ t; A L,u(eL

1 ) = π; ρLeL
1 < t∗L

�

= PaL

�

t∗L ≤ ρL t; Ã L,u(t∗L/ρL) = π; t∗L < ζL
�

(59)

+PaL

�

eL
1 ≤ t; A L,u(eL

1 ) = π
�

� ρLeL
1 < t∗L

�

PaL

�

ρLeL
1 < t∗L

�

. (60)

By Theorem 3.3 applied with ρL ≡+∞, Ã L,u with initial value aL converges as L→∞ to Kingman’s
coalescent K (β) started at π0 and run at rate β , as a process in DPn

[0,∞) (if β = 0, then Ã L,u

converges to the constant process equal to π0). Hence, by the independence of Ã L and ζL for every
L and a simple time-change, the quantity in (59) tends to that corresponding to K (β), that is

Pπ0

�

K (β)(eK1 ) = π
�

Pπ0

�

eK1 < t ∧ ζ
�

, (61)

where eK1 is distributed like an Exp
�

β
n0(n0−1)

2

�

-random variable and stands for the epoch of the first

event occurring to K (β), and ζ is an Exp(M)-random variable. By the construction of Λ(β ,c) given
in the last paragraph, (61) is the probability that the first event occurring to Λ(β ,c) happens before
time t, is due to the Kingman part of the coalescent and leads to the transition π0 → π. For (60),
note first that because ΠB

L and Πs
L are independent, if we condition on ρLeL

1 being the time of the
first point (t L

1 , x L
1 , r L

1 ) of ΠB
L , then eL

1 and the pair (x L
1 , r L

1 ) are independent. Hence, we have for each
L ≥ 1

PaL

�

eL
1 ≤ t ; A L,u(eL

1 ) = π
�

� ρLeL
1 < t∗L

�

= PaL

�

eL
1 ≤ t

�

� ρLeL
1 < t∗L

�

PaL

�

A L,u(eL
1 ) = π

�

� ρLeL
1 < t∗L

�

.

Using (50) and the same reasoning as for (59), we can write

PaL

�

eL
1 ≤ t

�

� ρLeL
1 < t∗L

�

PaL

�

ρLeL
1 < t∗L

�

= PaL

�

eL
1 ≤ t; ρLeL

1 < t∗L
�

= PaL

�

eL
1 ≤ t

�

− PaL

�

eL
1 ≤ t; ρLeL

1 = t∗L
�

→ exp
n

−
�

M + β
n0(n0− 1)

2

�

t
o

− Pπ0

�

eK1 ≤ t ∧ ζ
�

= Pπ0

�

ζ < t ∧ eK1
�

,

where the last equality comes from the fact that an Exp
�

β
n0(n0−1)

2
+ M

�

-random variable has the

same distribution as the minimum of an Exp
�

β
n0(n0−1)

2

�

- and an Exp(M)-random variables, inde-
pendent of each other. In addition, by the calculation done in (58),

PaL

�

A L,u(eL
1 ) = π

�

� ρLeL
1 < t∗L

�

→ Pπ0

�

Λ(0)(eΛ1 ) = π
�

, as L→∞,
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where eΛ1 is the time of the first event of Π. Combining the above, and recognizing the transition
probability of Λ(β ,c) through the decomposition obtained, we can write

lim
L→∞
PaL

�

eL
1 ≤ t; A L,u(eL

1 ) = π
�

= Pπ0

�

e1 ≤ t; Λ(β ,c)(e1) = π
�

.

Since this result holds for each t ≥ 0 and π0 ∈ Pn, using a monotone class argument we
can conclude that the distribution of

�

eL
1 ,A L,u(eL

1 )
�

under PaL
converges to the distribution of

(e1,Λ(β ,c)(e1)) under Pπ0
as L→∞. This proves H(1).

Suppose that H(i − 1) holds for some i ≥ 2. Let D ⊂ (R+)i−1, t ≥ 0 and π1, . . . ,πi ∈ Pn. Let also
L ∈ N. By the strong Markov property applied toA L at time ρLeL

i−1, we have

PaL

��

eL
1 , . . . , eL

i−1

�

∈ D; eL
i − eL

i−1 ≤ t; A L,u(eL
1 ) = π1, . . . ,A L,u(eL

i ) = πi
�

=EaL

h

1{(eL
1 ,...,eL

i−1)∈D} 1{A L,u(eL
1 )=π1,...,A L,u(eL

i−1)=πi−1}

×PA L(ρL eL
i−1)
�

eL
1 ≤ t; A L,u(eL

1 ) = πi
�

i

.

First, using arguments analogous to those leading to Lemma 6.9, up to an error term vanishing
uniformly in (aL)L∈N such that aL ∈ Γ(L, n) for every L ∈ N, we can consider that A L(ρLeL

i−1) ∈
ΓA (L, n). As bl

�

A L(ρLeL
i−1)
�

= πi−1 for each L, we can therefore use H(1) to write that

lim
L→∞
PA L(ρL eL

i−1)
�

eL
1 ≤ t; A L,u(eL

1 ) = πi
�

= Pπi−1

�

e1 ≤ t; Λ(β ,c)(e1) = πi
�

,

and so dominated convergence and H(i− 1) give us

lim
L→∞
PaL

��

eL
1 , . . . , eL

i−1

�

∈ D; eL
i − eL

i−1 ≤ t; A L,u(eL
1 ) = π1, . . . ,A L,u(eL

i ) = πi
�

= Eπ0

h

1{(e1,...,ei−1)∈D} 1{Λ(β ,c)(e1)=π1,...,Λ(β ,c)(ei−1)=πi−1}Pπi−1

�

e1 ≤ t; Λ(β ,c)(e1) = πi
�

i

= Pπ0

��

e1, . . . , ei−1
�

∈ D; ei − ei−1 ≤ t; Λ(β ,c)(e1) = π1, . . . ,Λ(β ,c)(ei) = πi
�

,

which again yields H(i) by standard arguments. The induction is now complete, and so we can
conclude that the finite-dimensional distributions of the embedded Markov chain and the holding
times of A L,u under PaL

converge as L →∞ towards those of Λ(β ,c) under Pπ0
. The proof of (b) is

then complete.

To finish, suppose that ρL � L2 log L. Then, we can find a sequence ΦL increasing to +∞ such that

sup
A∈ΓA (L,n)

PA[ a large event affects at least one lineage before time ΦL L2 log L]→ 0

as L → ∞. Hence, we can couple A L with the process Ã L which experiences only small events,
so that the time by which they differ at step L is larger than ΦL with probability tending to one,
uniformly in the sequence (AL)L≥1 chosen as above. By the results obtained in Section 6 with
ρL ≡ +∞, we know that Ã L,u converges in distribution towards K , as a process in DPn

[0,∞).
Since the sample size n is finite and under Kingman’s coalescent, a sample of n lineages reaches a
common ancestor in finite time almost surely, (c) follows. �
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A Proofs of the results of Section 5

Since the proofs of Lemmas 5.3 and 5.4 are highly reminiscent of those of Theorem 2 and Lemma 3.1
in Cox & Durrett (2002), we shall only give the arguments we need to modify and refer to their paper
for more extensive proofs.

Proof of Lemma 5.4: Since `L is a Lévy process, for any integers n and L one can decompose `L(n)
into

`L(n) = `L(0) +
n
∑

k=1

{`L(k)− `L(k− 1)},

where the n terms in the sum are i.i.d. random variables whose common distribution is that of `L(1)
under P0. Using Bhattacharya’s local central limit theorem (see Theorem 1.5 in Bhattacharya 1977)
and the boundedness assumption on E0[|`L(1)|4], we can control the deviation of pL(x , n) from the
corresponding probabilities for Brownian motion up to an error of order o(n−1) independent of L.
Following Cox and Durrett’s arguments, we obtain the desired results for integer times. For arbitrary
times t, the Markov property applied to `L at time btc (plus, for (d), the fact that the variations of
`L are bounded on a time interval [n, n+ 1]) completes the proof. �

Proof of Lemma 5.3: To simplify notation, we shall write T (dL) instead of T (dL ,`L) in the rest of the
proof. For every L ≥ 1, x ∈ T(L) and λ > 0, let us define the following quantities :

FL(x ,λ) =Ex
�

exp(−λT (dL))
�

,

GL(x ,λ) =

∫ ∞

0

e−λt pL(x , t)d t = Ex

�
∫ ∞

0

e−λt 1{`L(t)∈B(0,dL)}d t
�

.

Applying the strong Markov property to `L at time T (dL) and using a change of variables, we obtain
(for any xL)

GL(xL ,λ) = ExL

h

e−λT (dL)GL
�

`L(T (dL)),λ
�

i

. (62)

From the results of Lemma 5.4, we can derive the asymptotic behaviour of GL(xL ,λ). To this end,
let (vL)L≥1 and (uL)L≥1 be two sequences growing to infinity such that vL(log L)−1/2 → 0 and
uL(log L)−1 → 0 as L → ∞. Splitting the integral in the definition of GL

�

xL , λ
L2 log L

�

into four
pieces, we obtain first by (b) of Lemma 5.4

1

d2
L log L

∫ ∞

vL L2

exp
�

−
λt

L2 log L

�

pL(xL , t)d t

=
1

d2
L log L

∫ ∞

vL L2

exp
�

−
λt

L2 log L

�

πd2
L

L2 (1+δL,1) d t

=
π

λ
exp
�

−
λvL

log L

�

(1+δL,1) =
π

λ
(1+δ′L,1)

as L→∞, where δL,1,δ′L,1→ 0 uniformly in x ∈ T(L). By (a) of Lemma 5.4, we have

1

d2
L log L

∫ vL L2

εL L2

exp
�

−
λt

L2 log L

�

pL(xL , t) d t ≤
1

d2
L log L

C1d2
L

bL2εLc
vL L2

∼
C1vL
p

log L
→ 0, as L→∞
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by our assumption on vL . By (c) of Lemma 5.4,

1

d2
L log L

∫ εL L2

uL(1+|xL |2∨d2
L )

exp
�

−
λt

L2 log L

�

pL(xL , t) d t

=
1

d2
L log L

∫ εL L2

uL(1+|xL |2∨d2
L )

d2
L

2σ2
L t
(1+δL,2) d t

=
1

2σ2
L log L

�

2 log L− log(1+ |xL|2 ∨ d2
L) + logεL − log uL

�

(1+δL,2)

=
1− β ∨ γ
σ2 (1+δ′L,2),

whenever log+ |xL |
log L

→ β as L grows to infinity. Here again, δL,2,δ′L,2 → 0 uniformly in x ∈ T(L) as
L→∞. Finally, by (d) of Lemma 5.4, we can write

1

d2
L log L

∫ uL(1+|xL |2∨d2
L )

0

exp
�

−
λt

L2 log L

�

pL(xL , t)d t

≤
C2

d2
L log L

uL(1+ |xL|2 ∨ d2
L)

1+ d−2
L |xL|2

→ 0,

independently of (xL)L≥1 since dL does not vanish and uL(log L)−1→ 0.

Combining the above, we obtain that if log+ |xL |
log L

→ β , then

1

d2
L log L

GL

�

xL ,
λ

L2 log L

�

=
π

λ
+

1− (β ∨ γ)
σ2 + o(1), as L→∞,

where the remainder does not depend on (xL)L≥1. Coming back to (62) with xL ∈ Γ(L, 1), the
uniform convergence obtained above, together with the fact that `L(dL) ∈ B(0, dL) a.s. yield

lim
L→∞
ExL

�

exp

�

−
λπσ2 T (dL)
(1− γ)L2 log L

��

=
(1− γ)/(σ2λ)

(1− γ)/(σ2λ) + (1− γ)/σ2 =
1

1+λ
, (63)

which we recognize as the Laplace transform of an Exp(1)-random variable. Since the left-hand side
of (63) is monotone in λ and the function λ 7→ (1+ λ)−1 is continuous, this convergence is in fact
uniform in λ ≥ 0. By standard approximation arguments (see for instance the proof of Theorem 4
in Cox 1989), we obtain that for any fixed t > 0,

lim
L→∞

sup
xL∈Γ(L,1)

�

�

�

�

�

PxL

�

λπσ2

(1− γ)L2 log L
T (dL)> t

�

− e−t

�

�

�

�

�

= 0,

and, by monotonicity and the fact that all the quantities involved tend to 0 as t →∞, this conver-
gence is uniform in t ≥ 0. The interested reader will find all the missing details in the appendix of
Cox & Durrett (2002). �
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Proof of Lemma 5.5: Let x ∈ T(L) and (U ′L)L∈N be as in the statement of Lemma 5.5. Using the
strong Markov property at time T (R,`L), we can write

Px
�

`L(U ′L + uL) ∈ B(0, R)
�

≥
∫ U ′L

U ′L−uL

∫

B(0,R)
Px
�

T (R,`L) ∈ ds,`L(s) ∈ d y
�

Py
�

`L(U ′L + uL − s) ∈ B(0, R)
�

. (64)

Note that, on the right-hand side of (64), the quantity U ′L+uL− s lies in [uL , 2uL]. We assumed that
2uL ≤ L2(log L)−1/2, and so we can use (c) of Lemma 5.4 with dL ≡ R and write

lim
L→∞

sup
y∈B(0,R)

sup
uL≤t≤2uL

�

�

�

�

2σ2
L t

R2 Py
�

`L(t) ∈ B(0, R)
�

− 1

�

�

�

�

= 0,

which gives us the existence of a constant C0 and of an index L0 such that for each L ≥ L0, y ∈
B(0, R) and t ∈ [uL , 2uL],

Py
�

`L(t) ∈ B(0, R)
�

≥
C0

t
≥

C0

2uL
.

Furthermore, since UL L−2→∞, we can use (b) of Lemma 5.4 to obtain the existence of L1 ∈ N and
a constant C1 > 0 depending only on (UL)L≥1 such that for every L ≥ L1,

sup
t≥UL

sup
y∈T(L)

�

�

�

�

Py
�

`L(t + uL) ∈ B(0, R)
�

−
πR2

L2

�

�

�

�

≤
C1

L2 .

Using these two inequalities in (64), we have for L large enough and for all x ∈ T(L)

C1+πR2

L2 ≥ Px
�

T (R,`L) ∈ [U ′L − uL , U ′L]
�

×
C0

2uL
,

which gives us the desired result. �

B Proof of the technical points of Section 6

Proof of Lemma 6.5: Let us start with the case ρL = O (ψ2
L) as L → ∞. The rate of decay of

the probability of a long excursion is known for simple random walks and Brownian motion (see
Ridler-Rowe 1966), and so the proof of Proposition 6.2 suggests that we should consider the process
ˆ̀L ≡ψ−1

L X L(ρL·). But ˆ̀L here is not a Lévy process, since X L is the difference of the locations of two
lineages whose motions are not independent in B(0, 2RBψL). However, it is not difficult to convince
oneself that for each y ∈ B(0, (7/4)RB)c , the return time into B(0, (3/2)RB) of ˆ̀L starting at y is
smaller than or equal to that of `L defined as the rescaled process ψ−1

L ξ
L(ρL·) also starting at y .

Indeed, the rate at which reproduction events affect at least one of the lineages is bounded from
below by the rate at which a single lineage is affected, the distribution of the jumps of ˆ̀L and `L

are identical outside B(0,2RB) and inside this ball, coalescence events make it easier for ˆ̀L to enter
B(0, (3/2)RB). Hence, we shall establish the desired bound for `L . In addition, we shall consider
that `L evolves on R2 instead of T(L), since the return time here can only increase with the available
space.
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For each L ∈ N, set σL
0 = 0 and let (σL

i )i∈N be the sequence of jump times of `L . Let ρLθs (resp.,
θB) be the jump rate of `L due to small events (resp., due to large events). The quantities θs and θB
do not depend on L since µB, µs and the probability measures νB,s

r do not. For each t ≥ 0, we have
`L(t) = `L(0) +

∑

i:σL
i ≤t

�

`L(σL
i )− `

L(σL
i−1)
	

, where
�

`L(σL
i )− `

L(σL
i−1)
�

i∈N is a sequence of i.i.d.
random variables with covariance matrix of the form υLId. Using the distribution of a single small
or large jump and the fact that a given jump is a small one with probability θsρL/(θsρL + θB), we
easily check that there exists V > 0, independent of L, such that υL ∼ V/ρL as L →∞ (recall our
assumption ρL = O (ψ2

L)).

Let x in B(0,4RB) \ B(0, (7/4)RB) and let W be a two-dimensional Brownian motion starting at x .
For each L ∈ N, by the Skorohod Embedding Theorem (see, e.g., Billingsley 1995) one can construct
a sequence (sL

i )i∈N of stopping times such that the W (sL
i ) have the same joint distributions as the

`L(σL
i ) : for every i ∈ N, conditionally on W (sL

i−1), sL
i is the first time greater than sL

i−1 at which W
leaves B

�

W (sL
i−1), r L

i

�

, where r L
i is a random variable independent of W and of {sL

j , j < i} having
the same distribution as the length of the first jump of `L . Now, we claim that there exists γ > 0
independent of L and x , such that each time W visits B(0, RB/2) and then leaves B(0, (3/2)RB),
the probability that one of the sL

i ’s falls into the corresponding period of time that W spends within
B(0, (3/2)RB) is at least γ. Indeed, set T0(W ) = T̆0(W ) = 0 and define the sequences of stopping
times {Tk(W ), k ≥ 1} and {T̆k(W ), k ≥ 1} by induction in the following manner:

Tk(W ) = inf
�

t > T̆k−1(W ) : W (t) ∈ B(0, RB/2)
	

,

T̆k(W ) = inf
�

t > Tk(W ) : W (t) /∈ B(0, (3/2)RB)
	

.

(Note that each Tk is a.s. finite due to the recurrence of two-dimensional Brownian motion.)
Then for each k ∈ N, if j is the index of the last sL

i before Tk(W ) and sL
j corresponds to a small

event, by construction we have
�

�W (sL
j ) − W (Tk(W ))

�

� < 2Rsψ−1
L and so W (sL

j ) ∈ B(0, (3/2)RB)
for L large enough. If sL

j is due to a large event and W (sL
j ) /∈ B(0, (3/2)RB), then necessarily

W (sL
j ) ∈ B(0, (5/2)RB). But the exit point from a ball B of Brownian motion started at the centre of

this ball is uniformly distributed over the boundary of B, and so one can define γ as the minimum
over (y, r) with |y| ≥ 3RB/2 and |y|−RB/2< r ≤ 2RB of the probability that W started at y escapes
B(y, r), through the part of its boundary which lies within B(0, (3/2)RB). Hence, if we define for
each t ≥ 0 the random variable N(t) as the maximal integer k such that T̆k(W ) ≤ t, we can write
for each L

PψL x
�

qL
1 > ρLu

�

= Px
�

`L(σL
j ) /∈ B(0, (3/2)RB), ∀ j ≤ i(u, L)

�

≤ Ex
�

(1− γ)N(s
L
i(u,L))

�

,

where i(u, L) = max{ j : σL
j ≤ u}. Since N is a.s. a non-decreasing function of t, we have for any

given m ∈ R+
PψL x

�

qL
1 > ρLu

�

≤ Ex
�

(1− γ)N(mu)�+ Px
�

sL
i(u,L) < mu

�

. (65)

Now, i(u, L) is the number of points of the Poisson point processesΠs
L andΠB

L which fall into the time
interval [0, uρL] on the original timescale, it is therefore a Poisson random variable with parameter
u(θsρL + θB). If a > 0, then by the Markov inequality

Px
�

i(u, L)≤ auθsρL
�

≤ eauθsρLE
�

e−i(u,L)�= exp
�

uθsρL(a+ e−1− 1) + uθB(e
−1− 1)

	

,

so that this quantity converges exponentially fast to 0 for a > 0 small enough. On the event
{i(u, L) > auθsρL}, sL

i(u,L) is the sum of at least auθsρL i.i.d. random variables, each of which
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corresponds to the exit time of Brownian motion from a ball of radius at most 2Rs/ψL with proba-
bility θsρL/(θsρL + θB) and to the exit time of Brownian motion from a ball of radius at most 2RB

otherwise. Therefore, one can find V ′ > 0 independent of L such that E[sL
1] ∼ V ′ρ−1

L as L → ∞.
Using the same technique as above then gives us that for m> 0 small enough, there exists κ(m)> 0
and L(m) ∈ N such that for all L ≥ L(m) and u≥ 0,

Px
�

i(u, L)> auθsρL , sL
i(u,L) < mu

�

≤ e−κ(m)ρLu.

Let us now prove that

Px[N(mu)≤ K log log u]≤ C
log log u

log u

for a constant C > 0 independent of x ∈ B(0,4RB) \ B(0, (7/4)RB) and u large enough (again
independently of x). The reasoning is identical to that made to arrive at (36), with qL

i (resp., QL
i )

replaced by Ti(W ) (resp., T̆i(W )). Using the fact that C1 ≡ supx∈B(0,RB/2)Ex[T̆1(W )]<∞ and

sup
y∈B(0,4RB)

Px
�

T1(W )> u
�

≤
C2

log u
(66)

for a constant C2 and u large enough (see Theorem 2 in Ridler-Rowe 1966), we can conclude that
for each x ∈ B(0, 4RB) \ B(0, (7/4)RB), and u large enough,

Px
�

N(mu)≤ log log u
�

≤
2C1(log log u)2

mu
+

C2 log log u

log
�

mu/(2 log log u)
� ≤

C ′ log log u

log u
,

again for C ′ > 0 and u large enough independently of x . Coming back to (65), we obtain for a
constant C ′′ > 0 and for all x ∈ B(0, 4RB) \ B(0, (7/4)RB),

PψL x
�

qL
1 > ρLu

�

≤ (1− γ)log log u+ Px
�

N(mu)≤ log log u
�

+ e−C ′′u

≤ (1− γ)log log u+
C ′ log log u

log u
+ e−C ′′u. (67)

Define g(u) as the expression on the right-hand side of (67) to obtain the result.

When ψ2
Lρ
−1
L → 0, the probability that a large event occurs by time uψ2

L is given by

1− exp
n

− θBu
ψ2

L

ρL

o

→ 0 as L→∞.

On the event that no large events occur by time uψ2
L , the first visit of W into B(0, RB/2) will produce

a time sL
i such that W (sL

i ) ∈ B(0, (3/2)RB) with probability 1 for the reason expounded above, and
so the first term on the right-hand side of (65) is now the probability that T1(W ) is greater than mu.
The inequality in (66) and the exponential decay of Px[sL

i(u,L) < mu] now imply the result. �

Proof of Lemma 6.6: The arguments are slightly different according to whether ρLψ
−2
L is bounded

or tends to infinity as L → ∞. Let us consider the first case. Recall the definition of ρ−1
L θB given

in the proof of Lemma 6.5 as the maximal rate at which a lineage is affected by a large event.
The coalescence rate of two lineages is then bounded by 2ρ−1

L θB, regardless of their locations. By
our assumption (32), there exist r ∈ (0, RB) and δ > 0 such that Leb

��

r ′ ∈ [r, r + δ] : νB
r ′ /∈
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{δ0,δ1}
	�

> 0. We shall use these events to send the two lineages at distance at least (7/4)RBψL
from each other, whatever their initial separation was. The proof is quite natural, so we just give
the main arguments. If only large jumps occurred, then if a sequence of at least 7RB/(2r) large
events increased |X L| by at least (r/2)ψL each before the first coalescence happened, X L starting
within B(0, (3/2)RBψL) would certainly leave B(0, (7/4)RBψL). Moreover, a large event affecting
X L and conditioned on not leading to a coalescence biases the jump towards increasing |X L| (we do
not allow some centres that are too close to both lineages). This remark and (32) guarantee that
the rate at which these separating events occur (that is, events increasing |X L| by at least (r/2)ψL)
is bounded from below by ρ−1

L θsep, where θsep is a positive constant. The total rate at which large
events affect X L is bounded by 2ρ−1

L θB, and so there is a positive probability psep, independent of
the starting point of X L , that X L leaves B(0, (7/4)RBψL) before coming back to 0 through a (large)
coalescence event. As regards the effect of small events, recall that we assumed that ρLψ

−2
L is

bounded. Hence, the probability that X L starting from B(0, rψL/2)c does not enter B(0,2Rs) after
a time of order O (ρL) only through small jumps is bounded from below and by the symmetry of
these small jumps, with probability at least 1/2 the radius of X L increases between two large jumps.
Hence, up to modifying psep to take into account the effect of the small jumps, the probability that
X L leaves B(0, (7/4)RBψL) before coming back to 0 is still bounded from below by psep > 0.

By the definition of RB and Assumption (10), large events of size close to RB occur at a positive rate
and lead to the coalescence of the lineages with positive probability, so that the waiting time for the
coalescence of two lineages at distance at most (7/4)RBψL is bounded by ρL times an exponential
with positive parameter γ. This gives us that ρ−1

L QL
1 is stochastically bounded by

∑k
i=1 Ni , where k

is geometric with success probability psep > 0 and {Ni , i ∈ N} is a sequence of i.i.d. Exp(γ) random
variables, all of them independent of the initial value x ∈ B(0, (3/2)RBψL) of X L . We can therefore
choose CQ = (γpsep)−1.

When ρ−1
L ψ

2
L → 0, if we use the same reasoning as above there is a positive probability that a large

event separates the two lineages at distance at least rψL , regardless of their separation just before
this event. In addition, the rate of these separating events is at least equal to ρ−1

L θsep > 0. Between
two large events, X L only does small jumps, and as long as X L /∈ B(0,2Rs), the Skorohod Embedding
Theorem (see the proof of Lemma 6.5) enables us to assert that X L will leave B(0, (7/4)RBψL) in a
time of order O (ψ2

L). Moreover, for ε > 0 small, the same argument shows that the probability that
X L leaves B(0, (7/4)RBψL) before entering B(0,εψL) is bounded from below by a constant pesc > 0
independent of L and of the value y ∈ B(0, rψL)c of X L just after the large jump described above.
A fortiori, pesc is also a lower bound for the probability that X L started at y leaves B(0, (7/4)RBψL)
before entering B(0,2Rs) only through small jumps, and so we obtain that between two large events
such that the first large jump sends (or keeps) X L out of B(0, rψL), X L escapes B(0, (7/4)RBψL)
with probability at least pesc (recall that the total rate of large events affecting at least one of the
lineages is bounded by 2θBρ

−1
L and ρL �ψ2

L). Consequently, QL
1 is this time stochastically bounded

by
∑k

i=1 Ni(L), where k is a geometric random variable with success probability pesc > 0 and for each
L ∈ N, {Ni(L), i ∈ N} is a sequence of i.i.d. Exp(ρ−1

L θsep) random variables, all of them independent
of the initial value x ∈ B(0, (3/2)RBψL) of X L . The desired result follows, with CQ = (θseppesc)−1. �

Proof of Lemma 6.7: The inequality in (33) can be restated as in (34) (the quantity inside the
brackets then tends to 1), so we prove both inequalities using this form. Let θc be such that ρ−1

L θc is
the minimum rate at which two lineages at distance at most (1+ δ)RBψL from each other coalesce
(where δ > 0 is defined at the beginning of the proof of Lemma 6.6). By the definition of RB
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and assumption (10), the rate at which a reproduction event of radius r ∈
�

RB(1− δ
4
)ψL , RBψL

�

occurs and leads to the coalescence of the lineages does not vanish as L tends to infinity (when
multiplied by ρL), and so θc > 0. Let us show that if η > 0 is small enough, the probability that X L

starting within B(0, RBψL) does not leave B(0, (1+δ)RBψL) through only small jumps by time ηψ2
L

is bounded from below by a positive constant, independent of L large. The term inside the brackets
in (34) will then come from the probability that a large event occurs before time ηψ2

L and the first
such event leads to the coalescence of the lineages (i.e., a jump onto 0 for X L).

Let η > 0 and x ∈ B(0, RBψL), and let τL
B denote the epoch of the first large event affecting X L .

By the argument given above, the probability that X L starting at x hits 0 before leaving B(0, (1+
δ)RBψL) is bounded from below by the probability that X L started at x stays within this ball until
τL

B, τL
B is less than or equal to ηψ2

L and the first large event leads to the coalescence of the lineages.
Writing EL,η for the event that X L stays within B(0, (1+ δ)RBψL) before τL

B and τL
B ≤ ηψ

2
L , this

probability is equal to

Px
�

the first large event is a coalescence | EL,η
�

Px
�

EL,η
�

. (68)

If, for each L ∈ N, ρ−1
L E < ∞ denotes the rate at which a single lineage on T(L) is affected by a

large reproduction event, then the rate at which at least one of two lineages are affected is bounded
by twice this quantity, and so the first probability in (68) is bounded from below by θc/(2E). Now,
X L experiences no large reproduction event before time τL

B, and so we can again use the equality in
distribution stated in the proof of Proposition 6.4 (b) (we also keep the notation introduced there).
Write texit for the first time X L leaves B(0, (1+δ)RBψL), and t̃exit for the corresponding time for X̃ L

(which sees only small events). We have

Px
�

EL,η
�

= Px
�

texit ≥ τL
B; τL

B ≤ ηψ
2
L

�

= Px
�

t̃exit ≥ e(X̃ L); e(X̃ L)≤ ηψ2
L

�

≥ Px
�

t̃exit ≥ ηψ2
L; e(X̃ L)≤ ηψ2

L

�

= Px
�

e(X̃ L)≤ ηψ2
L

�

� t̃exit ≥ ηψ2
L

�

Px
�

t̃exit ≥ ηψ2
L

�

. (69)

Since a pair of lineages is affected by a large event at rate at least ρ−1
L E, the first probability on the

right-hand side of (69) is bounded below for all x ∈ B(0, RBψL) by

1− exp
�

−ηE
ψ2

L

ρL

�

.

Now, if X̃ L starts within B(0, RBψL), it needs to cover a distance of at least δRBψL to exit B(0, (1+
δ)RBψL). Furthermore, coalescence events tend to keep X̃ L within B(0, (1+ δ)RBψL), and so for
each x , the second probability on the right-hand side of (69) is larger than P0[ t̂exit ≥ ηψ2

L], where
t̂exit is the exit time from B(0,δRBψL) of the process {ξ̂L(2t), t ≥ 0} which experiences only small
jumps. Decomposing this Lévy process into the sum of its jumps and applying Doob’s maximal
inequality to the submartingale |ξ̂L|2, we obtain

P0

�

sup
0≤t≤ηψ2

L/2
|ξ̂L(2t)|2 > (δRBψL)

2
�

≤
1

(δRBψL)2
E0
�

|ξ̂L(ηψ2
L)|

2�=
2ησ2

s

δ2(RB)2
,

where the last equality comes from (22). Choosing η > 0 small enough so that the quantity above
is less than 1, we obtain that for all x ∈ B(0, RBψL)

Px
�

t̃exit ≥ ηψ2
L

�

≥ P0[ t̂exit ≥ ηψ2
L]≥ 1−

2ησ2
s

δ2(RB)2
≡ θ4 > 0.
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Combining the above and choosing θ2 = θ4θc/(2E) and θ3 = ηE, we obtain (34). �

Proof of Lemma 6.9: If we were considering the times τi j rather than τ∗i j , Lemma 6.9 would follow
from the same arguments as in Cox & Griffeath (1986) (see Lemma 1). Here, we have to work a bit
harder and decompose the event in (44) into more cases. Recall the definition of $L given in the
statement of Theorem 3.3. For each L ∈ N, the probability in (44) is bounded by

PAL

h

τ <
$L
p

log L

i

+ PAL

h

τ≥
$L
p

log L
; τ∗ = τ∗12 ; τ 6= τ12

i

(70)

+ PAL

h

τ∗ = τ∗12 ;
$L
p

log L
≤ τ= τ12 < τ

∗
12−

$L

(log L)2
i

(71)

+ PAL

h

τ∗ = τ∗12;
$L
p

log L
≤ τ= τ12;τ12 ≥ τ∗12−

$L

(log L)2
;∃i ∈ {1,2},τi3 ∈ (τ12,τ∗12]

i

(72)

+ PAL

h

τ∗ = τ∗12;
$L
p

log L
≤ τ= τ12;∀i ∈ {1,2},τi3 > τ

∗
12; |ξL

1(τ
∗)− ξL

3(τ
∗)| ≤

L

log L

i

. (73)

Suppose first that ρL � ψ2
L log L. The first term in (70) is bounded by the sum over i 6= j ∈

{1, . . . , 4}2 of PAL
[τi j < $L(log L)−1/2], which tends to 0 uniformly in AL by Proposition 6.2 and

the consistency of the genealogy. The quantity in (71), expressing the probability that the first pair
to meet is the pair (1, 2) but then coalescence of these lineages takes longer than $L/(log L)2 units
of time, is therefore bounded by

PAL

h

τ∗12−τ12 >
$L

(log L)2
i

,

which converges to zero as L →∞, uniformly in AL (apply the strong Markov property at time τ12
and use (a) of Proposition 6.4). The expression in (72) corresponds to the event in which (1, 2) is
the first pair to meet and “quickly” merge, but another pair of lineages manages to meet between
τ12 and τ∗12. It is thus bounded by

PAL

�

$L
p

log L
≤ τ= τ12 ; τ13 ∈

�

τ12,τ12+
$L

(log L)2
i

�

+PAL

�

$L
p

log L
≤ τ= τ12 ; τ23 ∈

�

τ12,τ12+
$L

(log L)2
i

�

.

Applying the strong Markov property at time τ12 and using Lemma 5.5 with (`L(t))t≥0 ≡ (ψ−1
L {ξ

L
i −

ξL
3}((ψ

2
L ∧ρL)t))t≥0 for each i ∈ {1,2} (as in the proof of Theorem 6.3), we can conclude that each

of the above terms tends to 0 uniformly in AL . On the event described by (73), that is (1,2) is the
first pair to meet and merge, no other pair meets in between but the distance between lineages 1
and 3 at time τ∗ is smaller than L/ log L, the differences {ξL

1 − ξ
L
2} and {ξL

1 − ξ
L
3} have the same

distribution as two independent copies ξ̂L and ξ̌L of the process ξL run at speed 2 up until τ, and
so if we write T̂L (resp., ŤL) for the entrance time of ξ̂L (resp., ξ̌L) into B(0, 2RBψL), with a slight
abuse of notation for the initial value to simplify the notation, (73) is bounded by

PAL

h

ŤL > T̂L ≥
$L
p

log L
;
�

�ξ̌L�T̂L
�

�

�≤
L

log L

i

≤ PAL

h

T̂L ≥
$L
p

log L
;
�

�ξ̌L�T̂L
�

�

�≤
L

log L

i

.
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A straightforward application of Lemma 5.4 (b)with (`L(t))t≥0 ≡ (ψ−1
L ξ̌

L((ρL∧ψ2
L)t))t≥0 yields the

uniform convergence of the last term to 0. Finally, the second term in (70), i.e., the probability that
(1,2) is the first pair to meet but not to merge, is bounded by the sum over all pairs {i, j} ∈ {1, . . . , 4}2

such that i 6= j and {i, j} 6= {1,2} of

PAL

h

τ≥
$L
p

log L
;τ∗ = τ∗12;τ=τi j

i

≤ PAL

h $L
p

log L
≤ τ= τi j < τ

∗
12−

$L

(log L)2
;τ∗i j > τ

∗
12

i

+PAL

h

τ∗ = τ∗12 ≥
$L
p

log L
;τi j ∈

h

τ∗12−
$L

(log L)2
,τ∗12

ii

.

We can now conclude as we did for (71) and (72).

When ρL �ψ2
L log L, we saw in the proof of Theorem 6.3 that with probability increasing to 1, a pair

of lineages will not be affected by a large event during the periods of time when the lineages are at
distance less than 2RBψL from each other, until they come at distance less than 2Rs. Consequently,
we could consider the evolution of the lineages to be independent until their gathering time at
distance 2Rs. Because we are still considering a finite number of lineages, the arguments we used
are applicable here again, and the proof of the last paragraph also yields (44) in this case. The proof
of (45) is analogous, and is therefore omitted. �
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