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Abstract

Consider two epidemics whose expansions on Zd are governed by two families of passage times
that are distinct and stochastically comparable. We prove that when the weak infection survives,
the space occupied by the strong one is almost impossible to detect. Particularly, in dimen-
sion two, we prove that one species finally occupies a set with full density, while the other one
only occupies a set of null density. Furthermore, we observe the same fluctuations with respect
to the asymptotic shape as for the weak infection evolving alone. By the way, we extend the
Häggström-Pemantle non-coexistence result "except perhaps for a denumerable set" to families
of stochastically comparable passage times indexed by a continuous parameter.
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1 Introduction

Consider two species trying to colonize the graph Zd . As in first-passage percolation, the expansion
of each species is governed by independent identically distributed random passage times attached
to the bonds of the graph. Each vertex of the graph can be infected only once, by the first species
that reaches it. Is it possible that both species simultaneously succeed in invading an infinite subset
of the net, in other words does coexistence occur? That is the kind of question which was asked in
the middle of the 90’s by Häggström and Pemantle in two seminal papers [10; 11], where they gave
the first results towards the following conjectures:

• If the two species travel at the same speed, coexistence is possible.

• If one of them travels faster than the other one, coexistence is impossible.

The problem of coexistence for two similar species has been solved by Häggström and Pemantle [10]
in dimension two for exponential passage times, then by the authors of the present paper in any
dimension for general passage times, under assumptions that are close to optimality [5]. Indepen-
dently, Hoffman [12] gave a different proof involving tools that he will use again to get an extension
to a larger number of species – see Hoffman [13].

On the contrary, the state of the art about the second conjecture – the non-coexistence problem – did
not much change since its statement. More precisely, if one species travels according passage times
following the exponential law with intensity 1, while the other one travels according passage times
following the exponential law with intensity λ 6= 1, it is believed that coexistence is not possible.
However, it is only known that coexistence is not possible "except perhaps for a denumerable set
of values of λ", as it was proved by Häggström and Pemantle [11]. To sum up, if one denotes by
Coex the set of intensities for the second particle that allow coexistence, we know that Coex ⊃ {1}
and Coex is denumerable, but we would like to have Coex= {1}. It follows that we are currently in
the following perplexing situation: we know that for almost every value of λ, coexistence does not
happen, but we are unable to exhibit any value of λ such that coexistence actually does not occur.

Therefore, the aim of this paper is to prove a weakened version of non-coexistence for epidemics
with distinct speeds. Let us first introduce our framework: we consider two epidemics whose expan-
sions are governed by two families of independent and identically distributed passage times whose
laws are distinct and stochastically comparable. Obviously, this includes the case of exponential
times. We say that strong coexistence occurs when each species finally occupies a set with positive
natural density.

In dimension two, we prove that strong coexistence does not occur. More precisely, we show that
almost surely, at infinite time, one species fills a set with full natural density, whereas the other
one only fills a set with null natural density. In higher dimension, connectivity problems prevent us
to obtain such a complete result. However, we show that, roughly speaking, a medium resolution
satellite only sees one type of particles.

By the way, we also prove that the Häggström-Pemantle non-coexistence result "except perhaps for a
denumerable set" can be extended to families of stochastically comparable passage times indexed by
a continuous parameter. Note that the Häggström-Pemantle method [11] to prove denumerability
of the set Coex has already been transposed to other models related to first-passage percolation:
at first by Deijfen, Häggström, and Bagley for a model with spherical symmetry [2], then by the
authors of the present paper for some percolating model [6].
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Before giving more rigorous statements of our results, let us introduce general notations and give a
formal description of the competition model.

General notations

We denote by Z the set of integers, by N the set of non negative integers.

We endow the set Zd with the set of edges Ed between sites of Zd that are at distance 1 for the
Euclidean distance: the obtained graph is denoted by Ld . Two sites x and y that are linked by an
edge are said to be neighbors and this relation is denoted: x ∼ y . If A is a subset of Zd , we define
the border of A:

∂ A= {z ∈ A : ∃y ∈ Ac y ∼ z}.

A path in Zd is a sequence x0, x1, . . . , x l of points in Zd such that two successive points are neighbors.
The integer l is called the length of the path.

The critical parameter for Bernoulli percolation (oriented percolation) on Zd is denoted by pc =

pc(d) (respectively, −→pc =
−→
pc (d)).

Let us now recall the concept of stochastic domination: we say that a probability measure µ domi-
nates a probability measure ν , which is denoted by ν ≺ µ, if

∫

f dν ≤

∫

f dµ

holds as soon as f is a non decreasing function.

The complementary event of A will mostly be denoted Ac . But sometimes, to improve readability,
we prefer to use ∁A.

Assumptions on passage times

Let νp1
and νp2

be two probability measures on [0,+∞). We will always assume that

(H1) νp1
≻ νp2

and νp1
6= νp2

.

(H2) ∀k, l ∈ N ν∗kp1
⊗ ν∗lp2

({(x , x) : x ∈ [0,+∞)}) = 0.

(H3) for i ∈ {1,2}, νpi
(0)< pc .

(H4) for i ∈ {1,2}, νpi
(inf suppνpi

)< −→pc (d).

(H5) for i ∈ {1,2}, ∃γ > 0 such that

∫ +∞

0

exp(γx) dνpi
(x)<+∞.

In Assumption (H3), inf suppν denotes the infimum of the support of the measure ν . Note that
Assumptions (H2), (H3), and (H4) are clearly fulfilled when νp1

and νp2
are continuous with respect

to Lebesgue’s measure.

Assumption (H2) exactly says that a sum of k independent random variables with common distribu-
tion νp1

and a sum of l independent random variables with common distribution νp2
, independent

of the first family, have probability 0 to be equal: this will ensure that, during the competition
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process, no vertex of Zd can be reached exactly at the same time by the two epidemics. Assump-
tions (H1), (H3) and (H4) are the ones used by van den Berg and Kesten in [15] to prove that, in
first-passage percolation, the time constant for νp2

is strictly smaller than the one for νp1
. Finally,

assumption (H5) gives access to large deviations and moderate deviations for fluctuations relatively
to the asymptotic shape in first-passage percolation.

Construction of the competition model

The first infection (second infection) will use independent identically distributed passage times with
common law νp1

(respectively, νp2
) and start from the source s1 (respectively, s2, distinct from s1).

As νp1
≻ νp2

, species 1 will be slower (or weaker) than species 2.

First, we couple the two measures νp1
and νp2

in agreement with the stochastic comparison re-
lation (H1): there exists a probability measure m on [0,+∞) × [0,+∞) such that m({(x , y) ∈

[0,+∞)2; x ≥ y}) = 1 and the marginals of m are νp1
and νp2

.

Now, we consider, on the set Ω = ([0,+∞)× [0,+∞))E
d

, the probability measure P = m⊗E
d

. For a
realization ω = (ω1

e ,ω2
e )e∈Ed , the number ωi

e represents the time needed by species i to cross edge
e. Note that under P, for each i ∈ {1,2}, the variables (ωi

e)e∈Ed are independent and identically
distributed with common law νpi

. Moreover, we almost surely have

∀e ∈ Ed ω1
e ≥ω

2
e .

It remains to construct the two infections in a realizationω ∈ Ω. Let E = ([0,+∞]×[0,+∞])Z
d

. We
recursively define a E-valued sequence (Xn)n≥0 and a non-negative sequence (Tn)n≥0. The sequence
(Tn)n≥0 contains the successive times of infections, while a point ǫ = (ǫ1(z),ǫ2(z))z∈Zd ∈ E codes, for
each site z, its times of infection ǫ1(z) (its time of infection ǫ2(z)) by the first infection (respectively,
second infection). We start the process with two distinct sources s1 and s2 in Zd , we set T0 = 0 and

X0 = (X
1
0(z), X 2

0(z))z∈Zd with X i
0(z) = 0 if z = si, and X i

0(z) = +∞ otherwise.

This means that at time 0, no point of Zd has yet been infected but the two initial sources s1 and s2.
Then, for n≥ 0, define the next time of infection:

Tn+1 = inf{X i
n(y) +ω

i
{y,z} : {y, z} ∈ Ed , i ∈ {1,2}, X 3−i

n (z) = +∞}.

Note that Assumption (H2) ensures that if this infimum is reached for several triplets (i1, y1, z1),
. . . , (il , yl , zl), then i1 = · · · = il = i. In this case, the next infections are of type i from each y j to
each z j . The set of infected points of type 3− i has not changed:

∀x ∈ Zd X 3−i
n+1(x) = X 3−i

n (x),

while the points z j has been infected by species i at time X i
n(y j) +ω

i
{y j ,z j}

:

∀x ∈ Zd\{z1, . . . , zl} X i
n+1(x) = X i

n(x)

and ∀ j ∈ {1, . . . , l} X i
n+1(z j) = X i

n(y j) +ω
i
{y j ,z j}

.

Note that X i
n(y) and X 3−i

n (y) can not be simultaneously finite, because each site is infected by
at most one type of infection. Moreover, once min(X 1

n(x), X 2
n(x)) is finite, its value – the time of

infection of x – does not change any more with n.
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Note however that this coupling is nothing else than a useful tool for our proofs: this does not
constrain the evolution of the process. Particularly, the very definition of the evolution process tells
us that the (ωe

i
)e∈Ed ,i∈{1,2} could be independent as well without the law of the evolution process

being changed.

For i ∈ {1,2}, we define

∀t ∈ [Tn, Tn+1) η
i(t) = {z ∈ Zd : X i

n(z)< +∞}.

The set ηi(t) contains the points that are infected by type i at time t. We also define η(t) =
η1(t)∪η2(t). Then, we introduce the sets of points that are finally infected by each epidemic:

∀i ∈ {1,2} ηi(∞) = ∪
t≥0
ηi(t).

The set G i =
¦

|ηi(∞)|= +∞
©

for i = 1,2, corresponds to the unbounded growth of species i, and
coexistence is thus the event Coex= G 1 ∩G 2.

Coupling with first-passage percolation

The evolution of the two infections can be compared with a first-passage percolation.

Assume that ν is a probability measure on [0,+∞), such that

ν(0)< pc and ∃γ > 0 such that

∫ +∞

0

exp(γx) dν(x)<+∞.

Consider the probability measure P = ν⊗E
d

on Ω = [0,+∞)E
d

. Under P, the coordinates (ωe)e∈Ed

are independent identically distributed random variables with common law ν . Then for each x ∈ Zd

and t ≥ 0, we define the set of points reached from x in a time less than t:

Bx(t) =

(

y ∈ Zd : there exists a path γ from x to y , with
∑

e∈γ

ωe ≤ t

)

.

The classical shape theorem gives the existence of a norm ‖.‖ν on Rd such that B0(t)/t almost surely
converges to the unit ballB for ‖.‖ν .

Note that the competition model contains two simple first-passage percolation models: for each
i ∈ {1,2}, x ∈ Zd and t ≥ 0, the set

Bx
pi
(t) =

(

y ∈ Zd : there exists a path γ from x to y , with
∑

e∈γ

ωi
e ≤ t

)

is the random ball of radius t of first-passage percolation starting from x with passage time law νpi
.

For simplicity, the related norm will be denoted by ‖.‖pi
, and its associated discrete balls B x

pi
(t) =

{y ∈ Zd : ‖y − x‖pi
≤ t}.

There are some coupling relations between the competition model and first-passage percolation:

Lemma 1.1. ∀t > 0 η1(t)⊂ B
s1
p1
(t) and η2(t)⊂ B

s2
p2
(t) and B

s1
p1
(t)⊂ η(t).

We postpone the proof of these (not so) obvious properties to the next section.
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Statement of results

We denote by ‖.‖2 the Euclidean norm on Rd , by 〈., .〉 the corresponding scalar product and by S
the corresponding unit sphere: S = {x ∈ R2 : ‖x‖2 = 1}. Let y, z ∈ Rd , −→x ∈ S , and R,h> 0. We
define:

d(y,R−→x ) = ‖y − 〈y,−→x 〉−→x ‖2 (the Euclidean distance from y to the line R−→x ),

Cylz(
−→
x ,R,h) = {y ∈ Zd : d(y − z,R−→x )≤ R and 0≤ 〈y − z,−→x 〉 ≤ h},

Cyl+(
−→
x ,R) = Cyl0(

−→
x ,R,+∞),

Cyl(−→x ,R) = {y ∈ Zd : d(y,R−→x )≤ R}.

If A, B, C are subsets of Zd , we say that A disconnects B from infinity in C if every infinite path in C

starting from some point in B must meet A. Obviously, this property always occurs when B ∩ C is
empty.

We can then define the following events:

Shadow(−→x , t,R) =
¦

∂ η(t)∩η2(t) disconnects η1(t) from infinity in Cyl+(
−→
x ,R)

©

,

Shade(t,R) = ∪
x∈S

Shadow(−→x , t,R).

The event Shadow(−→x , t,R) means that each infinite path starting from η1(t) and contained
in the cylinder Cyl+(

−→
x ,R) necessarily meets ∂ η(t) ∩ η2(t). Loosely speaking, on the event

Shadow(−→x , t,R), the strong infection casts a shadow of radius R on the weak infection.

Our main result says that if the strong infection occupies a too large portion of the frontier, i.e. if
Shade(t,Rt1/2+η) occurs, then the survival probability of the slow species 1 is very small:

Theorem 1.2. We suppose that assumptions (H1)− (H5) hold. Consider M > 0 and η ∈ (0,1/2).
There exist two strictly positive constants A, B such that

∀t ≥ 0 P
�

G 1 ∩ Shade(t, M t1/2+η)
�

≤ Aexp(−Btη).

Corollary 1.3. Define Rt as the supremum of the r for which Shade(t, r) occurs. Let η > 0. Then, on

the event G 1, we almost surely have

lim
t→+∞

Rt

t1/2+η
= 0.

Remember that, by Lemma 1.1 and the asymptotic shape result for first-passage percolation, the
diameter of η(t) is of order t. Thus, to obtain the absence of strong coexistence, we would also
need a control on the number of such stains of species 2 on the surface of η(t): in dimension larger
or equal to three, the set ∂ η(t)∩η2(t) is not necessarily connected. On the contrary, in dimension
two, we will see that the set ∂ η(t) ∩ η2(t) is connected, which enables us to prove the absence of
strong coexistence. Consider any norm ‖.‖ on R2, its discrete ballsB(t) = {y ∈ Z2 : ‖y‖ ≤ t}, and
denote by Sp1

(t) the sphere with radius t for the ‖.‖p1
-norm:

Theorem 1.4. We suppose that assumptions (H1)− (H5) hold.

For the two dimensional lattice, we have

1. For every β ∈ (0,1/2), there exists a constant C > 0 such that, almost surely on the event G 1

∀t > 0
|η2(∞)∩B(t)|

|B(t)|
≤

C

t1/2−β
.
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2. For every β > 0, almost surely on the event G 1

lim
t→+∞

Diam
�

η2(∞) + [−1/2,1/2]2
�

∩Sp1
(t))

t1/2+β
= 0.

3. Strong coexistence almost surely does not happen.

The next corollary of Theorem 1.2 makes Lemma 5.2 in Häggström-Pemantle [11] more precise:
when coexistence occurs, the two species globally grow with the speed of the slow species, as if
the slow species were alone. It also corresponds to a weak version of moderate deviations for first-
passage percolation (see the results by Kesten and Alexander, recalled as Proposition 2.2 in the next
section).

Theorem 1.5. Let β > 0 and η ∈ (0,1/2). There exist two strictly positive constants A, B such that for

every t ≥ 0:

P
�

G 1\
¦

Bp1

�

t − β t1/2+η
�

⊂ η(t)⊂Bp1

�

t + β t1/2+η
�©�

≤ Aexp(−Btη).

The estimates we obtained in this paper finally allow us to recover the "except perhaps for a denu-
merable set" non-coexistence result by Häggström and Pemantle, and to extend it to more general
families of passage times indexed by a continuous parameter:

Theorem 1.6. Let (νp)p∈I be a family of probability measures indexed by a subset of R. We assume

that

1. for each p ∈ I , νp(0)< pc

2. for each p ∈ I , νp(inf suppνp)<
−→
pc

3. for each p ∈ I , there exists γ > 0 such that
∫

[0,∞)
exp(γx) dνp(x)<∞,

4. for each p,q ∈ I , p < q⇒ νp ≻ νq and νp 6= νq,

5. for each p,q ∈ I , ∀k, l ∈ N, ν∗kp ⊗ ν
∗l
q ({(x , x) : x ∈ [0,+∞)}) = 0.

Denote by Pp,q the law of the competition process where species 1 (resp. 2) uses passage times with law

νp (resp. νq). Then, for each fixed q ∈ I , the set

{p ∈ I : p ≤ q and Pp,q(Coex)> 0}

is a subset of the points of discontinuity of the non-decreasing map p 7→ Pp,q(G
1), and is therefore at

most denumerable.

Organization of the paper

In Section 2, we give a list of useful results in first-passage percolation. Most of them are classical
and are recalled without proof. We also give there the proof of Lemma 1.1. Section 3 is mainly
devoted to the proof of Theorem 1.3, which is the technical core of the paper. Section 4 establishes
Theorem 1.5. In Section 5, we improve for the two dimensional lattice the results of Section 3 into
the more friendly Theorem 1.4. The last section extends the Häggström-Pemantle Theorem to the
present context as announced in Theorem 1.6.
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2 Preliminary results

2.1 First-passage percolation results

Let us recall some classical results about first-passage percolation. We assume here that the passage
times are independent identically distributed with common law ν satisfying

• ν(0)< pc;

• for some γ > 0,
∫

[0,+∞)
exp(γx) dν(x)< +∞.

Denote by ‖.‖ν the norm given by the shape theorem, and by B x(t) the discrete ball relatively to
‖.‖ν with center x and radius t. The first two results give large deviations and moderate deviations
for fluctuations with respect to the asymptotic shape, and the third one gives the strict monotonicity
result for the asymptotic shape with respect to the distribution of the passage times:

Proposition 2.1 (Grimmett-Kesten [9]). For any ǫ > 0, there exist two strictly positive constants A, B

such that

∀t > 0 P
�

B0((1− ǫ)t)⊂ B0(t)⊂B0((1+ ǫ)t)
�

≥ 1− Aexp(−Bt).

Proposition 2.2 (Kesten [14], Alexander [1]). For any β > 0, for any η ∈ (0,1/2), there exist two

strictly positive constants A, B such that

∀t > 0 P
�

B0(t − β t1/2+η)⊂ B0(t)⊂B0(t + β t1/2+η)
�

≥ 1− Aexp(−Btη).

Proposition 2.3 (van den Berg-Kesten [15]). Let νp1
and νp2

be two probability measures on [0,+∞)
satisfying (H1), (H3), (H4), (H5).

There exists a constant Cp1,p2
∈ (0,1) such that

∀x ∈ Rd ‖x‖p2
≤ Cp1,p2

‖x‖p1
.

Note that in [15], the proof of this result is only written for the time constants. Nevertheless, it
applies in any direction and computations can be followed in order to preserve a uniform control,
whatever direction one considers. See for instance Garet and Marchand [6] for a detailed proof in
an analogous situation. In the same way, the large deviation result of Proposition 2.1 is only stated
in [9] for the time constant, but the result can be extended uniformly in any direction, as it is done
in Garet and Marchand [7] for chemical distance in supercritical Bernoulli percolation. As far as
Proposition 2.2 is concerned, it is a by-product of the proof of Theorem 3.1 in Alexander [1]. We
include here a short proof for convenience.

Proof of Proposition 2.2. The outer bound for B0(t) follows from Kesten [14], Equation (1.19): there
exist positive constants A1, B1 such that for all t > 0, we have

P(B0(t) 6⊂ B0(t + β t1/2+η)≤ A1 exp(−B1 tη).
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Turning to the inner bound, we follow the lines of Alexander’s proof: for x , y ∈ Zd , let us define the
travel time between x and y by T (x , y) = inf{t ≥ 0 : y ∈ Bx(t)}. Then we have:

P(B0(t) 6⊃ B0(t − β t1/2+η))

≤ P(B0(t) 6⊃ B0(t/2)) +
∑

t/2≤‖x‖ν≤t−β t1/2+η
P(T (0, x)≥ t)

≤ Aexp(−Bt) +
∑

t/2≤‖x‖ν≤t−β t1/2+η
P(T (0, x)≥ t),

where A and B are determined by Proposition 2.1 with ǫ = 1/2. By Alexander [1], Theorem 3.2,
there exist positive constants C ′4, M such that

‖x‖ν ≥ M =⇒ E T (0, x)≤ ‖x‖ν + C ′4‖x‖
1/2
ν log‖x‖ν .

Assume t/2≥ M and let x with t/2≤ ‖x‖ν ≤ t − β t1/2+η.
Let CM = inf{21/2+ηβ − C ′4 y−η log y : y ≥ M}. We assume that M is so large that CM > 0. We have

E T (0, x)≤ t − CM‖x‖
1/2+η
ν ≤ t − C ′M‖x‖

1/2+η
2 , where C ′M is a positive constant, and then

P(T (0, x)≥ t)≤ P(T (0, x)−E T (0, x)≥ C ′M‖x‖
1/2+η
2 ).

By Kesten’s result [14], Equation (2.49) (see also Equation (3.7) in Alexander [1]), there exist
positive constants C5, C6 such that

P(T (0, x)−E T (0, x)≥ C ′M‖x‖
1/2+η)≤ C5 exp(−C6‖x‖

η
2 ),

provided that M is large enough. Finally, it gives that

∑

t/2≤‖x‖ν≤t−β t1/2+η
P(T (0, x)≥ t)≤ |B0(t)|C5 exp(−C6(t/2)

η)≤ C ′5 exp(−C ′6 tη),

where C ′5, C ′6 are positive constants.

Lemma 2.5 will ensure that the minimal time to cross the cylinder Cylz(
−→
x ,h, r) from bottom to top,

using only edges in the cylinder, can not be much larger than the expected value h‖
−→
x ‖ν . We need

an intermediary lemma.

For x , y ∈ Zd , denote by Ix ,y the length of the shortest path from x to y which is insideBx(1.25‖x−
y‖ν)∩By(1.25‖x− y‖ν). Of course Ix ,y as the same law that I0,x−y , and we simply write Ix = I0,x .

Lemma 2.4. Let ǫ, a in (0,1) and ‖.‖ be any norm on Rd . There exists M0 such that for each M ≥ M0,

there exist ρ ∈ (0,1) and t > 0 such that

‖x‖ ∈ [aM , M/a] =⇒ E exp(t(Ix − (1+ ǫ)‖x‖ν))≤ ρ.

Proof. Note that by norm equivalence, we can restrict ourselves to ‖.‖1. Let Y be a random variable
with law ν and let γ > 0 be such that E e2γY <+∞.
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First, the large deviations result, Proposition 2.1, easily implies the following almost sure conver-
gence:

lim
‖x‖1→+∞

Ix

‖x‖ν
= 1.

By considering a deterministic path from 0 to x with length ‖x‖1, we see that Ix is dominated by a
sum of ‖x‖1 independent copies of Y denoted by Y1, . . . , Y‖x‖1 . Thus, Ix/‖x‖1 is dominated by

1

‖x‖1

‖x‖1
∑

k=1

Yi .

By the law of large numbers, this family is equi-integrable. Hence, (Tx/‖x‖1)x∈Zd\{0} and finally
(Ix/‖x‖ν)x∈Zd\{0} are also equi-integrable families. It follows that

lim
‖x‖1→+∞

E Ix

‖x‖ν
= 1. (1)

Note now that for every y ∈ R and t ∈ (0,γ],

et y ≤ 1+ t y +
t2

2
y2et|y| ≤ 1+ t y +

t2

γ2 e2γ|y|.

Define Ĩx = Ix − (1+ ǫ)‖x‖ν and suppose that t ∈ (0,γ]. Then, as | Ĩx | ≤ Ix + 2‖x‖ν , the previous
inequality implies that

et Ĩx ≤ 1+ t Ĩx +
t2

γ2 e4γ‖x‖ν e2γIx .

As ‖x‖ν ≤ ‖x‖1‖e1‖ν and Ix ≤ Y1+ · · ·+ Y‖x‖1 , if we set R= e4γ‖e1‖νE e2γY , we obtain that

E et Ĩx ≤ 1+ t

�

E Ĩx +
t

γ2 R‖x‖1

�

.

Considering Equation (1), let M0 be such that ‖x‖ ≥ aM0 implies E Ix

‖x‖ν
≤ 1+ ǫ/3.

For x such that ‖x‖1 ≥ aM0, we have E Ĩx ≤−
2
3
ǫ‖x‖ν , so

E et Ĩx ≤ 1+ t

�

−
2

3
ǫ‖x‖ν +

t

γ2 R‖x‖1

�

.

Therefore, we take t =min
¦

γ,γ2‖e1‖ν
ǫ

3
R−M/a

©

> 0 and ρ = 1− 1
3
ǫ‖e1‖ν t < 1.

Lemma 2.5. For z ∈ Rd ,
−→
x ∈ S , and h, r > 0 large enough, we can define the point s0 (the point

s f ) to be the integer point in Cylz(
−→
x , r,h) which is closest to z (respectively, z + h

−→
x ). We define the

crossing time t[Cylz(
−→
x ,h, r)] of the cylinder Cylz(

−→
x , r,h) as the minimal time needed to cross it from

s0 to s f , using only edges in the cylinder.

Then for any ǫ > 0, and any function f : R+ → R+ with lim+∞ f = +∞, there exist two strictly

positive constants A and B such that

∀z ∈ Rd ∀
−→
x ∈ S ∀h> 0

P
�

t[Cylz(
−→
x ,h, f (h))]≥ ‖

−→
x ‖ν(1+ ǫ)h

�

≤ Aexp(−Bh).
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Note that this gives the existence of a nearly optimal path from z to z + h
−→
x that remains at a

distance less than f (h) of the straight line. This result can be interesting on its own as we often lack
of information on the position of the real optimal paths.

Proof. Let ǫ ∈ (0,1) and consider the integer M0 ∈ N given by Lemma 2.4. As ‖.‖ν is a norm, there
exist two strictly positive constants c and C such that

∀
−→
x ∈ S c ≤ ‖

−→
x ‖ν ≤ C . (2)

Let M1 ≥ M0 be an integer large enough to have

(1+ 2ǫ)≥ (1+ ǫ)

�

1+
4‖e1‖ν

cM1

�

. (3)

Consider h > M1 and set N = 1+ Int(h/M1), where Int(x) denotes the integer part of x , and, for

each i ∈ {0, . . . , N} denote by x i the integer point in the cylinder which is the closest to z + ih
−→
x

N
.

Note that

∀h≥ M1
M1

2
≤

�

1−
1

N

�

M1 ≤
h

N
≤ M1. (4)

and that for each i, j ∈ {0, . . . , N − 1},
¯

¯

¯

¯

¯

‖x i − x j‖ν − | j − i|
h‖
−→
x ‖ν

N

¯

¯

¯

¯

¯

≤ 2‖e1‖ν . (5)

1. Applying (5), (2) and (4), we obtain that for each i ∈ {0, . . . , N − 1},

h‖
−→
x ‖ν

N
− 2‖e1‖ν ≤ ‖x i − x i+1‖ν ≤

h‖
−→
x ‖ν

N
+ 2‖e1‖ν

c
M1

2
− 2‖e1‖ν ≤ ‖x i − x i+1‖ν ≤ C M1+ 2‖e1‖ν .

So we can find a > 0 such that, by increasing M1 if necessary,

∀i ∈ {0, . . . , N − 1} aM1 ≤ ‖x i − x i+1‖ν ≤ M1/a. (6)

2. Let h1 ≥ 0 be such that

∀h≥ h1 f (h)≥ 2.5C(M1+ 1)‖e1‖ν + 1.

If we take now h larger than h1, and if y ∈B x i (1.25‖x i − x i+1‖ν) for some i ∈ {0, . . . , N −1}, then,
with (2) and (5),

d(y − z,R−→x )

= d(y, z +R−→x )≤









y − z −
ih

N

−→
x









2

≤ ‖y − x i‖2+









x i − z −
ih

N

−→
x









2

≤ 1.25C‖x i − x i+1‖ν + 1≤ 1.25C

�

h‖
−→
x ‖ν

N
+ 2‖e1‖ν

�

+ 1.
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But h/N ≤ M1 and ‖−→x ‖ν ≤ ‖
−→
x ‖1‖e1‖ν ≤ 2‖e1‖ν , thus

d(y − z,R−→x )≤ f (h).

On the other hand,

〈y − z,−→x 〉 = 〈y − x i ,
−→
x 〉+ 〈x i −

�

z +
ih

N

−→
x

�

,−→x 〉+ 〈
ih

N

−→
x ,−→x 〉

i.e.

¯

¯

¯

¯

〈y − z,−→x 〉 −
ih

N

¯

¯

¯

¯

≤


y − x i





2+ 1≤ 2.5C(M1+ 1)‖e1‖ν + 1.

We choose then i0 ∈ N such that:

i0 ≥
2

M1
(2.5C(M1+ 1)‖e1‖ν + 1).

Then, if h2 is such that 1+ Int(h2/M1)≥ 3i0, we obtain:

∀h≥ h2 ∀i ∈ {i0, . . . , N − 1− i0} B
x i (1,25‖x i − x i+1‖ν)⊂ Cylz(

−→
x ,R,h). (7)

3. There exists a deterministic path inside the cylinder from x0 to x i0
(from xN−i0

to xN ) which uses

less than i0
h‖
−→
x ‖1
N
+2 edges: we denote by Lstar t (respectively, Lend) the random length of this path.

By Equation (4), we have

∀h≥ M1 i0
h‖
−→
x ‖1

N
+ 2≤ i0

2h

N
+ 2≤ 2(i0+ 1)M1.

If h > h3 =
3(i0+1)M1E Y

ǫ‖−→x ‖ν
, Chernoff’s theorem gives the existence of two strictly positive constants

A1, B1 such that

∀h> 0 P
�

Lstar t > ǫh‖
−→
x ‖ν

�

+ P
�

Lend > ǫh‖
−→
x ‖ν

�

≤ A1e−B1h. (8)

4. So, provided that h≥ h2, we have by (8), inside the cylinder, a path from x0 to xN with length

Lstar t +

N−i0−1
∑

i=i0

Ix i ,x i+1
+ Lend .

By Equation (5), if h is large enough, for each i, j ∈ {0, . . . , N − 1},

B x i (1.25‖x i − x i+1‖ν)∩B
x i+1(1.25‖x i − x i+1‖ν)

∩B x j (1.25‖x j − x j+1‖ν)∩B
x j+1(1.25‖x j − x j+1‖ν) =∅

as soon as | j − i| ≥ 2. We thus introduce, for j ∈ {0,1}, the sums:

S j =
∑

I≤i≤N−I−1
i= j mod 2

Ix i ,x i+1
.
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Note that, with (5), (2) and (3) for each j ∈ {0,1},

∑

i0≤i≤N−i0−1
i= j mod 2

‖x i+1− x i‖ν ≤
N − 2i0

2

�

h‖
−→
x ‖ν

N
+ 2‖e1‖ν

�

≤
h‖
−→
x ‖ν

2

�

1+
2N‖e1‖ν

h‖
−→
x ‖ν

�

≤
h‖
−→
x ‖ν

2

�

1+
4‖e1‖ν

cM1

�

≤

�

1+ 2ǫ

1+ ǫ

�

h‖
−→
x ‖ν

2
.

Then, by independence of the terms in each S j ,

P

�

S j ≥
h‖
−→
x ‖ν

2
(1+ 2ǫ)

�

≤ P











S j ≥ (1+ ǫ)
∑

i0≤i≤N−i0−1
i= j mod 2

‖x i+1− x i‖ν











≤ E exp











t
∑

i0≤i≤N−i0−1
i= j mod 2

�

Ix i ,x i+1
− (1+ ǫ)‖x i+1− x i‖ν

�











≤
∏

i0≤i≤N−i0−1
i= j mod 2

E exp(t(Ix i ,x i+1
− (1+ ǫ)‖x i+1− x i‖ν))

By (6), for each i, we have ‖x i − x i+1‖ν ∈ [aM1, M1/a], so we can apply Lemma 2.4: there exists
some ρ < 1, such that for every h large enough,

∀ j ∈ {0,1} P

�

S j ≥
h‖
−→
x ‖ν

2
(1+ 2ǫ)

�

≤ ρN/2 ≤ ρh/(2M1).

Together with (8), this proves the estimate of the lemma.

2.2 Comparisons with first-passage percolation

We now prove Lemma 1.1, using an algorithmic construction analogous to the one used to define
the competition process in the introduction.

Proof of Lemma 1.1. The inclusion η1(t) ⊂ B
s1
p1
(t) is obvious: by construction of the process, if

x ∈ η1(t), there exists a path between s1 and x included in η1(t), and whose travel time is thus less
than t. The second inclusion η2(t)⊂ B

s2
p1
(t) is proved in the same way.

Let us now prove the third inclusion B
s1
p1
(t) ⊂ η(t). We are going to build the first-passage process

by Dijkstra’s algorithm, in a formalism analogous to the one used to define the competition process.
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Recall that Ω = ([0,+∞)× [0,+∞))E
d

is endowed with the measure P = m⊗E
d

. Consider a fixed
configuration ω ∈ Ω.

Let E′ = [0,+∞]Z
d

. We recursively define a E′-valued sequence (X ′n)n≥0 and a non-negative se-
quence (T ′n)n≥0. The sequence (T ′n)n≥ 0 contains the successive times of infections, while a point
ǫ = (ǫ(z))z∈Zd ∈ E codes, for each site z, its times of infection ǫ(z). We start the process with the
single source s1, and set T ′0 = 0 and

X ′0 = (X0(z))z∈Zd with X ′0(s1) = 0 and X ′0(z) = +∞ if z 6= s1.

Then, for n≥ 0, define the next time of infection:

T ′n+1 = inf{X ′n(y) +ω
1
{y,z} : {y, z} ∈ Ed}.

The infimum is reached for some couples (yi , zi), meaning that the zi are being infected from the yi:

∀x ∈ Zd\{zi}, X ′n+1(x) = X ′n(x) and X ′n+1(zi) = X ′n(yi) +ω
1
{yi ,zi}

.

We also note that η′(t), the set of infected points at time t is given by

∀n ∈ N ∀t ∈ [Tn, Tn+1) η
′(t) = {z ∈ Zd : X ′n(z)< +∞}.

By Dijkstra’s algorithm, η′(t) is exactly the set B
s1
p1
(t).

We now proceed by induction to prove that for every n ∈ N

(Hn) ∀x ∈ Zd X ′n(x)≥min(X 1
n(x), X 2

n(x)).

Clearly, (H0) is true. Assume that (Hn) holds. We have the following alternative:

• If X ′n+1(x) = +∞, it is obvious that X ′n+1(x)≥min(X 1
n+1(x), X 2

n+1(x)).

• If X ′n(x) < +∞ then X ′n+1(x) = X ′n(x) and, as X ′n(x) ≥ min(X 1
n(x), X 2

n(x)), the num-
ber min(X 1

n(x), X 2
n(x)) is also finite, and thus min(X 1

n(x), X 2
n(x)) = min(X 1

n+1(x), X 2
n+1(x))

– recall that X 1
n(x) and X 2

n(x) can not be simultaneously finite. Consequently, X ′n+1(x) ≥

min(X 1
n+1(x), X 2

n+1(x)).

• If X ′n+1(x) < +∞ and X ′n(x) = +∞, the point x is being infected at time T ′n+1 through
the edge e from the point y , which is consequently such that X ′n(y) < +∞. As X ′n(y) ≥

min(X 1
n(y), X 2

n(y)), and ω1
e ≥ω

2
e ,

X ′n+1(x) = X ′n(y) +ω
1
e ≥min(X 1

n+1(y), X 2
n+1(y)).

Note that

η(t) = {z ∈ Zd : ∃n ∈ N, min(X 1
n(z), X 2

n(z))≤ t},

η′(t) = {z ∈ Zd : ∃n ∈ N, X ′n(z)≤ t}.

It is then obvious that η′(t)⊂ η(t).
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3 Coexistence can not be observed by a medium resolution satellite

The proof of Theorem 1.2 follows, at least in its main lines, the strategy initiated by Häggström and
Pemantle: the aim is to prove that an event, suspected to be incompatible with the survival of the
weak, allows the strong to grant themselves, with high probability, a family of shells that surround
the weak, preventing thus coexistence. In the Häggström-Pemantle paper [11], the objective is to
show that when coexistence occurs, it is unlikely that the strong can advance significantly beyond
the weak. The event considered here is of a different nature: we must prove that the strong can not
occupy too large a region on the frontier of the infected zone. Obviously, this requires finer controls.
Moreover, the use of the shape theorem is not sufficient: moderate deviations for the fluctuations
with respect to the asymptotic shape provide sharper estimates. Some more technical difficulties
also follow from the loss of some nice properties of exponential laws. However, this last kind of
difficulties has already been overcome by the authors of this paper in the previous article [6]. We
refer the reader to this paper for some more comments.

To prove Theorem 1.2, we first prove an analogous result, Lemma 3.6, in a fixed given direction.
Theorem 1.3 follows then from a Borel-Cantelli type of argument.

Definitions.

Let Sp2
be the unit sphere for the norm ‖.‖p2

. We define the shells: for each A ⊂ Sp2
, and every

0< r < r ′, we set

Shell(A, r, r ′) = {x ∈ Zd : x/‖x‖p2
∈ A and r ≤ ‖x‖p2

≤ r ′}.

So roughly speaking, we should think of A as the set of possible directions for the points in the shell,
while [r, r ′] is the set of radii.

For A⊂ Sp2
and ϕ > 0, define the following enlargement of A:

A⊕ϕ = (A+B0
p2
(ϕ))∩Sp2

.

Let us state first three geometric lemmas:

Lemma 3.1. For any norm |.| on Rd , one has

∀x , y ∈ Rd\{0}

¯

¯

¯

¯

x

|x |
−

y

|y |

¯

¯

¯

¯

≤
2|x − y |

max{|x |, |y |}
.

Lemma 3.2. For any norm |.| on Rd , there exist a constant C > 0 such that the unit sphere for |.| can

be covered with C(1+ 1
ǫ
)d−1 balls of radius ǫ having their centers on the unit sphere.

Proof. When |.| = ‖.‖∞, it is easy to see that the sphere can be covered with 2d(1+ 2
ǫ
)d−1 balls of

radius ǫ.

Now let A, B be two strictly positive constants such that

∀x ∈ Rd A‖x‖∞ ≤ |x | ≤ B‖x‖∞
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and let K = A

2B
. Using the remark above, we can find and integer n ≤ 2d(1+ 2

Kǫ
)d−1 and a family

of balls (B x i
∞(Kǫ))1≤i≤n that covers the unit sphere {x ∈ Rd : ‖x‖∞ = 1} and satisfies ‖x i‖∞ = 1 for

each i ∈ {1, . . . , n}. Now noteΨ(x) = x

|x |
and let y in the unit sphere for |.|: there exists i ∈ {1, . . . , n}

such that
‖x i −

y

‖y‖∞
‖∞ ≤ Kǫ.

Since Ψ( y

‖y‖∞
) = y , Lemma 3.1 ensures that

|Ψ(x i)− y | ≤
2|x i −

y

‖y‖∞
|

|x i |
≤

2BKǫ

A
= ǫ.

So, the unit sphere for |.| can be covered with 2d(1+ 4B

A

1
ǫ
)d−1 balls of radius ǫ having their centers

on the unit sphere.

Lemma 3.3. Let R≥ 0. If
−→
u ,−→v ∈ S are such that ‖

−→
u −
−→
v ‖2 ≤ (

h

2R
)2, then

Cyl(−→v ,h/2)∩B2(R)⊂ Cyl(−→u ,h).

Moreover, if ‖
−→
u −
−→
v ‖2 ≤ 1/2, then

Cyl+(
−→
v ,h/2)∩B2(R)∩B2(h)

c ⊂ Cyl+(
−→
u ,h).

Proof. We denote θ = ‖−→u −−→v ‖2. Then d(y,R−→u )2 = ‖y − 〈y,−→u 〉−→u ‖22 = ‖y‖
2
2− 〈y,−→u 〉2 and

d(y,R−→u )2− d(y,R−→v )2 = 〈y,−→v 〉2− 〈y,−→u 〉2

≤ 〈y,−→v −−→u 〉〈y,−→u +−→v 〉 ≤ 2θ‖y‖22.

Suppose first that y ∈ Cyl(−→v ,h/2)∩B2(R): we have

d(y,R−→u )2− d(y,R−→v )2 ≤ 2θR2 ≤ h2/2.

So d(y,R−→u )2 = d(y,R−→v )2 + (d(y,R−→u )2 − d(y,R−→v )2) ≤ h2/4+ h2/2 ≤ h2, which means that
y ∈ Cyl(−→u ,h).

Now suppose that θ ≤ 1/2 and ‖y‖2 ≥ h. We have d(y,R−→v ) = ‖y − 〈y, v〉
−→
v ‖2 ≤ h/2 and

〈y,−→v 〉 ≥ 0, so 〈y,−→v 〉= |〈y,−→v 〉| ≥ ‖y‖2− h/2. This implies

〈y,−→u 〉= 〈y,−→v 〉 − 〈y,−→v −−→u 〉 ≥ 〈y,−→v 〉 − ‖y‖2θ ≥ ‖y‖2(1− θ)−
h

2
≥ ‖y‖2

�

1

2
− θ

�

≥ 0,

which ends the proof.

The next lemma ensures that if the event Shadow(−→x , t,Rt1/2+η) occurs, then there is a large prob-
ability that the strong infection manages to colonize a small shell. Then, he gets a positional advan-
tage. Let K1 > 0 be such that

∀x ∈ Rd ‖x‖2 ≤ K1‖x‖p1
. (9)
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Lemma 3.4. Let R > 0, η ∈ (0,1/2) and δ ∈ (0,R/K1). Choose then δ′ > 0 with δ < δ′ <

min
¦

δ/Cp1,p2
,R/K1

©

. Choose γ,γ′ such that 1 < γ < γ′ and θ > 0. For any
−→
x ∈ S , any t > 0, any

γ,γ′ such that 1 < γ < γ′ and any θ > 0, we define the following events, depending on
−→
x , t,γ,γ′ and

θ :

E1 = {η1(t +δt1/2+η) ⊂ B0
p1
(t +δ′ t1/2+η)},

E2 =
¦

η2(t +δt1/2+η)

⊃ Shell

 

−→
x

‖
−→
x ‖p2

⊕ (θ t−
1
2
+η),
‖
−→
x ‖p2

‖
−→
x ‖p1

(t + γδ′ t
1
2
+η),
‖
−→
x ‖p2

‖
−→
x ‖p1

(t + γ′δ′ t
1
2
+η)

!)

,

E = E1 ∩ E2.

Then there exist γ′0 > 1 and θ0 > 0 such that for any γ,γ′,θ satisfying 1< γ < γ′ < γ′0 and 0< θ < θ0,

there exist two strictly positive constants A, B such that

∀
−→
x ∈ S ∀t > 0 P(Shadow(−→x , t,Rt1/2+η)\E)≤ Aexp(−Btη).

Proof. Let R > 0, η ∈ (0,1/2) and δ ∈ (0,R/K1). Choose then δ′ > 0 with δ < δ′ <
min

¦

δ/Cp1,p2
,R/K1

©

.

Choice of constants. Choose now δ1,ǫ and β positive such that

δ′ < δ1 <
δ

Cp1,p2

, (10)

δ′ < δ1(1− ǫ), (11)

β <min{δ′−δ,δ1ǫ}. (12)

Step 1. Control of the slow p1-infection. As η < 1/2, we have

(t + δt1/2+η) + β(t +δt1/2+η)1/2+η = t + (δ+ β)t1/2+η+ o(t1/2+η).

By condition (12), δ+ β < δ′. Thus, using the moderate deviation result (Proposition 2.2), there
exist two strictly positive constants A1, B1 such that ∀t > 0

P((E1)c)≤ A1 exp(−B1 tη). (13)

We can thus assume in the following that E1 occurs.

Step 2. Control of the competition process. Define:

F1 = F1(t) =
n

η1(t)⊂B0
p1
(t + β t1/2+η)

o

∩
n

B0
p1
(t − β t1/2+η)⊂ η1(t)∪η2(t)

o

.

By Proposition 2.2 and Lemma 1.1, there exist two strictly positive constants A2, B2 such that ∀t > 0

P(F c
1)≤ A2 exp(−B2 tη). (14)

We can thus assume in the following that F1 occurs.
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Define an integer approximation of the line R−→x as follows:

D−→x = {y ∈ Z
d : ∃z ∈ R−→x , ‖y − z‖∞ ≤ 1/2}.

Note that D−→x is connected. Let now s0 ∈ η
2(t) ∩ D−→x be a point which realizes the maximum

maxy∈η2(t)∩D−→x
〈y,−→x 〉. On the event Shadow(−→x , t,Rt1/2+η) ∩ F1, the point s0 is well defined and

satisfies
‖s0‖p1

≥ t − β t1/2+η. (15)

Step 3. The weak infection can not fill the hole. Define

F2 = F2(t) =
n

∀x ∈Bp1
(t + β t1/2+η) Bx

p1
(δt1/2+η)⊂B x

p1
(δ′ t1/2+η)

o

,

r = R− K1δ
′ > 0.

As δ′ > δ, by the large deviation result (Proposition 2.1), there exist two strictly positive constants
A3, B3 such that ∀t > 0

P(F c
2)≤ |Bp1

(t + β t1/2+η)|A3 exp(−B3 t1/2+η)≤ A′3 exp(−B′3 t1/2+η). (16)

We can thus assume in the following that F2 occurs. Note that as B x
p1
(δ′) ⊂ B x

2 (K1δ
′) by the

very definition of K1, on the event Shadow(−→x , t,Rt1/2+η) ∩ F1 ∩ F2, there will exist a corridor
Cyl(−→x , r t1/2+η) where we are sure that the strong infection will not be bothered in its progression
between time t and time t + (β +δ1Cp1,p2

)t1/2+η by the weak infection – see Figure 1.

R x̂

Rt1/2+η

∂ η(t)

Bp1
(t − β t1/2+η)

Bp1
(t + β t1/2+η) r t1/2+η

Figure 1: On the left hand side, Shadow(x , t,Rt1/2+η): the strong are in bold. On the right hand
side, the evolution of the weak: to enter Cyl(x , r t1/2+η), it has to cross a gap of order (R− r)t1/2+η.

Step 4. The strong manage to escape. Remember that, by the choice (11), δ′ < δ1(1− ǫ). Define s f

as a point in D−→x ∩Bp1
(t+δ1(1−ǫ)t

1/2+η) such that (s f+[−1/2,1/2]d)∩Bp1
(t+δ1(1−ǫ)t

1/2+η)c 6=

∅. Then, by Estimate (15), we have

‖s f − s0‖2 ≤ ‖s f −
‖s f ‖p1

‖
−→
x ‖p1

−→
x ‖2+

‖s f ‖p1

‖
−→
x ‖p1

−
‖s0‖p1

‖
−→
x ‖p1

+ ‖
‖s0‖p1

‖
−→
x ‖p1

−→
x − s0‖2

≤ 2
p

d +
δ1(1− ǫ) + β

‖
−→
x ‖p1

t1/2+η.
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By Condition (12) there exists ǫ′ > 0 such that δ1(1− ǫ) + β < δ1/(1+ ǫ
′), and by definition of

Cp1,p2
in Proposition 2.3, for t large enough,

‖s f − s0‖2 ≤
δ1Cp1,p2

(1+ ǫ′)‖−→x ‖p2

t1/2+η.

Define
F3 = F3(

−→
x , t) = {s f ∈ η

2(t +δ1Cp1,p2
t1/2+η)}.

Applying Lemma 2.5 with h =
δ1Cp1,p2

‖
−→
x ‖p2

t1/2+η, ǫ = ǫ′ and f (h) = r t1/2+η gives two strictly positive

constants A4, B4 such that ∀−→x ∈ S ∀t > 0

P
�

Shadow(−→x , t,Rt1/2+η)∩ F1 ∩ F2 ∩ F c
3

�

≤ A4 exp(−B4 t1/2+η). (17)

Step 5. The strong colonizes a small shell. Let K2 be a strictly positive constant such that ∀x ∈

Rd ‖x‖p2
≤ K2‖x‖2, and choose δ2 > 0 such that

δ2 <min

½

δ− Cp1,p2
δ1,

r

K2

¾

.

Let ǫ′ > 0 be such that (1+ ǫ′)K2δ2 < r. Define

F4 = F4(
−→
x , t) = {B

s f

p2
((1− ǫ′)δ2 t1/2+η)⊂ η2(t +δt1/2+η)}.

Here, the choice we made for ǫ′ ensures that, for t large enough

B
s f

p2
((1+ ǫ′)δ2 t1/2+η)⊂ (Cyl(−→x , r t1/2+η)∩Bp1

(t +δ′ t1/2+η)c).

Thus, by the large deviation result (Proposition 2.1), there exist two strictly positive constants A5, B5

such that ∀−→x ∈ S ∀t > 0,

P(Shadow(−→x , t,Rt1/2+η)∩ F1 ∩ F2 ∩ F3 ∩ F c
4)≤ A5 exp(−B5 t1/2+η). (18)

Choose now θ0 > 0 and γ′0 > 1 such that

Shell

 (

−→
x

‖
−→
x ‖p2

)

⊕ θ0 t−1/2+η,
‖
−→
x ‖p2

‖
−→
x ‖p1

(t + δ′ t1/2+η),
‖
−→
x ‖p2

‖
−→
x ‖p1

(t + γ′0δ
′ t1/2+η)

!

⊂ B
s f

p2
((1− ǫ′)δ2 t1/2+η).

Then F4\E
2 = ∅, and collecting estimates (13), (14), (16), (17), and (18), we get the estimate of

the lemma.

The next lemma describes the typical progression of the strong infection from one shell to the next
one.
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Lemma 3.5. Let ϕ ∈ (0,2], h ∈ (0,1/2) and α ∈ (1,2) be fixed parameters such that

(1+ h)

�

1+
3ϕ

h

�

< α. (19)

For any S subset of S and for any r, s > 0, we define the following event E = E(S, r, s):
"Any point in the big Shell(S⊕

ϕr

2(s+r)
⊕

ϕ(1+h)r

2(s+(1+h)r)
, s+(1+h)r, s+(1+h)2r) is linked to a point in the

small Shell(S ⊕
ϕr

2(s+r)
, s+ r, s+ (1+ h)r) by an open path whose length is less than αhr.”

Then there exist two strictly positive constants A and B, only depending on ϕ,h,α, such that for any

r, s > 0 and any S of S , we have

P(Ec)≤ A(s+ r)d exp(−Br).

Moreover, we can assume that all the infection paths needed in E are completely included in the bigger

Shell(S ⊕
(ϕ+2αh)r

s+r
, s+ [1− 3ϕ](1+ h)r,∞).

Proof. Let ϕ ∈ (0,2], h ∈ (0,1) and α ∈ (1,2) be fixed parameters satisfying Equation (19) and
choose, in this order, α′ > 1, ǫ > 0 and ρ > 0 such that

(1+ h)ϕ+ (1+ h)2(1+ϕ)− (1+ h− 2ρ)≤ α′h< αh, (20)

4ρα′h< ϕ and 4ρα′h< ϕ(1+ h− 2ρ), (21)

h− 2ρ−ρα′h> 0, (22)

(1+ ǫ)2(1+ρ)α′ ≤ α. (23)

Note that (20) is allowed by (19). Let S be any subset of S .
Define T = S ⊕

ϕr

2(s+r)
⊕

ϕ(1+h)r

2(s+(1+h)r)
. Let z ∈ T :

∃v ∈ S, u1 ∈B
0
p2

�

ϕ(1+ h)r

2(s+ (1+ h)r)

�

, u2 ∈B
0
p2

�

ϕr

2(s+ r)

�

such that z = v + u1+ u2.

• As v ∈ S, we have v ⊕
ϕr

2(s+ r)
⊂ S ⊕

ϕr

2(s+ r)
.

• Moreover, ‖z − v‖p2
= ‖u1+ u2‖p2

≤ ‖u1‖p2
+ ‖u2‖p2

≤
ϕ(1+ h)r

(s+ (1+ h)r)
.

Thus for any z ∈ Shell(T, s+ (1+ h)r, s+ (1+ h)2r), we can choose −→v z ∈ S such that

‖
z

‖z‖p2

−
−→
v z‖p2

≤
ϕ(1+ h)r

s+ (1+ h)r
and −→v z ⊕

ϕr

2(s+ r)
⊂ S ⊕

ϕr

2(s+ r)
.
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We set vz = [s+ (1+ h− 2ρ)r]−→v z . Let us first estimate ‖z − vz‖p2
: on the one hand,

‖z − vz‖p2
≤ ‖z −‖z‖p2

−→
v z‖p2

+ | ‖z‖p2
− s− (1+ h− 2ρ)r|

≤ ‖z‖p2

ϕ(1+ h)r

s+ (1+ h)r
+ ‖z‖p2

− s− (1+ h− 2ρ)r

≤ ‖z‖p2

�

1+
ϕ(1+ h)r

s+ (1+ h)r

�

− s− (1+ h− 2ρ)r (24)

≤ s
ϕ(1+ h)r

s+ (1+ h)r
+ [(1+ h)2

�

1+
ϕ(1+ h)r

s+ (1+ h)r

�

− (1+ h− 2ρ)]r

≤ [(1+ h)ϕ+ (1+ h)2(1+ϕ)− (1+ h− 2ρ)]r (25)

≤ α′hr thanks to (20), (26)

and, on the other hand,

‖z − vz‖p2
≥ ‖z‖p2

−‖vz‖p2
≥ 2ρr. (27)

Geometrical fact. Let us see that, for every z ∈ Shell(T, s+ (1+ h)r, s+ (1+ h)2r),

B vz
p2
(ρ‖z− vz‖p2

)⊂B z
p2
((1+ρ)‖z− vz‖p2

)∩ Shell(S ⊕
ϕr

2(s+ r)
, s+ r, s+ (1+ h)r). (28)

The triangle inequality ensures the first inclusion B vz
p2
(ρ‖z − vz‖p2

) ⊂ B z
p2
((1+ ρ)‖z − vz‖p2

). Let

then u ∈B
vz
p2
(ρ‖z− vz‖p2

), then, we apply Lemma 3.1 to ‖.‖p2
and get:

‖
u

‖u‖p2

−
−→
v z‖p2

= ‖
u

‖u‖p2

−
vz

‖vz‖p2

‖p2

≤
2ρ‖z − vz‖p2

‖vz‖p2

≤
2ρα′hr

s+ (1+ h− 2ρ)r
by Equation (26) and definition of vz

≤
ϕr

2(s+ r)
thanks to Equation (21)

and thus u

‖u‖p2
∈ S ⊕

ϕr

2(s+r)
. For the norm of u, by definition of vz and Equation (26), we have:

‖vz‖p2
−ρ‖z − vz‖p2

≤ ‖u‖p2
≤ ‖vz‖p2

+ρ‖z − vz‖p2

s+ (1+ h− 2ρ)r −ρα′hr ≤ ‖u‖p2
≤ s+ (1+ h− 2ρ)r +ρα′hr

s+ r ≤ ‖u‖p2
≤ s+ (1+ h)r,

thanks to Equations (22) and (20). This proves the geometrical fact (28).

Probabilistic estimate. We can then estimate the probability of Ec . Note that, with (28), we have

Ec ⊂
⋃

n

B z
p2
((1+ρ)‖z− vz‖p2

) 6⊂ Bz
p2
((1+ρ)(1+ ǫ)‖z − vz‖p2

)
o

∪ {Bz
p2
((1+ρ)(1+ ǫ)‖z − vz‖p2

) 6⊂ B z
p2
((1+ρ)(1+ ǫ)2‖z − vz‖p2

)},
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where the union is for z ∈ Shell(T, s + (1+ h)r, s + (1+ h)2r). By Proposition 2.1, there exist two
strictly positive constants A2 and B2 such that for every S, for every s, r > 0,

P(Ec) ≤
∑

z∈Shell(T,s+(1+h)r,s+(1+h)2r)

A2 exp(−B2(1+ρ)(1+ ǫ)‖z− vz‖p2
)

≤ |Shell(T, s+ (1+ h)r, s+ (1+ h)2r)| × A2 exp(−B2(1+ρ)2ρr)

thanks to (27). Then, for every z ∈ Shell(T, (1+ h)r, (1+ h)2r), thanks to (26) and (23), one has
(1+ ǫ)(1+ρ)‖z− vz‖p2

≤ αhr, which proves the exponential estimate of the lemma.

Control of the infection paths. It remains to estimate the minimal room needed to perform this in-
fection, or in other words to control

⋃

z∈Shell(T,s+(1+h)r,s+(1+h)2r)

B z
p2
((1+ ǫ)2(1+ρ)‖z− vz‖p2

).

Let z ∈ Shell(T, (1+ h)r, (1+ h)2r) and u ∈B z
p2
((1+ ǫ)2(1+ρ)‖z− vz‖p2

). We have:

‖u‖p2

≥ ‖z‖p2
− (1+ ǫ)2(1+ρ)‖z− vz‖p2

≥ (1+ ǫ)2(1+ρ)[s+ (1+ h− 2ρ)r]

−

�

(1+ ǫ)2(1+ρ)

�

1+
ϕ(1+ h)r

s+ (1+ h)r

�

− 1

�

‖z‖p2
thanks to (24)

≥ (1+ ǫ)2(1+ρ)[s+ (1+ h− 2ρ)r]

−

�

(1+ ǫ)2(1+ρ)

�

1+
ϕ(1+ h)r

s+ (1+ h)r

�

− 1

�

(s+ (1+ h)2r)

≥ s+ r[(1+ ǫ)2(1+ρ)[(1+ h− 2ρ)−ϕ− (1+ϕ(1+ h)r)(1+ h)2] + (1+ h)2].

This last term tends to s+ r(1+h−ϕ−(1+h)3ϕ) when ǫ and ρ tend to 0. By decreasing if necessary
ǫ and ρ, we obtain, as h< 1/2:

‖u‖p2
≥ s+ (1− 3ϕ)(1+ h)r.

Finally, by applying Lemma 3.1 and then Inequality (26), we have

‖
−→
u −
−→
z ‖p2
≤

2‖u− z‖p2

‖z‖p2

≤
2(1+ ǫ)2(1+ρ)α′hr

s+ (1+ h)2r
≤

2αhr

s+ r
.

Thus u ∈ Shell(T ⊕ 2αhr

s+r
, s+ (1− 3ϕ)(1+ h)r,∞), which ends the proof of the lemma.

Lemma 3.6. Let R> 0 and η ∈ (0,1/2). There exist two strictly positive constants A, B such that

∀
−→
v ∈ S ∀t > 0 P

�

G 1 ∩ Shadow(−→v , t,Rt1/2+η)
�

≤ Aexp(−Btη).

Proof. For convenience, we note x̂ = v/‖v‖p2
∈ Sp2

. Therefore, −→v = x̂

‖ x̂‖2
∈ S . Let δ > 0.
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Idea of the proof. The idea is quite natural: start the progression thanks to the initialization
Lemma 3.4. Then, apply recursively the progression Lemma 3.5 until the stronger infection sur-
rounds the weaker one. The point is to ensure that this progression is not disturbed by the spread
of the weaker infection.

Step 0. Choice of constants. Choose R> 0, η ∈ (0,1/2) and δ ∈ (0,R/K1). Choose then δ′ > δ such

that δ′ <min{δ/Cp1,p2
,R/K1}. Lemma 3.4 gives then θ0 > 0 and γ′0 > 0. Remember that Cp1,p2

< 1
and choose, in this order, α,γ,θ ,h,ϕ,ǫ:

1< α <min

¨

1

Cp1,p2

, 2

«

, (29)

1< γ < γ′0 and 0< θ < θ0, (30)

0< h<
1

2
and 1+ h<min

¨

α,
γ′0
γ

«

(31)

and 8αhCp1,p2
Cp2,p1

< 1−max

½

1

γ
, Cp1,p2

α

¾

,

ϕ > 0 and (1+ h)

�

1+
3ϕ

h

�

< α and ϕγδ′ < 2θ (32)

and ϕ

�

4Cp1,p2
Cp2,p1

�

1

2h
+ 1

�

+ 3

�

+ 8αhCp1,p2
Cp2,p1

< 1−max

½

1

γ
, Cp1,p2

α

¾

,

ǫ > 0 and ϕ

�

4Cp1,p2
Cp2,p1

(
1

2h
+ 1) + 3

�

+ 8αhCp1,p2
Cp2,p1

(33)

+ ǫαCp1,p2
< 1−max

½

1

γ
, Cp1,p2

α

¾

.

Set γ′ = (1+ h)γ < γ′0.

Step 1. Initialization of the spread. Let us introduce the following notations:

E1
1( x̂ , t) = {η1(t +δt1/2+η) ⊂ B0

p1
(t +δ′ t1/2+η)},

E2
1( x̂ , t) =

¦

η2(t + δt1/2+η)

⊃ Shell

�

x̂ ⊕
ϕr0‖ x̂‖p1

2(t + r0‖ x̂‖p1
)
,

t + γδ′ t1/2+η

‖ x̂‖p1

,
t + γ′δ′ t1/2+η

‖ x̂‖p1

�«

,

E1( x̂ , t) = E1
1( x̂ , t)∩ E2

1( x̂ , t).

From Assumption ϕγδ′ < 2θ in (32), it follows that
ϕr0‖ x̂‖p1

2(t+r0‖ x̂‖p1
)
≤ θ t−1/2+η for t large enough.

Then, by Lemma 3.4, there exist two strictly positive constants A1 and B1 such that for every x̂ ∈ Sp2
,

for every t > 0, we have

P

�

Shadow

�

x̂

‖ x̂‖2
, t,Rt1/2+η

�

\E1( x̂ , t)

�

≤ A1 exp(−B1 tη). (34)
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Thus, if Shadow( x̂

‖ x̂‖2
, t,Rt1/2+η) occurs, then at the slightly larger time t1( x̂ , t) = t + δt1/2+η, the

first shell

S1( x̂ , t) = Shell

�

x̂ ⊕
ϕr0‖ x̂‖p1

2(t + r0‖ x̂‖p1
)
,

t + γδ′ t1/2+η

‖ x̂‖p1

,
t + γ′δ′ t1/2+η

‖ x̂‖p1

�

is with high probability colonized by the p2-infection. We want now to extend this colonization to
larger and larger shells by applying recursively Lemma 3.5.

Notations. We still need to introduce a certain number of notations, inspired by Lemma 3.5.

k = 1

r0 = r0( x̂ , t) =
1

‖ x̂‖p1

γδ′ t1/2+η

r1 = r1( x̂ , t) = (1+ h)r0

t1 = t1( x̂ , t) = t +δt1/2+η

A1 = A1( x̂ , t) = { x̂} ⊕
ϕr0‖ x̂‖p1

2(t + r0‖ x̂‖p1
)

S1 = S1( x̂ , t) = Shell

�

A1,
t

‖ x̂‖p1

+ r0,
t

‖ x̂‖p1

+ r1

�

k ≥ 2
rk = rk( x̂ , t) = (1+ h)rk−1 = (1+ h)kr0 and rmin

k
= [1− 3ϕ](1+ h)rk−2

tk = tk( x̂ , t) = tk−1 + hαrk−2 = t +δt1/2+η + r0α[(1+ h)k−1 − 1]

Ak = Ak( x̂ , t) = Ak−1 ⊕
ϕrk−1‖ x̂‖p1

2(t + rk−1‖ x̂‖p1
)

A+
k
= A+

k
( x̂ , t) = Ak−2 ⊕

(ϕ+ 2αh)rk−2‖ x̂‖p1

t + rk−2‖ x̂‖p1

Sk = Sk( x̂ , t) = Shell

�

Ak,
t

‖ x̂‖p1

+ rk−1,
t

‖ x̂‖p1

+ rk

�

S+
k
= S+

k
( x̂ , t) = Shell

�

A+
k
,

t

‖ x̂‖p1

+ rmin
k ,∞

�

Define also the following events, for k ≥ 2 and x ∈ Zd\{0}:

E1
k
= E1

k
( x̂ , t) = {η1(tk( x̂ , t))∩ S+

k
( x̂ , t) =∅},

E2
k = E2

k( x̂ , t) = {η2(tk( x̂ , t))⊃ Sk( x̂ , t)},

Ek = Ek( x̂ , t) = E1
k
( x̂ , t)∩ E2

k( x̂ , t).

The aim is the following: we want to apply Lemma 3.5 to prove that if E2
k
( x̂ , t) is realized, then

with high probability E2
k+1( x̂ , t) is also realized. But we need first to control the spread of the slow

p1-infection, and to see that it will not disturb the spread of the fast p2-infection from Sk( x̂ , t) to
Sk+1( x̂ , t).

Step 2. Rough control of the slow p1-infection. Here, for convenience, the complementary event of

A is denoted by ∁(A). Let ǫ > 0. Define, for every k ≥ 2

F1
k
( x̂ , t) =

n

η1(tk( x̂ , t))⊂B0
p1
(t1+ (δ

′−δ)t1/2+η+ (1+ ǫ)(tk − t1))
o

.
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Let us prove that there exist two strictly positive constants A2 and B2 such that

∀t > 0 ∀ x̂ ∈ Sp2
P

�

E1
1( x̂ , t)∩ ∁

�

⋂

k≥2
F1

k
( x̂ , t)

��

≤ A2 exp(−B2 t1/2+η). (35)

Note that

{B0
p1
(s)⊂B0

p1
(s′)} ∩ {B0

p1
(s+ t) 6⊂ B0

p1
(s′+ t ′)} ⊂ ∪

x∈B0
p1
(s′)
{Bx

p1
(t) 6⊂ B x

p1
(t ′)},

and thus that

P
�

{B0
p1
(s)⊂B0

p1
(s′)} ∩ {B0

p1
(s+ t) 6⊂ B0

p1
(s′+ t ′)}

�

≤ |B0
p1
(s′)|P

�

B0
p1
(t) 6⊂ B0

p1
(t ′)
�

.

In our context, this gives

P



E1
1( x̂ , t)∩ ∁





⋂

k≥2

F1
k
( x̂ , t)









≤
∑

k≥2

P
�

E1
1( x̂ , t)∩ {B0

p1
(tk) 6⊂ B

0
p1
(t1+ (δ

′−δ)t1/2+η+ (1+ ǫ)(tk − t1)}
�

≤
∑

k≥2

|B0
p1
(t + δ′ t1/2+η)|P

�

B0
p1
(tk − t1) 6⊂ Bp1

((1+ ǫ)(tk − t1))}
�

.

The large deviation result, Proposition 2.1, gives then two strictly positive constants A, B such that

P



E1
1( x̂ , t)∩ ∁





⋂

k≥2

F1
k
( x̂ , t)







 ≤ |B0
p1
(t + δ′ t

1
2
+η)|

∑

k≥2

Aexp
�

−B(tk − t1)
�

≤ |B0
p1
(t + δ′ t

1
2
+η)|A

∑

k≥2

exp
�

−Bαr0(k− 1)h
�

≤ A|B0
p1
(t + δ′ t

1
2
+η)|

exp
�

−Bαr0h
�

1− exp
�

−Bαr0h
�

≤ A2 exp(−B2 t
1
2
+η),

since r0 =
1
‖ x̂‖p1

γδ′ t1/2+η.

Step 3. Estimates for angles. Let us see that for any x̂ ∈ Sp2
, for any ϕ,ψ≥ 0,

( x̂ ⊕ϕ)⊕ψ⊂ x̂ ⊕ (ϕ+ψ).

Let z ∈ ( x̂ ⊕ϕ)⊕ψ: there exist y ∈ x̂ ⊕ϕ and v ∈Bp2
(ψ) such that z = y + v. As y ∈ x̂ ⊕ϕ, there

exists w ∈Bp2
(ϕ) such that y = x̂ +w. Thus

‖z − x̂‖p2
≤ ‖v‖p2

+ ‖w‖p2
≤ ϕ+ψ.

This implies

∀k ≥ 2 Ak( x̂ , t) ⊂ x̂ ⊕







k−1
∑

j=0

ϕr j‖ x̂‖p1

2(t + r j‖ x̂‖p1
)






and A+

k
( x̂ , t)⊂ x̂ ⊕ θ+

k
,

with θ+
k
=

k−2
∑

j=0

ϕr j‖ x̂‖p1

2(t + r j‖ x̂‖p1
)
+
(ϕ+ 2αh)rk−2‖ x̂‖p1

t + rk−2‖ x̂‖p1

.
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Then, for all k ≥ 2, for t large enough,

t

‖ x̂‖p1

θ+
k
=

t

‖ x̂‖p1







k−2
∑

j=0

ϕr j‖ x̂‖p1

2(t + r j‖ x̂‖p1
)
+
(ϕ+ 2αh)rk−2‖ x̂‖p1

t + rk−2‖ x̂‖p1







≤
ϕ

2

k−2
∑

j=0

r j‖ x̂‖p1
+ (ϕ+ 2αh)rk−2

≤ r0

�

(1+ h)k−1
� ϕ

2h
+ϕ+ 2αh

��

. (36)

Step 4. The weak can not bother the strong.
Let us see that for all k ≥ 2

B0
p1
(t +δ′ t1/2+η + (1+ ǫ)r0α[(1+ h)k−1 − 1])∩ S+

k
( x̂ , t) = ∅. (37)

Let y such that ‖y‖p1
= t + δ′ t1/2+η + (1 + ǫ)r0α[(1 + h)k−1 − 1]) and ‖ ŷ − x̂‖p2

≤ θ+
k

. As
y = ‖y‖p1

ŷ/‖ ŷ‖p1
, for t large enough

‖y‖p2

≤
t +δ′ t1/2+η

‖ x̂‖p1

+ (t +δ′ t1/2+η)

¯

¯

¯

¯

¯

1

‖ ŷ‖p1

−
1

‖ x̂‖p1

¯

¯

¯

¯

¯

+
(1+ ǫ)αr0[(1+ h)k−1 − 1]

‖ ŷ‖p1

≤
t +δ′ t1/2+η

‖ x̂‖p1

+
(t +δ′ t1/2+η)Cp2,p1

‖ ŷ − x̂‖p2

‖ x̂‖p1
‖ ŷ‖p1

+
(1+ ǫ)αr0[(1+ h)k−1 − 1]

‖ ŷ‖p1

≤
t

‖ x̂‖p1

+
r0

γ
+

2tCp1,p2
Cp2,p1

θ+
k

‖ x̂‖p1

+ Cp1,p2
(1+ ǫ)αr0[(1+ h)k−1 − 1]

≤
t

‖ x̂‖p1

+
r0

γ
+ 2Cp1,p2

Cp2,p1
r0(1+ h)k−1

� ϕ

2h
+ϕ+ 2αh

�

+Cp1,p2
(1+ ǫ)αr0[(1+ h)k−1 − 1],

where the last inequality follows from (36). Then

1

r0

�

‖y‖p2
−

t

‖x‖p1

− rmin
k

�

≤
1

γ
+ 2Cp1,p2

Cp2,p1
(1+ h)k−1

� ϕ

2h
+ϕ+ 2αh

�

+Cp1,p2
(1+ ǫ)α[(1+ h)k−1 − 1]− (1− 3ϕ)(1+ h)k−1

≤ (1+ h)k−1
�

2Cp1,p2
Cp2,p1

� ϕ

2h
+ϕ+ 2αh

�

+ Cp1,p2
(1+ ǫ)α− 1+ 3ϕ

�

+

�

1

γ
− Cp1,p2

(1+ ǫ)α

�

. (38)

We want to prove that this quantity is negative for every k ≥ 2. Conditions (32) and (33) ensure
that the coefficient in (1+ h)k−1 in (38) is negative. Thus, asymptotically in k, the right-hand side
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in (38) is negative. To ensure it is negative for every k ≥ 2, we only need to see that it is true for
k = 2, which is ensured by Conditions (32) and (33). This proves (37). Note that this also implies

∀k ≥ 2 F1
k
⊂ E1

k
. (39)

Equations (39) and (35) together give:

∀t > 0 ∀ x̂ ∈ Sp2
P

�

E1
1( x̂ , t)∩

�

⋃

k≥2
E1

k
( x̂ , t)c

��

≤ A2 exp(−B2 t1/2+η). (40)

Step 5. Control of the fast p2-infection. Let A3 and B3 be the two strictly positive constants given by
Lemma 3.5 for the choice for α,h,ϕ we made in (29), (31) and (32). Note that for every k ≥ 2, we
have

E1
k
∩ E2

k−1 ∩ E(Ak−1, rk−2,
t

‖ x̂‖p1

)⊂ E2
k

where the event E(., ., .) was defined in Lemma 3.5. Thus, the application of Lemma 3.5 implies that
for any x̂ ∈ Sp2

, any t > 0, for every k ≥ 2,

P((E2
k)

c ∩ E1
k
∩ E2

k−1) ≤ P(E(Ak−1, rk−2,
t

‖ x̂‖p1

)c)

≤ A3(
t

‖ x̂‖p1

+ rk−2)
d exp(−B3rk−2).

Thus, for each t ≥ 1, each x̂ ∈ Sp2
,

∑

k≥2

P
�

(E2
k)

c ∩ (E1
k
∩ E2

k−1

�

≤ A3

∑

k≥2

�

t

‖ x̂‖p1

+ rk−2

�d

exp(−B3rk−2)

≤ A3

∑

k≥0

(Cp1,p2
t + 1)d(rk + 1)d exp(−B3rk)

≤ A4(Cp1,p2
t + 1)d

∑

k≥0

exp(−B4rk)

≤ A4(Cp1,p2
t + 1)d

∑

k≥0

exp(−B4r0(1+ kh))

≤ A4(Cp1,p2
t + 1)d exp(−B4r0)(1− exp(−B4r0h))−1

≤ A5 exp(−B5 t1/2+η). (41)

where A4,A5 and B4, B5 are strictly positive constants.

Conclusion. For k large enough, the set Sk disconnects 0 from infinity, and thus the event
⋂

k≥1 Ek

implies that the slow p1-infection is surrounded by the fast p2-infection and thus dies out. So, using
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(34), (40) and (41), we obtain:

P

�

G 1 ∩ Shadow

�

x̂

‖ x̂‖2
, t,Rt1/2+η

��

≤ P



Shadow

�

x̂

‖ x̂‖2
, t,Rt1/2+η

�

∩
⋃

k≥1

Ek( x̂ , t)c





≤ P

�

Shadow

�

x̂

‖ x̂‖2
, t,Rt1/2+η

�

∩ E1( x̂ , t)c
�

+ P



E1
1( x̂ , t)∩

⋃

k≥2

E1
k
( x̂ , t)c





+
∑

k≥2

P
�

(E2
k( x̂ , t))c ∩ (E1

k
( x̂ , t)∩ E2

k−1( x̂ , t)
�

≤ Aexp(−Btη),

which completes the proof.

Proof of Theorem 1.2. Proposition 2.1 and Lemma 1.1 give the existence of strictly positive constants
α,β ,A1, B1 such that the event

Ft = {∀y ∈ ∂ η(t) ‖y‖2 ∈ (αt,β t)}

has a probability larger than 1− A1 exp(−aB1 t), so we only have to control the probability of the
event

G 1 ∩ Shade(t, M t1/2+η)∩ Ft .

Assume that t is large enough to have αt > M t1/2+η and set

θ =min

(

1

2
,

�

M t1/2+η

2β t

�2)

.

By Lemma 3.2, there exists a subset T of the unit sphere S with |T | ≤ C(1 + 1
θ
)d−1 such that

S ⊂ ∪
−→
x ∈T
B
−→
x

2 (θ).

Assume now that Shade(t, M t1/2+η) ∩ Ft occurs: there exists −→u ∈ S2 such that
Shadow(−→u , t, M t1/2+η) happens. Let −→x ∈ S be such that ‖−→u − −→x ‖2 ≤ θ . Let us prove that
Shadow(−→x , t, M

2
t1/2+η) happens.

Let γ be an infinite path in Cyl+(
−→
x , M

2
t1/2+η) starting at some point y ∈ η(t). We must prove that

γ meets ∂ η(t)∩η2(t). We can suppose without loss of generality that y is the last point of γ in η(t)
and thus y ∈ ∂ η(t). Note that the points in γ after y are inB2(αt)c ⊂B2(M t1/2+η)c .

• Either y ∈ η2(t), and we are done.

• Or y ∈ η1(t). Let z be the point after y along γ where γ exits from B2(β t): between y and
z, the path is in Cyl+(

−→
x , M

2
t1/2+η)∩B2(β t)∩B2(M t1/2+η)c ⊂ Cyl+(

−→
u , M t1/2+η)∩B2(β t)

thanks to Lemma 3.3. We build now a path γ′ inside the Cyl+(
−→
u , M t1/2+η) by concatenat-

ing the portion of γ between y and z and any infinite path starting from z and staying in
Cyl+(
−→
u , M t1/2+η) ∩B2(β t)c: this path prevents the occurrence of Shadow(−→u , t, M t1/2+η),

as it starts from a point in η1(t) and do not visit any other point in η(t). The assumption
y ∈ η1(t) is thus contradicted.
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So y ∈ η2(t), which means that Shadow(−→x , t, M

2
t1/2+η) happens, and implies

Shade(t, M t1/2+η)∩ Ft ⊂ ∪
−→
x ∈T

Shadow

�

−→
x , t,

M

2
t1/2+η

�

.

Finally, Theorem 3.6 give two strictly positive constants A′, B′ such that

P(G 1 ∩ Shade(t, M t1/2+η)∩ Ft) ≤ |T |A
′ exp(−B′ tη)

≤ A′
�

1+
1

θ

�d−1

exp(−Btη)

≤ A′

�

1+
4β2

M2 t1−2η

�d−1

exp(−Btη),

which ends the proof.

Proof of Corollary 1.3. We can assume that η ∈ (0,1). For every n≥ 1, we define tn = n2 and

A(n, M) = ∪
t∈[tn,tn+1]

Shade(t, M t1/2+η).

For each M > 0, we have to prove that P

�

G 1 ∩ lim
n→+∞

A(n, M)

�

= 0. By the Borel-Cantelli lemma,

it is sufficient to prove that
+∞
∑

n=1

P(G 1 ∩ A(n, M))< +∞.

Let then M > 0. Obviously,

P(G 1 ∩ A(n, M))

≤ P

�

G 1 ∩ Shade

�

tn+1,
M

2
t

1/2+η
n+1

��

+ P
�

η1(tn+1) 6⊂ Bp1
(2tn+1)

�

+P

��

A(n, M)\Shade

�

tn+1,
M

2
t

1/2+η
n+1

��

∩ {η1(tn+1)⊂Bp1
(2tn+1)}

�

.

Lemma 1.2 gives two strictly positive constants A1, B1 such that

P

�

G 1 ∩ Shade

�

tn+1,
M

2
t

1/2+η
n+1

��

≤ A1 exp(−B1n2η),

while Proposition 2.1 gives two strictly positive constants A2, B2 such that

P
�

η1(tn+1) 6⊂ Bp1
(2tn+1)

�

≤ A2 exp(−B2n2).

So it only remains to prove that

+∞
∑

n=1

P

��

A(n, M)\Shade

�

tn+1,
M

2
t

1/2+η
n+1

��

∩ {η1(tn+1)⊂Bp1
(2tn+1)}

�

<+∞.
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Assume now that (A(n, M)\Shade(tn+1, M

2
t

1/2+η
n+1 ))∩ {η1(tn+1)⊂Bp1

(0,2tn+1)} holds: there exists
−→
x and t ∈ [tn, tn+1) such that Shadow(−→x , t, M t1/2+η) holds but not Shadow(−→x , tn+1, M

2
t

1/2+η
n+1 ).

Since Shadow(−→x , tn+1, M

2
t

1/2+η
n+1 ) is not fulfilled, there exists some infinite path γ in

Cyl+(
−→
x , M

2
t

1/2+η
n+1 ) starting in some point v ∈ η1(tn+1) and that never meets η2(tn+1). By the

definition of the process (η1(t))t≥0, there exist u ∈ η1(tn) and a path γ′ from u to v such that
∑

e∈γ′

ω1
e ≤ tn+1− tn

and the path γ′ does not meet any point in η2(∞). The path γ′ can not stay com-
pletely in Cyl+(

−→
x , M t

1/2+η
n ), otherwise concatenating γ′ and γ together would contradict

Shadow(−→x , t, M t1/2+η). Let w be a point in γ′ ∩ Cyl+(
−→
x , M t

1/2+η
n )c: the portion γ′′ of γ′ between

w ∈ η1(tn+1)∩Cyl+(
−→
x , M t

1/2+η
n )c and v ∈ η1(tn+1)∩Cyl+(

−→
x , M

2
t

1/2+η
n+1 ) satisfies

∑

e∈γ′′

ω1
e ≤ tn+1− tn.

Provided that n is large enough, we can say that ‖w − v‖p1
≥ 2(tn+1 − tn) – note that t

1/2+η
n ≫

tn+1− tn. Using the fact that η1(tn+1)⊂Bp1
(2tn+1), we obtain

(A(n, M)\Shade(tn+1, M t
1/2+η
n+1 /2))∩ {η1(tn+1)⊂Bp1

(0,2tn+1)}

⊂ ∪
w∈Bp1

(2tn+1)
{Bw

p1
(tn+1− tn) 6⊂ B

w
p1
(2(tn+1− tn))}.

So it follows from Proposition 2.1 that there exist strictly positive constants A3, B3 such that

P((A(n, M)\Shade(tn+1, M t
1/2+η
n+1 /2))∩ {η1(tn+1)⊂Bp1

(0,2tn+1)})

≤ |Bp1
(2tn+1)|A3 exp(−B3(tn+1− tn))

≤ Kn2dA3 exp(−2B3n),

which is summable. This ends the proof of the theorem.

Note that the order t1/2+η that appears in our results follows from moderate deviations for fluctua-
tions with respect to the asymptotic shape given in Proposition 2.2. However, the conjectured order
for these fluctuations is rather 1/3. The proofs would apply with an estimate of the type

∀t > 0 P
�

B0(t − β t1/3+η)⊂ B0(t)⊂B0(t + β t1/3+η)
�

≥ 1− Aexp(−Btη).

which would lead to replace t1/2+η by t1/3+η in our results.

4 Moderate deviations for the global growth of the epidemics

This section is devoted to the proof of Theorem 1.5: when the weak survives, we recover the same
fluctuations with respect to the asymptotic shape as in the case where the weak infection evolves
alone.
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In fact, the only point is to see that if the strong infection at time t admits points out-
side Bp1

�

t + β t1/2+η
�

, then this positional advantage enables us to create an event of type

Shade(T, M T1/2+η) at the slightly larger time T = t + αt1/2+η, and the probability of such an
event is controlled by Lemma 1.2.

Proof of Theorem 1.5. Let β > 0 and η ∈ (0,1/2). We want to prove that there exist two strictly
positive constants A, B such that

∀t > 0 P
�

G 1 ∩
¦

Bp1

�

t − β t1/2+η
�

⊂ η(t)⊂Bp1

�

t + β t1/2+η
�©c
�

≤ Aexp(−Btη).

We can first easily rule out the cases where η1(t) 6⊂ Bp1

�

t + β t1/2+η
�

and where

Bp1

�

t − β t1/2+η
�

6⊂ η(t), by Proposition 2.2 and Lemma 1.1: there exist two strictly positive
constants A1, B1 such that for every t > 0, we have

P
�

G 1 ∩
¦

Bp1

�

t − β t1/2+η
�

⊂ η(t)⊂Bp1

�

t + β t1/2+η
�©c
�

≤ P
�

Bp1

�

t − β t1/2+η
�

6⊂ η(t)
�

+ P
�

η1(t) 6⊂ Bp1

�

t + β t1/2+η
��

+P
�

G 1 ∩
¦

η2(t) 6⊂ Bp1

�

t + β t1/2+η
�©�

≤ P
�

G 1 ∩
¦

η2(t) 6⊂ Bp1

�

t + β t1/2+η
�©�

+ A1 exp(−B1 tη).

Remember that Cp2,p1
is a strictly positive constant such that

∀x ∈ Rd ‖x‖p1
≤ Cp2,p1

‖x‖p2
.

Choose now α > 0 such that (2Cp2,p1
+ 3)α < β . Define now the following events:

E =

§

∀x ∈Bp1
(2t) B x

p2

�α

2
t1/2+η

�

⊂ Bx
p2

�

αt1/2+η
�

⊂B x
p2

�

2αt1/2+η
�

ª

,

F =
¦

η2(t) 6⊂ Bp1

�

t + β t1/2+η
�©

∩
¦

η1(t +αt1/2+η)⊂Bp1

�

t + 3αt1/2+η
�©

.

By Proposition 2.1 applied to the p2-epidemic, there exist positive constants A2, A′2, B2, B′2 such that

P(Ec)≤ |Bp1
(2t)|A′2 exp(−B′2 t1/2+η)≤ A2 exp(−B2 tη),

and, by Proposition 2.2 applied to the p1-epidemic, there exist positive constants A3, B3 such that

P
�¦

η1(t +αt1/2+η) 6⊂ Bp1

�

t + 3αt1/2+η
�©�

≤ A3 exp(−B3 tη).

It is thus sufficient to prove that

P(G1 ∩ E ∩ F)≤ Aexp(−Btη).

Assume now that E ∩ F happens: there exists x with t + β t1/2+η ≤ ‖x‖p1
≤ 2t and x ∈ η2(t). Note

first that Bp1
(t + 3αt1/2+η) ∩B x

p2
(2αt1/2+η) = ∅: if z ∈ B x

p2
(2αt1/2+η), then, by the choice we

made for α,

‖z‖p1
≥ ‖x‖p1

−‖z − x‖p1
≥ t + β t1/2+η − Cp2,p1

‖z − x‖p2

≥ t + β t1/2+η − 2Cp2,p1
αt1/2+η > t + 3αt1/2+η.
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Now, by the event F , we have η1(t+αt1/2+η)⊂Bp1
(t+3αt1/2+η) and, by the event E, we also have

Bx
p2
(αt1/2+η) ⊂ B x

p2
(2αt1/2+η). Thus, as x ∈ η2(t) and Bp1

(t + 3αt1/2+η) ∩B x
p2
(2αt1/2+η) = ∅,

we obtain that

η2(t +αt1/2+η)⊃ Bx
p2
(αt1/2+η)⊃B x

p2

�α

2
t1/2+η

�

.

Let C > 0 be such that ∀x ∈ Rd , ‖x‖2 ≥ C‖x‖p2
. Define M = Cα

2(1+β)1/2+η
and T = t+αt1/2+η. Then,

for every t ≥ 1,

B x
p2

�α

2
t1/2+η

�

⊃B x
2 (M T1/2+η).

This, with the previous inclusion, implies that η2(T ) ⊃B x
2 (M T1/2+η), then that η2(T ) disconnects

η1(T ) from infinity in Cyl+(x/‖x‖2, M T1/2+η), then that
Shade(T, M T1/2+η) occurs. Then

P(G1 ∩ E ∩ F)≤ P(G1 ∩ Shade(T, M T1/2+η)≤ Aexp(−Btη)

by Lemma 1.2.

5 Density of the strong in the two dimensional case

This section is devoted to the proof of Theorem 1.4: we prove that in dimension two, when coex-
istence occurs, the strong epidemic finally occupies a subset of Z2 with null density. We first need
some definitions:

Definition 5.1. For any t ≥ 0, denote by Cext(t) the infinite connected component of η(t)c, and by

∂∞η(t) the external boundary of η(t):

∂extη(t) = {z ∈ η(t) : ∃y ∈ Cext(t), y ∼ z}.

What is specific to the two dimensional case is that the external boundary of the fast infection
∂extη(t) ∩ η

2(∞) is ∗-connected – this will be proved in Lemmas 5.2 and 5.3. Loosely speaking,
by Theorem 1.5, the external boundary ∂extη(t) of the infection at time t is included in a very thin
annulus with radius t and width t1/2+η. Then, Theorem 1.3, combined with the ∗-connectivity of
∂extη(t) ∩ η

2(∞), ensures that the shadow cast by the fast infection on the slow infection has a
diameter smaller than t1/2+η. However, it remains to control the points in η2(∞) that are never in
a position to create shadow, see Figure 2.

The proof breaks down in higher dimension, as we can imagine a configuration where the fast
infection occupies a tree whose branches simultaneously widen and ramify. For instance, we can
assume that the radius at height t is of order t1/2 and the number of branches at height t is of order
td−3/2.

Let us now recall the graphical duality of the square lattice. Let Z2
∗ = Z

2+(1/2,1/2), E2
∗ = {{a, b} :

a, b ∈ Z2
∗ and ‖a− b‖2 = 1} and L2

∗ = (Z
2
∗ ,E

2
∗), which is isomorphic to L2. For each bond e = {a, b}

of L2 (resp. L2
∗), let us denote by s(e) the only subset {i, j} of Z2

∗ (resp. Z2) such that the quadrangle
aib j is a square in R2. The application s is clearly an involution.

For any finite set A⊂ Z2, we denote by P eierls(A) the set of Peierls contours associated to A, that is

P eierls(A) = {e ∈ E2
∗ : 11A is not constant on s(e)}.
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Figure 2: The shadow created by fast/blue on slow/red has a small diameter, while fast/blue fills a
set with positive density.

If, on the plane R2, we draw the edges which are in P eierls(A), we obtain a family of curves – the
so-called Peierls contours – which are exactly the boundary of the subset A+ [−1/2,1/2]2 of R2. If
A⊂ Z2 is a bounded connected subset of L2, there exists a unique set of bonds Γ(A)⊂P eierls(A)⊂
E2
∗ which form a cycle surrounding A, in the sense that every infinite connected subset of bonds

D ⊂ E2 satisfying D ∩ A 6= ∅ also satisfies D ∩ s(Γ(A)) 6=∅. If we draw Γ(A) on the plane R2, we get
the external boundary of A+ [−1/2,1/2]2, i.e. the boundary of the infinite connected component
of (A+ [−1/2,1/2]2)c.

Note also that if γ is a Jordan curve on L2
∗ , the set Int(γ) (Ext(γ)) composed by the points in s(γ)

that are in the bounded (respectively, unbounded) connected component of R2\γ is ∗-connected.

We begin with two lemmas to prove the ∗-connectivity of the set η2(t)∩ ∂extη(t) in dimension 2.

Lemma 5.2. Let A, B be two disjoint finite connected subsets of Z2 such that A, B, and A ∪ B are

connected. We define

∆A = {e ∈ E
2
∗ : s(e)∩ A 6= ∅} and ∆B = {e ∈ E

2
∗ : s(e)∩ B 6=∅},

EA
A∪B = Γ(A∪ B)∩∆A and EB

A∪B = Γ(A∪ B)∩∆B.

Then EA
A∪B and EB

A∪B are connected.

Proof. Since Γ(A∪B) = EA
A∪B∪EB

A∪B is connected, we can assume without loss of generality that EA
A∪B

and EB
A∪B are non-empty. The contour Γ(A∪ B) is a cycle that we denote as a sequence of distinct

consecutive edges e0, e1, . . . , e f −1, where the “end” of e f −1 is the “start” of e0. To these edges we
associate a sequence x0, . . . , x f −1 of points in Z2 such that (A∪ B)∩ s(ei) = {x i}. We also denote by
m0, . . . , m f −1 the middle points of the edges e0, e1, . . . , e f −1.

Assume that x0 ∈ A and suppose by contradiction that EA
A∪B is not connected: there exist p,q with

1< p < q < f with x i ∈ A for i ∈ {0} ∪ {p, . . . ,q− 1} whereas x i ∈ B for i ∈ {1, . . . , p− 1} ∪ {q}.

Since A is connected, there exists a simple path in A from x0 to xq−1 which corresponds to a path
in Z2

∗ from the start of e0 to the end of eq−1. The union of this path with the path (e0, e1, . . . eq−1)

makes a Jordan curve γ.

Obviously, mq /∈ γ. Since mq is on the outer boundary of the connected set (A∪ B) + [−1/2,1/2]2,
there exists an (infinite) path in (A∪ B)c joining mq to infinity. So, we can say that mq is in the
infinite component of γc . Since B is connected, there exists a path γ′ in B from xq to x1. Let e be
the first edge of γ′ which crosses γ.
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By construction, we know that each edge e ∈ L2 which crosses γ′ from the unbounded component
to a point in B must be one of the s(ei)’s. But there is a contradiction because no s(ei) can have both
ends in A∪ B.

Lemma 5.3. In dimension 2, the set η2(t)∩ ∂extη(t) is ∗-connected.

Proof. By the very definition of the evolution process, η1(t) and η2(t) are connected. If η(t) =
η1(t)∪η2(t) is connected , it follows from Lemma 5.2 that η2(t)∩ ∂extη(t) = Int(Γ(η(t))∩∆η2(t))

is connected. Otherwise, η2(t)∩ ∂extη(t) = Int(η2(t)), which is also connected.

We can now proceed to the proof of Theorem 1.4.

Proof of Theorem 1.4. Let α > 0, and η > 0 such that 1+ ǫ = (2+ α)(1/2+η) < 1+ α. Let α′ > α
be such that 2+α > 1+α′ (this last condition is only necessary to ensure the good definition of the
event A2

n introduced below). For n> 0, we define:

A1
n =

¦

Bp1

�

n2+α − 4n1+ǫ
�

⊂ η
�

n2+α − 2n1+ǫ
�

⊂Bp1

�

n2+α
�©

,

A2
n = Shade

�

n2+α− 2n1+ǫ, n1+α′
�c

,

A3
n =

⋂

x∈Bp1(n
2+α)\Bp1(n

2+α−5n1+ǫ)

n

B x
p2

�

4(2+α)n1+α
�

⊂ Bx
p2

�

5(2+α)n1+α
�
o

,

An =
⋂

1≤i≤3

Ai
n.

Step 1. Let us see that

P

�

G 1 ∩ lim
n→+∞

Ac
n

�

= 0. (42)

Indeed, if ϕ(n) = n2+α− 2n1+ǫ, then for n large enough:

n2+α − 4n1+ǫ ≤ ϕ(n)−ϕ(n)1/2+η ≤ ϕ(n) +ϕ(n)1/2+η ≤ n2+α.

By Lemma 1.5, there exist two strictly positive constants A1 and B1 such that

∀n≥ 1 P
�

G 1 ∩ (A1
n)

c
�

≤ A1 exp(−B1nη(2+α)).

Then, as ϕ(n)1/2+η = o
�

n1+α′
�

, by Lemma 1.2, there exist two strictly positive constants A2 and B2

such that
∀n≥ 1 P

�

G 1 ∩ (A2
n)

c
�

≤ A2 exp(−B2nη(2+α)).

Finally, by the large deviations result (Proposition 2.1) for the p2-infection, there exist two strictly
positive constants A3 and B3 such that

∀n≥ 1 P((A3
n)

c)≤ |(Bp1

�

n2+α
�

)|A3 exp(−B3n1+α).

Collecting the previous estimates, as η(2+α) < 1+α, there exist two strictly positive constants A4

and B4 such that

∀n≥ 1 P(G 1 ∩ Ac
n) ≤

∑

1≤i≤3

P(G 1 ∩ (Ai
n)

c)≤ A4 exp
�

−B4nη(2+α)
�

,
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which proves (42) by the Borel-Cantelli lemma.

Denote by

Γn = Γ
�

η
�

n2+α− 2n1+ǫ
��

,

Fn = s(Γn)∩η
�

n2+α− 2n1+ǫ
�

,

F i
n = s(Γn)∩η

i
�

n2+α− 2n1+ǫ
�

= ηi(∞)∩ ∂extη
�

n2+α− 2n1+ǫ
�

.

If n is large enough, η
�

n2+α − 2n1+ǫ
�

is connected and Γn is thus a circuit. Note also that by
Lemma 5.3, F2

n is ∗-connected.

Step 2. Assume that G1 ∩ An−1 ∩ An occurs for some n large enough. Let us prove that there exists

y ∈Bp1

�

n2+α
�

\Bp1

�

n2+α− 5n1+ǫ
�

such that

F2
n ⊂ B

y

2

�

5n1+α′
�

∩Bp1

�

n2+α
�

\Bp1

�

n2+α− 5n1+ǫ
�

. (43)

By A1
n, Fn ⊂Bp1

�

n2+α
�

\Bp1

�

n2+α − 5n1+ǫ
�

. Assume then by contradiction that

(H) ∃z1, z2 ∈ F2
n such that ‖z1− z2‖2 ≥ 5n1+α′ .

As in dimension 2, F2
n is ∗-connected, and as G1 occurs, we can define γn as the portion of Γn

between z1 and z2 such that:

s(γn)∩η
�

n2+α− 2n1+ǫ
�

⊂ η2(∞).

As the width of the annulus Bp1

�

n2+α
�

\Bp1

�

n2+α − 5n1+ǫ
�

is of order 5n1+ǫ = o(n1+α′),

there exists −→x 0 ∈ S2 such that in Cyl+(
−→
x 0, 2n1+α′), the set s(γn) ∩ η

�

n2+α − 2n1+ǫ
�

⊂ F2
n

disconnects 0 from infinity. By A2
n, the event Shade(n2+α − 2n1+ǫ, 2n1+α′) can not occur, thus

in Cyl+(
−→
x 0, 2n1+α′), the set F2

n does not disconnect η1(n2+α − 2n1+ǫ) from infinity. Let z ∈

η1(n2+α − 2n1+ǫ) be in the same connected component as infinity in Cyl+(
−→
x 0, 2n1+α′) de-

prived of F2
n . Note that – this is a key point – the infection path from s1 to z has to enter

Cyl+(
−→
x 0, 2n1+α′)∩Bp1

�

n2+α
�

\Bp1

�

n2+α− 5n1+ǫ
�

by crossing the border of the cylinder.

If n is large enough, then (n− 1)2+α < n2+α− 5n1+ǫ.
By A1

n−1, the set η
�

(n− 1)2+α− 2(n− 1)1+ǫ
�

is contained in Bp1

�

(n− 1)2+α
�

, and thus,
an infection path from s1 to z has to visit some vertex s ∈ η1(∞) satisfying s ∈

Bp1

�

n2+α− 5n1+ǫ
�

\Bp1

�

(n− 1)2+α
�

, and thus such that

s 6∈ Bs1
p1
((n− 1)2+α− 2(n− 1)1+ǫ).

This implies

z ∈ Bs
p1
(n2+α− 2n1+ǫ − (n− 1)2+α+ 2(n− 1)1+ǫ)⊂ Bs

p1
(2(2+α)n1+α).

Thus, z has to be at a random distance for the p2-infection less than 2(2+ α)n1+α of a point in the
border of the cylinder, and, by A3

n at a distance ‖.‖p2
less than 5(2+α)n1+α of a point in the border

of the cylinder; and this is also the case for any point z ∈ η1(n2+α − 2n1+ǫ) in the same connected
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component as infinity in Cyl+(
−→
x 0, 2n1+α′) deprived of F2

n . As 1+ α′ > 1+ α, this implies, for n

large enough, that in Cyl+(
−→
x 0, n1+α′), the set F2

n disconnects η1(n2+α−2n1+ǫ) from infinity, which
contradicts A2

n, and thus (H). This completes the proof of (43).

Step 3. Assume now that n is large enough and that G1 ∩ An−1 ∩ An ∩ An+1 ∩ An+2 occurs. Let

y ∈Bp1

�

n2+α
�

\Bp1

�

n2+α− 5n1+ǫ
�

be such that (43) is satisfied. Let us prove that

η2(∞)∩
�

Bp1

�

(n+ 1)2+α
�

\Bp1

�

n2+α
��

⊂B
y

2 (6n1+α′). (44)

Consider
z ∈ η2(∞)∩

�

Bp1

�

(n+ 1)2+α
�

\Bp1

�

n2+α
��

.

If n is large enough, (n+1)2+α ≤ (n+2)2+α−4(n+2)1+ǫ, and thus, by A1
n+2, the infection time of z

is less than (n+2)2+α−2(n+2)1+ǫ. By A1
n, as z 6∈ Bp1

�

n2+α
�

, its infection time is also strictly larger
than n2+α − 2n1+ǫ. Thus the infection path from s2 to z has to visit some point s ∈ F2

n . By (43), the

point s is not in Bp1

�

n2+α − 5n1+ǫ
�

; thus, as (n− 1)2+α < n2+α − 5n1+ǫ for n large enough, A1
n−1

ensures that the infection time for s is larger than (n− 1)2+α− 2(n− 1)1+ǫ, which leads, for n large
enough, to

z ∈ Bs
p2
((n+ 2)2+α+ 2(n+ 2)1+ǫ − ((n− 1)2+α− 2(n− 1)1+ǫ))⊂ Bs

p2
(4(2+α)n1+α).

As s ∈Bp1

�

n2+α
�

\Bp1

�

n2+α − 5n1+ǫ
�

, by A3
n, we have z ∈B s

p2
(5(2+α)n1+α)), and thus

z ∈
⋃

s∈B
y

2 (5n1+α′ )

B s
p2
(5(2+α)n1+α)),

which is included inB y

2 (6n1+α′) for n large enough. This proves (44).

Step 4. Let us prove that there exists a constant C such that

∀n≥ 1 |η2(∞)∩Bp1
(n2+α)| ≤ Cn3+2α′ . (45)

By (42), on G 1, there almost surely exists m such that An occurs for every n ≥ m. Thus, almost
surely, for every n > m, by (43) and (44) – and by increasing m if necessary –, there exists yn ∈

Bp1

�

n2+α
�

\Bp1

�

n2+α − 5n1+ǫ
�

such that

η2(∞)∩
�

Bp1

�

(n+ 1)2+α
�

\Bp1

�

n2+α
��

⊂B
yn

2 (6n1+α′).

Thus, there exist constants Ci such that for n≥ m,

|η2(∞)∩Bp1
(n2+α)| ≤ C1|Bp1

(m2+α)|+

n−1
∑

k=m

C2|B2(6k1+α′)|

≤ C3m4+2α+ C4

n−1
∑

k=m

k2+2α′ ≤ C5n3+2α′ .
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Step 5. Consider β ∈ (0,1/2). We can choose α′ > α > 0 such that 3+2α′

2+α
= 3/2+ β and such that

1+α′ < 2+α.
For t large enough, choose n such that n2+α ≤ t < (n+ 1)2+α. Thus, by the previous step,

|η2(∞)∩Bp1
(t)| ≤ |η2(∞)∩Bp1

((n+ 1)2+α)| ≤ C(n+ 1)3+2α′ ∼ C t
3+2α′

2+α = C t3/2+β .

The norm equivalence implies the analogous result for any norm on R2, which proves the first point
of Theorem 1.4.

Let us now prove the second point: for every β > 0,

lim
t→+∞

Diam
��

η2(∞) + [−1/2,1/2]2
�

∩Sp1
(t)
�

t1/2+β
= 0.

It is clearly sufficient to consider β ∈ (0,1/2). We can choose α′ > α > 0 such that 1+α′

2+α
< 1/2+ β .

For t large enough, choose n such that n2+α < t ≤ (n+ 1)2+α. Then, by (44), there exists y ∈ R2

such that
�

η2(∞) + [−1/2,1/2]2
�

∩Sp1
(t)∩Z2 ⊂Bp1

((n+ 1)2+α)\Bp1
(n2+α)⊂B

y

2 (6n1+α′).

As n∼ t
1

2+α , this ends the proof of the second point.

Turning to the proof of the last assertion, consider the following alternative:

• If the weak species (type 1) does not unboundedly grow, its natural density is zero, while the
density of the strong is one.

• If the weak species grows unboundedly, the first point of the present theorem ensures that the
strong species has null density, and therefore that the weak have full density.

6 Non-coexistence except perhaps for a denumerable set

In this section, we prove Theorem 1.6. Remember that Häggström and Pemantle proved non-
coexistence for two epidemics progressing according exponential laws with parameter 1 and λ
"except perhaps for a denumerable set" for λ, and Theorem 1.6 extends this result to families of
laws depending on a continuous parameter.

The first step consists in coupling all possible competition models on the same probability space,
respecting the stochastic order of the laws. This will give natural inclusions between sets of infected
points for competition with distinct parameters, as stated in Lemma 6.1. Assume that p < r, that the
slow infection (respectively the strong one) uses the law with parameter p (respectively, r) and that
both infections manage to grow unboundedly. Let also choose q ∈ (p, r). Then, we can expect that
strengthening the slow infection by increasing its parameter from p to q makes it strong enough to
win and surround the fast one. This is formalized in Lemma 6.3. The proof is based on Theorem 1.5.
Finally, we show that for fixed q ∈ I , the set of p < q such that P(G 1

p,q ∩G
2
p,q) > 0 is a subset of the

discontinuity set of an increasing function, and is thus at most denumerable. This will conclude the
proof of Theorem 1.6.
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Coupling

We first couple all passage times for varying parameters thanks to the generalized inverse of the
repartition function. Thus, all the competition models can live on the same probability space. This
generalizes the construction presented in the introduction.

On Ω = [0,1]E
d

, consider the probability measure P = U [0,1]⊗E
d

, where U [0,1] denotes the
uniform law on the set [0,1]. For each ω ∈ Ω and p ∈ I , define

t p
e = inf{x ∈ R : νp((−∞, x])≥ωe}.

Under P, the variables (t p
e )e∈Ed are independent identically distributed with common law νp. More-

over
∀e ∈ Ed ∀(p,q) ∈ I2 p ≤ q =⇒ t p

e ≥ tq
e .

We build now, for a given (p1, p2) ∈ I2, the competition process in a realization ω ∈ Ω. Let E =

([0,+∞]× [0,+∞])Z
d

. We recursively define a E-valued sequence (X p1,p2
n )n≥0 and a non-negative

sequence (T p1,p2
n )n≥0. The sequence (T p1,p2

n )n≥0 contains the successive times of infections, while a
point ǫ = (ǫ1(z),ǫ2(z))z∈Zd ∈ E codes, for each site z, its times of infection ǫ1(z) ( ǫ2(z)) by the first
(respectively, the second) infection. We start the process with two distinct sources s1 and s2 in Zd ,
and set T

p1,p2
0 = 0 and

X
p1,p2
0 = (X

1,p1,p2
0 (z), X

2,p1,p2
0 (z))z∈Zd with

¨

X
i,p1,p2
0 (z) = 0 if z = si,

X
i,p1,p2
0 (z) = +∞ otherwise.

This means that at time 0, no point of Zd has been infected yet but the two initial sources s1 and s2.
Then, for n≥ 0, define the next time of infection:

T
p1,p2
n+1 = inf{X i,p1,p2

n (y) + t
pi

{y,z} : {y, z} ∈ Ed , i ∈ {1,2}, X 3−i,p1,p2
n (z) = +∞}.

Note that the infimum in the definition of Tn+1 is always taken on a finite set. Moreover, Assumption
(5) ensures that if this infimum is reached by several triplets (i, y, z), all these triplets have the
same first coordinate, which means that a point can be infected by the same species from distinct
neighbors at the same time, but not by the two species simultaneously. For such a triplet, the next
infection is of type i from (one of the) y to z. The set of infected points of type 3− i has not changed:

∀x ∈ Zd X
3−i,p1,p2
n+1 (x) = X 3−i,p1,p2

n (x),

while the point z has been infected by species i at time X
i,p1,p2
n (y) + t

pi

{y,z}:

∀x ∈ Zd\{z} X
i,p1,p2
n+1 (x) = X i,p1,p2

n (x) and X
i,p1,p2
n+1 (z) = X i,p1,p2

n (y) + t
pi

{y,z}.

Note that X
i,p1,p2
n (y) and X

3−i,p1,p2
n (y) can not be simultaneously finite, which corresponds

to the fact that each site is infected by at most one type of infection. Moreover, once
min(X 1,p1,p2

n (x), X
2,p1,p2
n (x)) is finite, its value – the time of infection of x – does not change any

more.
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As νp1
≻ νp2

, species 1 is slower than species 2.
We also define the sets ηp1,p2(t),η1,p1,p2(t),η2,p1,p2(t) that are respectively infected points, infected
points of type 1, infected points of type 2 at time t, by

∀i ∈ {1,2} ∀t ∈ [T p1,p2
n , T

p1,p2
n+1 ) η

i,p1,p2(t) = {z ∈ Zd ; X i,p1,p2
n (z)<+∞}

and ηp1,p2(t) = η1,p1,p2(t)∪η2,p1,p2(t). We also define

ηi,p1,p2(∞) = ∪
t≥0
ηi,p1,p2(t),

G i,p1,p2 =
¦

|ηi,p1,p2(∞)|=+∞
©

for i = 1,2.

The set G i,p1,p2 corresponds to the survival of type i.

Lemma 6.1. Let t ≥ 0.

• η1,p,q(t) is non-decreasing in p and non-increasing in q,

• η2,p,q(t) is non-decreasing in q and non-increasing in p.

Proof. We only prove the monotonicity with respect to q. Let then q < r. We prove by induction
that for every n ∈ N, we have

(Hn) ∀x ∈ Zd X 1,p,q
n (x)≤ X 1,p,r

n (x) and X 2,p,q
n (x)≥ X 2,p,r

n (x).

Clearly, (H0) is true. Assume that (Hn) holds.

1. Let us first prove that X
1,p,q
n+1 (x)≤ X

1,p,r
n+1 (x) for each x in Zd . We have the following alternative:

• If X
1,p,r
n+1 (x) = +∞, it is obvious that X

1,p,q
n+1 (x)≤ X

1,p,r
n+1 (x).

• If X
1,p,r
n (x) < +∞ then, by (Hn), X

1,p,q
n (x) is also finite, and thus their values do not change

when we go from n to n+ 1, and the inequality is preserved.

• If X
1,p,r
n+1 (x)<+∞ and X

1,p,r
n (x) = +∞, there exists y ∼ x which has infected x at the (n+1)-

th step of the construction with type 1 species. In other words:

X
1,p,r
n+1 (x) = X 1,p,r

n (y) + t
p

{y,x} and ∀z ∼ x , X 1,p,r
n (y) + t

p

{y,x} < X 2,p,r
n (z) + t r

{z,x}.

By (Hn), since t r ≤ tq, we have for each z ∼ x:

X 1,p,q
n (y) + t

p

{y,x} ≤ X 1,p,r
n (y) + t

p

{y,x} < X 2,p,r
n (z) + t r

{z,x} ≤ X 2,p,q
n (z) + t

q

{z,x}.

This says that, in the (p,q) competition, x is infected by the species 1 and that X
1,p,r
n+1 (x) =

X
1,p,r
n (y) + t

p

{y,x} ≥ X
1,p,q
n+1 (x).

2. Let us now prove that X
2,p,q
n+1 (x)≥ X

2,p,r
n+1 (x) for each x ∈ Zd . We have the following alternative:

• If X
2,p,q
n+1 (x) = +∞, it is obvious that X

2,p,q
n+1 (x)≥ X

2,p,r
n+1 (x).
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• If X
2,p,q
n (x) < +∞ then, by (Hn), X

2,p,r
n (x) is also finite, and thus their values do not change

when we go from n to n+ 1, and the inequality is preserved.

• If X
2,p,q
n+1 (x)<+∞ and X

2,p,q
n (x) = +∞, there exists y ∼ x which has infected x at the (n+1)-

th step of the construction with type 2 species. In other words:

X
2,p,q
n+1 (x) = X 2,p,q

n (y) + t
q

{y,x} and ∀z ∼ x , X 2,p,q
n (y) + t

q

{y,x} < X 1,p,q
n (z) + t

p

{z,x}.

By (Hn), since t r ≤ tq, we have for each z ∼ x:

X 2,p,r
n (y) + t r

{y,x} ≤ X 2,p,q
n (y) + t

q

{y,x} < X 1,p,q
n (z) + t

p

{z,x} ≤ X 1,p,r
n (z) + t

p

{z,x}.

This says that, in the (p, r) competition, x is infected by the species 2 and that X
2,p,r
n+1 (x) ≤

X
2,p,r
n (y) + t r

{y,x} = X
2,p,q
n+1 (x).

To conclude, note that ηi,p,q(t) = {z ∈ Zd : ∃n ∈ N, X i,p,q(z)≤ t}. It is then obvious that η1,p,q(t) is
non-increasing in q, and η2,p,q(t) is non-decreasing in q.

Lemma 6.2. For A⊂ Zd , we define

|A|p = sup{‖x‖p : x ∈ A} and |A|∗,p = inf{‖x‖p : x ∈ Zd\A}.

Then, P-almost surely,
|Ba

p(t)|p

t
→ 1 and

|Ba
p(t)|∗,p

t
→ 1.

Proof. These are direct consequences of the large deviation result, Proposition 2.1.

Lemma 6.3. If p < q < r, then P(G 1,p,r ∩G 2,q,r) = 0.

Proof. By Lemma 6.1, G 2,p,r ⊃ G 2,q,r , thus we have G 1,p,r ∩G 2,q,r = (G 1,p,r ∩G 2,p,r)∩G 2,q,r . So we
can assume that G 1,p,r ∩ G 2,p,r occurs and prove that G 2,q,r can not happen. By Theorem 1.5, we
have

lim
t→+∞

|η2,p,r(t)|p

t
≤ 1, which implies, by Lemma 6.1, lim

t→+∞

|η2,q,r(t)|p

t
≤ 1.

Now, by Proposition 2.3, we have

lim
t→+∞

|η2,q,r(t)|q

t
≤ Cp,q < 1.

Using the coupling Lemma 1.1 and Lemma 6.2 together, we get

lim
t→+∞

|η1,q,r(t)∪η2,q,r(t)|∗,q

t
≥ 1.

Now, let t be large enough to ensure that

|η2,q,r(t)|q

t
≤

2Cp,q + 1

3
= α and

|η1,q,r(t)∪η2,q,r(t)|∗,q

t
≥

Cp,q + 2

3
= β .

Then every point x such that αt < ‖x‖q < β t belongs to η1,q,r(t)\η2,q,r(t). This prevents the
occurrence of the event G 2,q,r .
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Proof of Theorem 1.6. Let q ∈ I be fixed and consider the maps si : p 7→ P(G i,p,q). By Lemma 6.1, s1

is non-decreasing, whereas s2 is non-increasing. Suppose now that p < q. We prove that P(G 1,p,q ∩

G 2,p,q) = 0 if s1 is left-continuous at p. By Lemma 6.3,

P(G 1,p,q ∩G 2,p,q) = P(G 1,p−1/n,q ∩G 1,p,q ∩G 2,p,q)

+P((G 1,p−1/n,q)c ∩G 1,p,q ∩G 2,p,q)

= P((G 1,p−1/n,q)c ∩G 1,p,q ∩G 2,p,q)

≤ P((G 1,p−1/n,q)c ∩G 1,p,q)

≤ P(G 1,p,q)− P(G 1,p−1/n,q)

≤ s1(p)− s1(p− 1/n).

Thus, the set of p < q such that P(G 1
p,q ∩ G

2
p,q) > 0 is a subset of the discontinuity set of the

non-decreasing function s1. Therefore, it is at most denumerable. Note that we could prove that
P(G 1,p,q ∩G 2,p,q) = 0 if s2 is right-continuous at p in the very same way.

7 Concluding remarks

Since we are coming to the end of our study, it is worth questioning the relevance of the notion of
strong coexistence and its relationship with the Häggström-Pemantle conjecture.

Strong coexistence is obviously stronger, but how far away is it from the notion of coexistence? In
the case where the two species have the same passage times law, a partial answer is given by a
recent work by Gouéré [8]: some of his results imply that – under classical assumptions implying
coexistence – one can find initial configurations that give rise to strong coexistence with positive
probability. The restriction on the initial conditions can however be dropped by a modification
argument as in Garet-Marchand [5] or in Deijfen-Häggström [3]. Actually, in the case where the
two species have the same passage times law, simulations let think that, as soon as coexistence
occurs, each species occupies a cone, and thus strong coexistence occurs.

The above remarks seem to show the relevance of the notion of strong coexistence, but we must
now wonder how far we are from the Häggström-Pemantle conjecture. It could be interesting to
note that Theorem 1.6 allows a reformulation of this conjecture: it is sufficient to prove that the
map p 7→ Pp,q(G

1) has a unique point of discontinuity. Note also that this reformulation is quite
close to some recent result by Deijfen and Häggström concerning competition with exponential
speeds on general graphs (Theorem 4.1 in [4]). However, it is not evident that this remark can be
exploited to prove the conjecture. In this perspective, it is more natural to look at Theorem 1.2 and
Corollary 1.3: it seems highly unlikely that the strong could survive while it is constrained to occupy
only a negligible portion of the aerial surface, but we did not succeed to prove it at this time.
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