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Abstract

In this article, we illustrate the flexibility of the algebraic integration formalism introduced in
M. Gubinelli (2004), Controlling Rough Paths, J. Funct. Anal. 216, 86-140, by establishing an
existence and uniqueness result for delay equations driven by rough paths. We then apply our
results to the case where the driving path is a fractional Brownian motion with Hurst parameter
H > 1

3
.
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1 Introduction

In the last years, great efforts have been made to develop a stochastic calculus for fractional Brow-
nian motion. The first results gave a rigorous theory for the stochastic integration with respect to
fractional Brownian motion and established a corresponding Itô formula, see e.g. [1; 2; 3; 6; 18].
Thereafter, stochastic differential equations driven by fractional Brownian motion have been con-
sidered. Here different approaches can be used depending on the dimension of the equation and
the Hurst parameter of the driving fractional Brownian motion. In the one-dimensional case [17],
existence and uniqueness of the solution can be derived by a regularization procedure introduced in
[21]. The case of a multi-dimensional driving fractional Brownian motion can be treated by means
of fractional calculus tools, see e.g. [19; 23] or by means of the Young integral [13], when the
Hurst coefficient satisfies H > 1

2
. However, only the rough paths theory [13; 12] and its applica-

tion to fractional Brownian motion [5] allow to solve fractional SDEs in any dimension for a Hurst
parameter H > 1

4
. The original rough paths theory developed by T. Lyons relies on deeply involved

algebraical and analytical tools. Therefore some alternative methods [8; 9] have been developed
recently, trying to catch the essential results of [12] with less theoretical apparatus.

Since it is based on some rather simple algebraic considerations and an extension of Young’s integral,
the method given in [9], which we call algebraic integration in the sequel, has been especially
attractive to us. Indeed, we think that the basic properties of fractional differential systems can be
studied in a natural and nice way using algebraic integration. (See also [16], where this approach is
used to study the law of the solution of a fractional SDE.) In the present article, we will illustrate the
flexibility of the algebraic integration formalism by studying fractional equations with delay. More
specifically, we will consider the following equation:







X t = ξ0+
∫ t

0
b(Xs, Xs−r1

, . . . , Xs−rk
)ds

+
∫ t

0
σ(Xs, Xs−r1

, . . . , Xs−rk
)dBs, t ∈ [0, T],

X t = ξt , t ∈ [−rk, 0].

(1)

Here the discrete delays satisfy 0 < r1 < . . . < rk < ∞, the functions σ : Rn(k+1) → Rn,d , b :
R

n(k+1) → Rn are regular, B is a d-dimensional fractional Brownian motion with Hurst parameter
H > 1

3
and the initial condition ξ is a Rn-valued weakly controlled process based on B, see Definition

2.5. (In particular ξ can be any smooth deterministic function from [−rk, 0] to Rn.) We also use,
here and in the sequel, the following notation: we write Rn(k+1) for the set Rn × · · · × Rn (k + 1
times), while Rn,d stands for the set of n× d matrices with real entries.

The stochastic integral in equation (1) is a generalized Stratonovich integral, which will be explained
in detail in Section 2. Actually, in equations like (1), the drift term

∫ t

0
b(Xs, Xs−r1

, . . . , Xs−rk
)ds is

usually harmless, but causes some cumbersome notations. Thus, for sake of simplicity, we will
rather deal in the sequel with delay equations of the type

¨

X t = ξ0+
∫ t

0
σ(Xs, Xs−r1

, . . . , Xs−rk
)dBs, t ∈ [0, T],

X t = ξt , t ∈ [−rk, 0].
(2)

Our main result will be as follows:
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Theorem 1.1. Let σ ∈ C3
b
(Rn(k+1);Rn,d), let B be a d-dimensional fractional Brownian motion with

Hurst parameter H > 1
3

and let ξ be a Rn-valued weakly controlled process based on B. Then equation

(2) admits a unique solution on [0, T] in the class of weakly controlled processes (see Definition 2.5).

Stochastic delay equations driven by standard Brownian motion have been studied extensively (see
e.g. [15] and [14] for an overview) and are used in many applications. However, delay equations
driven by fractional Brownian motion have been only considered so far in [7], where the one-

dimensional equation
¨

X t = ξ0+
∫ t

0
σ(Xs−r)dBs +

∫ t

0
b(Xs)ds, t ∈ [0, T],

X t = ξt , t ∈ [−r, 0],
(3)

is studied for H > 1
2
. Observe that (3) is a particular case of equation (2).

To solve equation (2), one requires two main ingredients in the algebraic integration setting. First
of all, a natural class of paths, in which the equation can be solved. Here, this will be the paths
whose increments are controlled by the increments of B. Namely, writing (δz)st = zt − zs for the
increments of an arbitrary function z, a stochastic differential equation driven by B should be solved
in the class of paths, whose increments can be decomposed into

zt − zs = ζs(Bt − Bs) +ρst for 0≤ s < t ≤ T,

with ζ belonging to C γ1 and ρ belonging to C 2γ
2 for a given 1

3
< γ < H. (Here, C µ

i
denotes a space

of µ-Hölder continuous functions of i variables, see Section 2.) This class of functions will be called
the class of weakly controlled paths in the sequel.

To solve fractional differential equations without delay, the second main tool would be to define the
integral of a weakly controlled path with respect to fractional Brownian motion and to show that the
resulting process is still a weakly controlled path. To define the integral of a weakly controlled path,
a double iterated integral of fractional Brownian motion, called the Lévy area, will be required. Once
the stability of the class of weakly controlled paths under integration is established, the differential
equation is solved by an appropriate fixed point argument.

To solve fractional delay equations, we will have to modify this procedure. More specifically, we
need a second class of paths, the class of delayed controlled paths, whose increments can be written
as

zt − zs = ζ
(0)
s (Bt − Bs) +

k
∑

i=1

ζ(i)s (Bt−ri
− Bs−ri

) +ρst for 0≤ s < t ≤ T,

where, as above, ζ(i) belongs to C γ1 for i = 0, . . . , k, and ρ belongs to C 2γ
2 for a given 1

3
< γ <

H. (Note that a classical weakly controlled path is a delayed controlled path with ζ(i) = 0 for
i = 1, . . . , k.) For such a delayed controlled path we will then define its integral with respect to
fractional Brownian motion. We emphasize the fact that the integral of a delayed controlled path is
actually a classical weakly controlled path and satisfies a stability property.

To define this integral we have to introduce a delayed Lévy area B2(v) of B for v ∈ [−rk, 0]. This
process with values in the space of matrices Rd,d will also be defined as an iterated integral: for
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1≤ i, j ≤ d and 0≤ s < t ≤ T we set

B2
st(v)(i, j) =

∫ t

s

dBi
u

∫ u+v

s+v

dB j
w =

∫ t

s

(B
j
u+v − B

j
s+v)d

◦Bi
u, (4)

where the integral on the right hand side is a Russo-Vallois integral [21]. Finally, the fractional delay
equation (2) will be solved by a fixed point argument.

Here, we would like to stress that we prefer to use the regularization procedure introduced by Russo
and Vallois [21] instead of the direct limits of sums approach for the definition of the delayed Lévy
area. Malliavin calculus allows us then to verify without too much effort that (4) properly defines a
delayed Lévy area for B, see Section 5, while working with limits of sums as e.g. in Coutin and Qian
[5] would certainly require more work. Moreover, we would like to mention that we restrict here
to a Hurst parameter H > 1/3 for sake of conciseness and simplicity. Indeed, the structures needed
in order to solve the delay equation (2) for 1/4 < H < 1/3 are more cumbersome, and include for
instance the notions of doubly delayed controlled paths and of volume elements based on B. These
problems will be addressed in the forthcoming paper [22].

This article is structured as follows: Throughout the remainder of this article, we consider the
general delay equation

¨

d yt = σ(yt , yt−r1
, . . . , yt−rk

)d x t , t ∈ [0, T],
yt = ξt , t ∈ [−rk, 0],

(5)

where x is γ-Hölder continuous function with γ > 1
3

and ξ is a weakly controlled path based on x .
In Section 2 we recall some basic facts of the algebraic integration and in particular the definition
of a classical weakly controlled path, while in Section 3 we introduce the class of delayed controlled
paths and the integral of a delayed controlled path with respect to its controlling rough path. Using
the stability of the integral, we show the existence of a unique solution of equation (5) in the class
of classical weakly controlled paths under the assumption of the existence of a delayed Lévy area.
Finally, in Section 4 we specialize our results to delay equations driven by a fractional Brownian
motion with Hurst parameter H > 1

3
.

2 Algebraic integration and rough paths equations

Before we consider equation (5), we recall the strategy introduced in [9] in order to solve an
equation without delay, i.e.,

d yt = σ(yt)d x t , t ∈ [0, T], y0 = α ∈ Rn, (6)

where x is a Rd -valued γ-Hölder continuous function with γ > 1
3
.

2.1 Increments

Here we present the basic algebraic structures, which will allow us to define a pathwise integral
with respect to irregular functions. For real numbers 0 ≤ a ≤ b ≤ T <∞, a vector space V and an
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integer k ≥ 1 we denote by Ck([a, b]; V ) the set of functions g : [a, b]k → V such that gt1···tk
= 0

whenever t i = t i+1 for some 1 ≤ i ≤ k− 1. Such a function will be called a (k− 1)-increment, and
we will set C∗([a, b]; V ) = ∪k≥1Ck([a, b]; V ). An important operator for our purposes is given by

δ :Ck([a, b]; V )→Ck+1([a, b]; V ), (δg)t1···tk+1
=

k+1
∑

i=1

(−1)k−i gt1··· t̂ i ···tk+1
, (7)

where t̂ i means that this argument is omitted. A fundamental property of δ is that δδ = 0, where δδ
is considered as an operator from Ck([a, b]; V ) to Ck+2([a, b]; V ). We will denote ZCk([a, b]; V ) =

Ck([a, b]; V )∩ Kerδ andBCk([a, b]; V ) = Ck([a, b]; V )∩ Imδ.

Some simple examples of actions of δ are as follows: For g ∈ C1([a, b]; V ), h ∈ C2([a, b]; V ) and
f ∈ C3([a, b]; V ) we have

(δg)st = gt − gs, (δh)sut = hst − hsu− hut and (δ f )suvt = fuvt − fsvt + fsut − fsuv

for any s,u, v, t ∈ [a, b]. Furthermore, it is easily checked that ZCk+1([a, b]; V ) =BCk([a, b]; V )

for any k ≥ 1. In particular, the following property holds:

Lemma 2.1. Let k ≥ 1 and h ∈ ZCk+1([a, b]; V ). Then there exists a (non unique) f ∈ Ck([a, b]; V )

such that h= δ f .

Observe that Lemma 2.1 implies in particular that all elements h ∈ C2([a, b]; V ) with δh= 0 can be
written as h= δ f for some f ∈ C1([a, b]; V ). Thus we have a heuristic interpretation of δ|C2([a,b];V ):
it measures how much a given 1-increment differs from being an exact increment of a function, i.e.,
a finite difference.

Our further discussion will mainly rely on k-increments with k ≤ 2. For simplicity of the exposition,
we will assume that V = Rm in what follows, although V could be in fact any Banach space. We
measure the size of the increments by Hölder norms, which are defined in the following way: for
f ∈ C2([a, b]; V ) let

‖ f ‖µ = sup
s,t∈[a,b]

| fst |
|t − s|µ

and
C µ2 ([a, b]; V ) =

¦

f ∈ C2([a, b]; V ); ‖ f ‖µ <∞
©

.

Obviously, the usual Hölder spaces C µ1 ([a, b]; V ) are determined in the following way: for a contin-
uous function g ∈ C1([a, b]; V ) set

‖g‖µ = ‖δg‖µ,

and we will say that g ∈ C µ1 ([a, b]; V ) iff ‖g‖µ is finite. Note that ‖ · ‖µ is only a semi-norm on
C1([a, b]; V ), but we will work in general on spaces of the type

C µ1,α([a, b]; V ) =
¦

g : [a, b]→ V ; ga = α, ‖g‖µ <∞
©

for a given α ∈ V, on which ‖g‖µ is a norm.
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For h ∈ C3([a, b]; V ) we define in the same way

‖h‖γ,ρ = sup
s,u,t∈[a,b]

|hsut |
|u− s|γ|t − u|ρ , (8)

‖h‖µ = inf

(

∑

i

‖hi‖ρi ,µ−ρi
; (ρi,hi)i∈N with hi ∈ C3([a, b]; V ),

∑

i

hi = h, 0< ρi < µ

)

and
C µ3 ([a, b]; V ) =

¦

h ∈ C3([a, b]; V ); ‖h‖µ <∞
©

.

Eventually, let C 1+
3 ([a, b]; V ) = ∪µ>1C

µ
3 ([a, b]; V ) and note that the same kind of norms can be

considered on the spaces ZC3([a; b]; V ), leading to the definition of the spaces ZC µ3 ([a; b]; V )

and ZC 1+
3 ([a, b]; V ).

The crucial point in this algebraic approach to the integration of irregular paths is that the operator
δ can be inverted under mild smoothness assumptions. This inverse is called Λ. The proof of the
following proposition may be found in [9], and in a simpler form in [10].

Proposition 2.2. There exists a unique linear map Λ : ZC 1+
3 ([a, b]; V )→C 1+

2 ([a, b]; V ) such that

δΛ = IdZC 1+
3 ([a,b];V ) and Λδ = IdC 1+

2 ([a,b];V ).

In other words, for any h ∈ C 1+
3 ([a, b]; V ) such that δh = 0, there exists a unique g = Λ(h) ∈

C 1+
2 ([a, b]; V ) such that δg = h. Furthermore, for any µ > 1, the map Λ is continuous from

ZC µ3 ([a, b]; V ) to C µ2 ([a, b]; V ) and we have

‖Λh‖µ ≤
1

2µ− 2
‖h‖µ, h ∈ ZC µ3 ([a, b]; V ). (9)

This mapping Λ allows to construct a generalized Young integral:

Corollary 2.3. For any 1-increment g ∈ C2([a, b]; V ) such that δg ∈ C 1+
3 ([a, b]; V ) set δ f = (Id−

Λδ)g. Then

(δ f )st = lim
|Πst |→0

n
∑

i=0

gt i t i+1

for a ≤ s < t ≤ b, where the limit is taken over any partition Πst = {t0 = s, . . . , tn = t} of [s, t], whose

mesh tends to zero. Thus, the 1-increment δ f is the indefinite integral of the 1-increment g.

We also need some product rules for the operator δ. For this recall the following convention: for
g ∈ Cn([a, b];Rl,d) and h ∈ Cm([a, b];Rd,p) let gh be the element of Cn+m−1([a, b];Rl,p) defined
by

(gh)t1,...,tm+n−1
= gt1,...,tn

htn,...,tm+n−1
(10)

for t1, . . . , tm+n−1 ∈ [a, b].

Proposition 2.4. It holds:
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(i) Let g ∈ C1([a, b];Rl,d) and h ∈ C1([a, b];Rd). Then gh ∈ C1([a, b];Rl) and

δ(gh) = δg h+ g δh.

(ii) Let g ∈ C1([a, b];Rl,d) and h ∈ C2([a, b];Rd). Then gh ∈ C2([a, b];Rl) and

δ(gh) =−δg h+ g δh.

(iii) Let g ∈ C2([a, b];Rl,d) and h ∈ C1([a, b];Rd). Then gh ∈ C2([a, b];Rl) and

δ(gh) = δg h+ g δh.

(iv) Let g ∈ C2([a, b];Rl,d) and h ∈ C2([a, b];Rd,p). Then gh ∈ C3([a, b];Rl,p) and

δ(gh) =−δg h+ g δh.

2.2 Classical weakly controlled paths (CCP)

In the remainder of this article, we will use both the notations
∫ t

s
f d g or Jst( f d g) for the inte-

gral of a function f with respect to a given function g on the interval [s, t]. Moreover, we set
‖ f ‖∞ = supx∈Rd,l | f (x)| for a function f : Rd,l → Rm,n and also ‖g‖∞ = supt∈[a,b] |gt | for a path
g ∈ C κ1 ([a, b]; V ). To simplify the notation we will write C γ

k
instead of C γ

k
([a, b]; V ), if [a, b] and

V are obvious from the context.

Before we consider the technical details, we will make some heuristic considerations about the
properties that the solution of equation (6) should have. Set σ̂t = σ

�

yt

�

, and suppose that y is a
solution of (6), which satisfies y ∈ C κ1 for a given 1

3
< κ < γ. Then the integral form of our equation

can be written as

yt = α+

∫ t

0

σ̂ud xu, t ∈ [0, T]. (11)

Our approach to generalized integrals induces us to work with increments of the form (δ y)st =

yt − ys instead of (11). It is immediate that one can decompose the increments of (11) into

(δ y)st =

∫ t

s

σ̂ud xu = σ̂s(δx)st +ρst with ρst =

∫ t

s

(σ̂u− σ̂s)d xu.

We thus have obtained a decomposition of y of the form δ y = σ̂δx+ρ. Let us see, still at a heuristic
level, which regularity we can expect for σ̂ and ρ: If σ is bounded and continuously differentiable,
we have that σ̂ is bounded and

|σ̂t − σ̂s| ≤ ‖σ′‖∞‖y‖κ|t − s|κ,

where ‖y‖κ denotes the κ-Hölder norm of y . Hence σ̂ belongs to C κ1 and is bounded. As far
as ρ is concerned, it should inherit both the regularities of δσ̂ and x , provided that the integral
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∫ t

s
(σ̂u−σ̂s)d xu =

∫ t

s
(δσ̂)sud xu is well defined. Thus, one should expect that ρ ∈ C 2κ

2 . In summary,
we have found that a solution δ y of equation (11) should be decomposable into

δ y = σ̂δx +ρ with σ̂ ∈ C κ1 bounded and ρ ∈ C 2κ
2 . (12)

This is precisely the structure we will demand for a possible solution of equation (6) respectively its
integral form (11):

Definition 2.5. Let a ≤ b ≤ T and let z be a path in C κ1 ([a, b];Rn) with κ ≤ γ and 2κ+ γ > 1. We

say that z is a classical weakly controlled path based on x, if za = α ∈ Rn and δz ∈ C κ2 ([a, b];Rn) can

be decomposed into

δz = ζδx + r, i.e. (δz)st = ζs(δx)st +ρst , s, t ∈ [a, b], (13)

with ζ ∈ C κ1 ([a, b];Rn,d) and ρ ∈ C 2κ
2 ([a, b];Rn).

The space of classical weakly controlled paths on [a, b] will be denoted by Qκ,α([a, b];Rn), and a path

z ∈ Qκ,α([a, b];Rn) should be considered in fact as a couple (z,ζ).
The norm on Qκ,α([a, b];Rn) is given by

N [z;Qκ,α([a, b];Rn)] = ‖δz‖κ+ ‖ρ‖2κ+ ‖ζ‖∞ + ‖δζ‖κ.

Note that in the above definition α corresponds to a given initial condition and ρ can be understood
as a regular part. Moreover, observe that a can be negative.

Now we can sketch the strategy used in [9], in order to solve equation (6):

(a) Verify the stability of Qκ,α([a, b];Rn) under a smooth map ϕ : Rn→ Rn,d .

(b) Define rigorously the integral
∫

zud xu = J (zd x) for a classical weakly controlled path z and
compute its decomposition (13).

(c) Solve equation (6) in the space Qκ,α([a, b];Rn) by a fixed point argument.

Actually, for the second point one has to impose a priori the following hypothesis on the driving
rough path, which is a standard assumption in the rough paths theory:

Hypothesis 2.6. The Rd -valued γ-Hölder path x admits a Lévy area, i.e. a process x2 = J (d xd x) ∈
C 2γ

2 ([0, T];Rd,d), which satisfies δx2 = δx ⊗δx , that is

�

(δx2)sut

�

(i, j) = (δx i)su(δx j)ut , for all s,u, t ∈ [0, T], i, j ∈ {1, . . . , d}.

Then, using the strategy sketched above, the following result is obtained in [9]:

Theorem 2.7. Let x be a process satisfying Hypothesis 2.6 and let σ ∈ C2(Rn;Rn,d) be bounded

together with its derivatives. Then we have:

1. Equation (6) admits a unique solution y inQκ,α([0, T];Rn) for any κ < γ such that 2κ+γ > 1.

2. The mapping (α, x ,x2) 7→ y is continuous from Rn × C γ1 ([0, T];Rd) × C 2γ
2 ([0, T];Rd,d) to

Qκ,α([0, T];Rn), in a sense which is detailed in [9, Proposition 8].
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3 The delay equation

In this section, we make a first step towards the solution of the delay equation
(

d yt = σ(yt , yt−r1
, . . . , yt−rk

)d x t , t ∈ [0, T],

yt = ξt , t ∈ [−rk, 0],
(14)

where x is a Rd -valued γ-Hölder continuous function with γ > 1
3
, the function σ ∈ C3(Rn(k+1);Rn,d)

is bounded together with its derivatives, ξ is a Rn-valued weakly controlled path based on x , and
0< r1 < . . .< rk <∞. For convenience, we set r0 = 0 and, moreover, we will use the notation

s(y)t = (yt−r1
, . . . , yt−rk

), t ∈ [0, T]. (15)

3.1 Delayed controlled paths

As in the previous section, we will first make some heuristic considerations about the properties of
a solution: set σ̂t = σ(yt , s(y)t) and suppose that y is a solution of (14) with y ∈ C κ1 for a given
1
3
< κ < γ. Then we can write the integral form of our equation as

(δ y)st =

∫ t

s

σ̂ud xu = σ̂s(δx)st +ρst with ρst =

∫ t

s

(σ̂u− σ̂s)d xu.

Thus, we have again obtained a decomposition of y of the form δ y = σ̂δx+ρ. Moreover, it follows
(still at a heuristic level) that σ̂ is bounded and satisfies

|σ̂t − σ̂s| ≤ ‖σ′‖∞
k
∑

i=0

|yt−ri
− ys−ri

| ≤ (k+ 1)‖σ′‖∞‖y‖κ|t − s|κ.

Thus, with the notation of Section 2.1, we have that σ̂ belongs to C κ1 and is bounded. The term
ρ should again inherit both the regularities of δσ̂ and x . Thus, one should have that ρ ∈ C 2κ

2 . In
conclusion, the increment δ y should be decomposable into

δ y = σ̂δx +ρ with σ̂ ∈ C κ1 bounded and ρ ∈ C 2κ
2 . (16)

This is again the structure we will ask for a possible solution to (14). However, this decomposition
does not take into account that equation (14) is actually a delay equation. To define the integral
∫ t

s
σ̂ud xu, we have to enlarge the class of functions we will work with, and hence we will define a

delayed controlled path (hereafter DCP in short).

Definition 3.1. Let 0≤ a ≤ b ≤ T and z ∈ C κ1 ([a, b];Rn) with 1
3
< κ≤ γ. We say that z is a delayed

controlled path based on x, if za = α belongs to Rn and if δz ∈ C κ2 ([a, b];Rn) can be decomposed into

(δz)st =

k
∑

i=0

ζ(i)s (δx)s−ri ,t−ri
+ρst for s, t ∈ [a, b], (17)

where ρ ∈ C 2κ
2 ([a, b];Rn) and ζ(i) ∈ C κ1 ([a, b];Rn,d) for i = 0, . . . , k.

The space of delayed controlled paths on [a, b] will be denoted by Dκ,α([a, b];Rn), and a path z ∈
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Dκ,α([a, b];Rn) should be considered in fact as a (k+ 2)-tuple (z,ζ(0), . . . ,ζ(k)).
The norm on Dκ,α([a, b];Rn) is given by

N [z;Dκ,α([a, b];Rn)] = ‖δz‖κ+ ‖ρ‖2κ+
k
∑

i=0

‖ζ(i)‖∞ +
k
∑

i=0

‖δζ(i)‖κ.

Now we can sketch our strategy to solve the delay equation:

1. Consider the map Tσ defined on Qκ,α([a, b];Rn)×Qκ,α̃([a− rk, b− r1];R
n) by

(Tσ(z, z̃))t = σ(zt , s(z̃)t), t ∈ [a, b], (18)

where we recall that the notation s(z̃) has been introduced at (15). We will show that
Tσ maps Qκ,α([a, b];Rn) × Qκ,α̃([a − rk, b − r1];R

n) smoothly onto a space of the form
Dκ,α̂([a, b];Rn,d).

2. Define rigorously the integral
∫

zud xu = J (zd x) for a delayed controlled path z ∈
Dκ,α̂([a, b];Rn,d), show that J (zd x) belongs to Qκ,α([a, b];Rd), and compute its decom-
position (13). Let us point out the following important fact: Tσ creates “delay”, that is
Tσ(z, z̃) ∈ Dκ,α̂([a, b];Rn,d), while J creates “advance”, that is J (zd x) ∈ Qκ,α([a, b];Rn).

3. By combining the first two points, we will solve equation (14) by a fixed point argument on
the intervals [0, r1], [r1, 2r1], . . . .

3.2 Action of the map T on controlled paths

The major part of this section will be devoted to the following two stability results:

Proposition 3.2. Let 0 ≤ a ≤ b ≤ T, let α, α̃ be two initial conditions in Rn and let ϕ ∈
C3(Rn(k+1);Rl) be bounded with bounded derivatives. Define Tϕ on Qκ,α([a; b];Rn) × Qκ,α̃([a −
rk; b− r1];R

n) by Tϕ(z, z̃) = ẑ, with

ẑt = ϕ(zt , s(z̃)t), t ∈ [a, b].

Then, setting α̂ = ϕ(α, s(z̃a)) = ϕ(α, z̃a−r1
, . . . , z̃a−rk−1

, α̃), we have Tϕ(z, z̃) ∈ Dκ,α̂([a; b]; Rl) and it

admits a decomposition of the form

(δẑ)st = ζ̂s (δx)st +

k
∑

i=1

ζ̂(i)s (δx)s−ri ,t−ri
+ ρ̂st , s, t ∈ [a, b], (19)

where ζ̂, ζ̂(i) are the Rl,d -valued paths defined by

ζ̂s =

�

∂ ϕ

∂ x1,0
(zs, s(z̃)s), . . . ,

∂ ϕ

∂ xn,0
(zs, s(z̃)s)

�

ζs, s ∈ [a, b],

and

ζ̂(i)s =

�

∂ ϕ

∂ x1,i
(zs, s(z̃)s), . . . ,

∂ ϕ

∂ xn,i
(zs, s(z̃)s)

�

ζ̃s−ri
, s ∈ [a, b],
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for i = 1, . . . , k. Moreover, the following estimate holds:

N [ẑ;Dκ,â([a; b];Rl)] (20)

≤ cϕ,T

�

1+N 2[z;Qκ,α([a, b];Rn)] +N 2[z̃;Qκ,α̃([a− rk, b− r1];R
n)]
�

,

where the constant cϕ,T depends only ϕ and T.

Proof. Fix s, t ∈ [a, b] and set

ψ(i)s =

�

∂ ϕ

∂ x1,i
(zs, s(z̃)s), . . . ,

∂ ϕ

∂ xn,i
(zs, s(z̃)s)

�

.

for i = 0, . . . , k. It is readily checked that

(δẑ)st = ϕ(zt−r0
, z̃t−r1

, . . . , z̃t−rk
)−ϕ(zs−r0

, z̃s−r1
, . . . , z̃s−rk

)

= ψ(0)s ζs(δx)st +

k
∑

i=1

ψ(i)s ζ̃s−ri
(δx)s−ri ,t−ri

+ ρ̂
(1)
st + ρ̂

(2)
st ,

where

ρ̂
(1)
st = ψ(0)s ρst +

k
∑

i=1

ψ(i)s ρ̃s−ri ,t−ri
,

ρ̂
(2)
st = ϕ(zt−r0

, z̃t−r1
, . . . , z̃t−rk

)−ϕ(zs−r0
, z̃s−r1

, . . . , z̃s−rk
)

−ψ(0)s (δz)st −
k
∑

i=1

ψ(i)s (δz̃)s−ri ,t−ri
.

(i) We first have to show that ρ̂(1), ρ̂(2) ∈ C 2κ
2 ([a, b];Rl). For the second remainder term Taylor’s

formula yields

|ρ̂(2)st | ≤
1

2
‖ϕ′′‖∞

�

|(δz)st |2+
k
∑

i=1

|(δz̃)s−ri ,t−ri
|2
�

,

and hence clearly, thanks to some straightforward bounds in the spaces Qκ,α, we have

|ρ̂(2)st |
|t − s|2κ ≤

1

2
‖ϕ′′‖∞

�

N 2[z;Qκ,α([a, b];Rn)] +

k
∑

i=1

N 2[z̃;Qκ,α([a− ri , b− ri];R
n)]
�

. (21)

The first term can also be bounded easily: it can be checked that

|ρ̂(1)st |
|t − s|2κ ≤ ‖ϕ

′‖∞
�

N
�

ρ;C 2κ
2 ([a, b];Rn)

�

+

k
∑

i=1

N
�

ρ̃,C 2κ
2 ([a− ri , b− ri];R

n)
�
�

. (22)

Putting together the last two inequalities, we have shown that decomposition (19) holds, that is

(δẑ)st =ψ
(0)
s ζs(δx)st +

k
∑

i=1

ψ(i)s ζ̃
(i)
s−ri
(δx)s−ri ,t−ri

+ ρ̂st
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with ρ̂st = ρ̂
(1)
st + ρ̂

(2)
st ∈ C 2κ

2 ([a, b];Rl).

(ii) Now we have to consider the “density” functions

ζ̂s =ψ
(0)
s ζs, ζ̂(i)s =ψ

(i)
s ζ̃s−ri

, s ∈ [a, b].

Clearly ζ̂, ζ̂(i) are bounded on [a, b], because the functions ψ(i) are bounded (due to the bounded-
ness of ϕ′) and because ζ, ζ̃(i) are also bounded. In particular, it holds

sup
s∈[a,b]

|ζ̂s| ≤ ‖ϕ′‖∞ sup
s∈[a,b]

|ζs|, sup
s∈[a,b]

|ζ̂(i)s | ≤ ‖ϕ
′‖∞ sup

s∈[a,b]
|ζ̃s−ri
| (23)

for i = 1, . . . , k. Moreover, for i = 1, . . . , k, we have

|ζ̂(i)s1
− ζ̂(i)s2
|

≤ |(ψ(i)s1
−ψ(i)s2

)ζ̃s1−ri
|+ |(ζ̃s1−ri

− ζ̃s2−ri
)ψ(i)s2
|

≤ ‖ϕ′′‖∞|zs1
− zs2
| sup

s∈[a,b]
|ζ̃s−ri
|+ ‖ϕ′′‖∞

k
∑

j=1

|z̃s1−r j
− z̃s2−r j

| sup
s∈[a,b]

|ζ̃s−ri
|

+ ‖ψ(i)‖∞|ζ̃s1−ri
− ζ̃s2−ri

|
≤ ‖ϕ′′‖∞ N [z;C κ1 ([a, b];Rn)] sup

s∈[a,b]
|ζ̃s−ri
| |s2− s1|κ (24)

+ ‖ϕ′′‖∞
k
∑

j=1

N [z̃;C κ1 ([a− r j , b− r j];R
n)] sup

s∈[a,b]
|ζ̃s−ri
| |s2− s1|κ

+ ‖ψ(i)‖∞N [ζ̃;C κ1 ([a− ri , b− ri];R
n,d)] |s2− s1|κ.

Similarly, we obtain

|ζ̂s1
− ζ̂s2
| ≤ ‖ϕ′′‖∞ N [z;C κ1 ([a, b];Rn)] sup

s∈[a,b]
|ζs| |s2− s1|κ (25)

+‖ϕ′′‖∞
k
∑

j=1

N [z̃;C κ1 ([a− r j , b− r j];R
n)] sup

s∈[a,b]
|ζs| |s2− s1|κ

+‖ψ(0)‖∞N [ζ;C κ1 ([a, b];Rn,d)] |s2− s1|κ.

Hence, the densities satisfy the conditions of Definition 3.1.

(iii) Finally, combining the estimates (21) – (25) yields the estimate (20), which ends the proof.

We thus have shown that the map Tϕ is quadratically bounded in z and z̃. Moreover, for fixed z̃ the
map Tϕ(·, z̃) :Qκ,α([a; b];Rn)→Dκ,α̂([a; b];Rl) is locally Lipschitz continuous:

Proposition 3.3. Let the notations and assumptions of Proposition 3.2 prevail. Let 0 ≤ a ≤ b ≤ T, let

z(1), z(2) ∈ Qκ,α([a, b];Rn) and let z̃ ∈ Qκ,α̃([a− rk, b− r1];R
n). Then,

N [Tϕ(z(1), z̃)− Tϕ(z
(2), z̃);Dκ,0([a; b];Rl)] (26)

≤ cϕ,T
�

1+ C(z(1), z(2), z̃)
�2N [z(1)− z(2);Qκ,0([a, b];Rn)],
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where

C(z(1), z(2), z̃) =N [z̃;Qκ,α̃([a− rk, b− r1];R
n)] (27)

+N [z(1);Qκ,α([a, b];Rn)] +N [z(2);Qκ,α([a, b];Rn)]

and the constant cϕ,T depends only on ϕ and T.

Proof. Denote ẑ( j) = Tϕ(z
( j), z̃) for j = 1,2. By Proposition 3.2 we have

�

δẑ( j)
�

st
= ζ̂( j)s (δx)st +

k
∑

i=1

ζ̂(i, j)s (δx)s−ri ,t−ri
+ ρ̂

( j)
st , s, t ∈ [a, b],

with
ζ̂( j)s =ψ

(0, j)
s ζ( j)s , ζ̂(i, j)s =ψ(i, j)s ζ̃s−ri

, s ∈ [a, b],

where

ψ(i, j)s =

�

∂ ϕ

∂ x1,i
(z( j)s , s(z̃)s), . . . ,

∂ ϕ

∂ xn,i
(z( j)s , s(z̃)s)

�

, s ∈ [a, b],

for i = 0, . . . , k, j = 1,2. Furthermore, it holds ρ̂( j)st = ρ̂
(1, j)
st + ρ̂

(2, j)
st , where

ρ̂
(1, j)
st =ψ(0, j)

s ρ
( j)
st +

k
∑

i=1

ψ(i, j)s ρ̃s−ri ,t−ri
,

ρ̂
(2, j)
st = ϕ(z

( j)
t−r0

, z̃t−r1
, . . . , z̃t−rk

)−ϕ(z( j)s−r0
, z̃s−r1

, . . . , z̃s−rk
)

−ψ(0, j)
s (δz( j))st −

k
∑

i=1

ψ(i, j)s (δz̃)s−ri ,t−ri
.

Thus, we obtain for ẑ = ẑ(1)− ẑ(2) the decomposition

(δẑ)st =

k
∑

i=0

ζ̂(i)s (δx)s−ri ,t−ri
+ ρ̂st

with ζ̂(0)s = ψ(0,1)
s ζ(1)s − ψ(0,2)

s ζ(2)s , the paths ζ̂(i) are defined by ζ̂(i)s = (ψ(i,1)s − ψ(i,2)s )ζ̃s−ri
for

i = 1, . . . , k, and ρ̂st = ρ̂
(1)
st − ρ̂

(2)
st .

In the following we will denote constants (which depend only on T and ϕ) by c, regardless of
their value. For convenience, we will also use the short notations N [z̃], N [z(1)], N [z(2)] and
N [z(1)− z(2)] instead of the corresponding quantities in (26) and (27).

(i) We first control the supremum of the density functions ζ̂(i), i = 0, . . . , k. For i = 0 we can write

ζ̂(0)s =ψ(0,1)
s (ζ(1)s − ζ

(2)
s ) + (ψ

(0,1)
s −ψ(0,2)

s )ζ(2)s

and thus it follows

|ζ̂(0)s | ≤ ‖ϕ
′‖∞|ζ(1)s − ζ

(2)
s |+ ‖ϕ

′′‖∞|z(1)s − z(2)s ||ζ
(2)
s | (28)

≤ c
�

1+N [z(2)]
�

N [z(1)− z(2)].
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Similarly, we get

|ζ̂(i)s | ≤ cN [z̃]N [z(1)− z(2)]. (29)

(ii) Now, consider the increments of the density functions. Here, the key is to expand the expression
ψ(i,1)s −ψ(i,2)s for i = 0, . . . , k. For this define

us(r) = r(z(1)s − z(2)s ) + z(2)s , r ∈ [0,1], s ∈ [a, b].

We have

∂ ϕ

∂ xp,i
(z(1)s , s(z̃)s)−

∂ ϕ

∂ xp,i
(z(2)s , s(z̃)s) =

∂ ϕ

∂ xp,i
(us(1), s(z̃)s)−

∂ ϕ

∂ xp,i
(us(0), s(z̃)s)

= θ (p,i)
s (z(1)s − z(2)s ),

where

θ (p,i)
s =

∫ 1

0

�

∂ 2ϕ

∂ x1,0∂ xp,i
(us(r), s(z̃)s), . . . ,

∂ 2ϕ

∂ xn,0∂ xp,i
(us(r), s(z̃)s)

�

dr.

Hence it follows

ψ(i,1)s −ψ(i,2)s =
�

θ (1,i)
s (z(1)s − z(2)s ), . . . ,θ (n,i)

s (z(1)s − z(2)s )
�

. (30)

Note that θ (p,i) is clearly bounded and, under the assumption ϕ ∈ C3
b
, it moreover satisfies

|θ (p,i)
t − θ (p,i)

s | ≤ c
�

N [z(1)] +N [z(2)] +N [z̃]
�

|t − s|κ. (31)

For i = 0 we can now write

ζ̂
(0)
t − ζ̂(0)s = (ψ

(0,1)
t −ψ(0,1)

s )(ζ(1)s − ζ
(2)
s ) +ψ

(0,1)
t ((ζ

(1)
t − ζ

(2)
t )− (ζ(1)s − ζ

(2)
s ))

+ (ψ(0,1)
s −ψ(0,2)

s )(ζ
(2)
t − ζ(2)s ) + ζ

(2)
t ((ψ

(0,1)
t −ψ(0,2)

t )− (ψ(0,1)
s −ψ(0,2)

s )).

It follows

|ζ̂(0)t − ζ̂(0)s | ≤ c
�

N [z(1)] +N [z̃]
�

|t − s|κN [z(1)− z(2)] + cN [z(1)− z(2)] |t − s|κ

+ cN [z(1)− z(2)]N [z(2)] |t − s|κ

+N [z(2)]|(ψ(0,1)
t −ψ(0,2)

t )− (ψ(0,1)
s −ψ(0,2)

s )|. (32)

Using (30) and (31) we obtain

|(ψ(0,1)
t −ψ(0,2)

t )− (ψ(0,1)
s −ψ(0,2)

s )| (33)

≤ c
�

1+N [z(1)] +N [z(2)] +N [z̃]
�

N [z(1)− z(2)] |t − s|κ.

Combining (32) and (33) yields

|ζ̂(0)t − ζ̂(0)s | ≤ c
�

1+N [z(1)] +N [z(2)] +N [z̃]
�2 N [z(1)− z(2)] |t − s|κ. (34)
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By similar calculations we also have

|ζ̂(i)t − ζ̂(i)s | ≤ c
�

1+N [z(1)] +N [z(2)] +N [z̃]
�2 N [z(1)− z(2)] |t − s|κ (35)

for i = 1, . . . , k.

(iii) Now, we have to control the remainder term ρ̂. For this we decompose ρ̂ as

ρ̂st = ρ
(1)
st +ρ

(2)
st ,

where

ρ
(1)
st =ψ

(0,1)
s ρ

(1)
st −ψ(0,2)

s ρ
(2)
st +

k
∑

i=1

�

ψ(i,1)s −ψ(i,2)s

�

ρ̃s−ri ,t−ri
,

ρ
(2)
st =

�

ϕ(z
(1)
t−r0

, z̃t−r1
, . . . , z̃t−rk

)−ϕ(z(1)s−r0
, z̃s−r1

, . . . , z̃s−rk
)
�

−
�

ϕ(z
(2)
t−r0

, z̃t−r1
, . . . , z̃t−rk

)−ϕ(z(2)s−r0
, z̃s−r1

, . . . , z̃s−rk
)
�

−
�

ψ(0,1)
s (δz(1))st −ψ(0,2)

s (δz(2))st

�

−
k
∑

i=1

�

ψ(i,1)s −ψ(i,2)s

�

(δz̃)s−ri ,t−ri
.

We consider first ρ(1): for this term, some straightforward calculations yield

|ρ(1)st | ≤ c(1+N [z(1)] +N [z(2)] +N [z̃])N [z(1)− z(2)] |t − s|2κ. (36)

Now consider ρ(2). The mean value theorem yields

ρ
(2)
st =

�

ψ̄(0,1)
s −ψ(0,1)

s

�

(δz(1))st −
�

ψ̄(0,2)
s −ψ(0,2)

s

�

(δz(2))st

+

k
∑

i=1

��

ψ̄(i,1)s − ψ̄(i,2)s

�

−
�

ψ(i,1)s −ψ(i,2)s

��

(δz̃)s−ri ,t−ri

=
�

ψ̄(0,1)
s −ψ(0,1)

s

�

(δ(z(1)− z(2)))st

+
��

ψ̄(0,1)
s − ψ̄(0,2)

s

�

−
�

ψ(0,1)
s −ψ(0,2)

s

��

(δz(2))st

+

k
∑

i=1

��

ψ̄(i,1)s − ψ̄(i,2)s

�

−
�

ψ(i,1)s −ψ(i,2)s

��

(δz̃)s−ri ,t−ri

¬Q1+Q2+Q3,

with

ψ̄(i, j)s =

∫ 1

0

�

∂ ϕ

∂ x1,i
(v( j)s (r)), . . . ,

∂ ϕ

∂ xn,i
(v( j)s (r))

�

dr,

v( j)s (r) =
�

z( j)s + r(z
( j)
t − z( j)s ), z̃s−r1

+ r(z̃t−r1
− z̃s−r1

), . . . , z̃s−rk
+ r(z̃t−rk

− z̃s−rk
)
�

.

We shall now bound Q1,Q2 and Q3 separately: it is readily checked that

|ψ̄(i, j)s −ψ
(i, j)
s | ≤ c

�

1+N [z(1)] +N [z(2)] +N [z̃]
�

|t − s|κ,
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and thus we obtain

Q1 ≤ c
�

1+N [z(1)] +N [z(2)] +N [z̃]
�

N [z(1)− z(2)] |t − s|2κ. (37)

In order to estimate Q2 and Q3, recall that by (30) in part (ii) we have

ψ(i,1)s −ψ(i,2)s =
�

θ (1,i)
s (z(1)s − z(2)s ), . . . ,θ (n,i)

s (z(1)s − z(2)s )
�

, (38)

where

θ (p,i)
s =

∫ 1

0

�

∂ 2ϕ

∂ x1,0∂ xp,i
(us(r

′), s(z̃)s), . . . ,
∂ 2ϕ

∂ xn,0∂ xp,i
(us(r

′), s(z̃)s)

�

dr ′,

us(r
′) = z(2)s + r ′(z(1)s − z(2)s ).

Similarly, we also obtain that

ψ̄(i,1)s − ψ̄(i,2)s =
�

θ̄ (1,i)
s (z(1)s − z(2)s ), . . . , θ̄ (n,i)

s (z(1)s − z(2)s )
�

+ q
(i)
st (39)

with

θ̄ (p,i)
s =

∫ 1

0

∫ 1

0

�

∂ 2ϕ

∂ x1,0∂ xp,i
(ūs(r, r ′)), . . . ,

∂ 2ϕ

∂ xn,0∂ xp,i
(ūs(r, r ′))

�

dr dr ′,

ūs(r, r ′) = v(2)s (r) + r ′
�

v(1)s (r)− v(2)s (r)
�

and
|q(i)st | ≤ cN [z(1)− z(2)] |t − s|κ.

Now, using (38) and (39) we can write
�

ψ̄(i,1)s − ψ̄(i,2)s

�

−
�

ψ(i,1)s −ψ(i,2)s

�

=
�

(θ̄ (1,i)
s − θ (1,i)

s )(z(1)− z(2)), . . . , (θ̄ (n,i)
s − θ (n,i)

s )(z(1)− z(2))
�

+ q
(i)
st

for any i = 0, . . . , k. Since moreover

ūs(r, r ′)− (us(r
′), s(z̃)s)

= r
�

(z
(2)
t − z(2)s ) + r ′(z(1)t − z(1)s − (z

(2)
t − z(2)s )), z̃t−r1

− z̃s−r1
, . . . , z̃t−rk

− z̃s−rk

�

,

another Taylor expansion yields

|θ̄ (p,i)
s − θ (p,i)

s )| ≤ c
�

N [z(1)] +N [z(2)] +N [z̃]
�

|t − s|κ.
Hence, we obtain

¯

¯

¯

�

ψ̄(i,1)s − ψ̄(i,2)s

�

−
�

ψ(i,1)s −ψ(i,2)s

�

¯

¯

¯

≤ c
�

N [z(1)] +N [z(2)] +N [z̃]
�

N [z(1)− z(2)] |t − s|κ, (40)

from which suitable bounds for Q2 and Q3 are easily deduced. Thus it follows by (37) and (40) that

|ρ(2)st | ≤ c
�

1+N [z(1)] +N [z(2)] +N [z̃]
�2 N [z(1)− z(2)] |t − s|2κ.

Combining this estimate with (36) we finally have

|ρst | ≤ c
�

1+N [z(1)] +N [z(2)] +N [z̃]
�2 N [z(1)− z(2)] |t − s|2κ. (41)

(iv) The assertion follows now from (28), (29), (34), (35) and (41).
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3.3 Integration of delayed controlled paths (DCP)

The aim of this section is to define the integral J (m∗d x), where m is a delayed controlled path
m ∈ Dκ,α̂([a, b];Rd). Here we denote by A∗ the transposition of a vector or matrix A and by A1 · A2

the inner product of two vectors or two matrices A1 and A2, namely, if A1,A2 ∈ Rn,d , then A1 · A2 =

Tr
�

A1 A∗2
�

. We will also write Qκ,α. We will also write Qκ,α (resp. Dκ,α) instead of Qκ,α([a, b]; V )

(resp. Dκ,α([a, b]; V )) if there is no risk of confusion about [a, b] and V .

Note that if the increments of m can be expressed like in (17), m∗ admits the decomposition

(δm∗)st =

k
∑

i=0

(δx)∗s−ri ,t−ri
ζ(i)∗s +ρ∗st , (42)

where ρ∗ ∈ C 2κ
2 ([a, b];R1,d) and the densities ζ(i), i = 0, . . . , k, satisfy the conditions of Definition

3.1.

To illustrate the structure of the integral of a DCP, we first assume that the paths x ,ζ(i) and ρ are
smooth, and we express J (m∗d x) in terms of the operators δ and Λ. In this case, J (m∗d x) is well
defined, and we have

∫ t

s

m∗ud xu = m∗s (x t − xs) +

∫ t

s

(m∗u−m∗s )d xu

for a ≤ s ≤ t ≤ b, or in other words

J (m∗ d x) = m∗δx +J (δm∗ d x). (43)

Now consider the term J (δm∗ d x): Using the decomposition (42) we obtain

J (δm∗ d x) =

∫ t

s

 

k
∑

i=0

(δx)∗s−ri ,u−ri
ζ(i)∗s +ρ∗su

!

d xu = Ast +Jst(ρ
∗ d x) (44)

with

Ast =

k
∑

i=0

∫ t

s

(δx)∗s−ri ,u−ri
ζ(i)∗s d xu.

Since, for the moment, we are dealing with smooth paths, the density ζ(i) can be taken out of the
integral above, and we have

Ast =

k
∑

i=0

ζ(i)s · x
2
st(−ri),

with the d × d matrix x2
st(v) defined by

x2
st(v) =

 
∫ t

s

 
∫ u+v

s+v

d xw

!

d x (1)u , . . . ,

∫ t

s

 
∫ u+v

s+v

d xw

!

d x (d)u

!

, 0≤ s ≤ t ≤ T,

for v ∈ {−rk, . . . ,−r0}. Indeed, we can write
∫ t

s

(δx)∗s−ri ,u−ri
ζ(i)∗s d xu =

∫ t

s

ζ(i)s · [(δx)s−ri ,u−ri
⊗ d xu]

= ζ(i)s ·
∫ t

s

(δx)s−ri ,u−ri
⊗ d xu = ζ

(i)
s · x

2
st(−ri).
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Inserting the expression of Ast into (43) and (44) we obtain

Jst(m
∗ d x) = m∗s (δx)st +

k
∑

i=0

ζ(i)s · x
2
st(−ri) +Jst(ρ

∗ d x) (45)

for a ≤ s ≤ t ≤ b.

Let us now consider the Lévy area term x2
st(−ri). If x is a smooth path, it is readily checked that

(δx2(−ri))sut = x2
st(−ri)− x2

su(−ri)− x2
ut(−ri) = (δx)s−ri ,u−ri

⊗ (δx)ut ,

for any i = 0, . . . , k. This decomposition of δx2(−ri) into a product of increments is the fundamental
algebraic property we will use to extend the above integral to non-smooth paths. Hence, we will
need the following assumption:

Hypothesis 3.4. The path x is a Rd -valued γ-Hölder continuous function with γ > 1
3

and admits a

delayed Lévy area, i.e., for all v ∈ {−rk, . . . ,−r0}, there exists a path x2(v) ∈ C 2γ
2 ([0, T];Rd,d), which

satisfies

δx2(v) = δx(v)⊗δx , (46)

that is
�

(δx2(v))sut

�

(i, j) = (δx i)s+v,u+v(δx j)ut for all s,u, t ∈ [0, T], i, j ∈ {1, . . . , d}.

In the above formulae, we have set x(v) for the shifted path x(v)s = xs+v .

To finish the analysis of the smooth case it remains to find a suitable expression for J (ρ∗ d x). For
this, we write (45) as

Jst(ρ
∗ d x) = Jst(m

∗ d x)−m∗s (δx)st −
k
∑

i=0

ζ(i)s · x
2
st(−ri) (47)

and we apply δ to both sides of the above equation. For smooth paths m and x we have

δ(J (m∗ d x)) = 0, δ(m∗δx) =−δm∗δx ,

by Proposition 2.4. Hence, applying these relations to the right hand side of (47), using the decom-
position (42) and again Proposition 2.4, we obtain

[δ(J (ρ∗ d x))]sut

= (δm∗)su(δx)ut +

k
∑

i=0

(δζ(i))su · x2
st(−ri)−

k
∑

i=0

ζ(i)s · (δx2(−ri))sut

=

k
∑

i=0

(δx)∗s−ri ,u−ri
ζ(i)∗s (δx)ut +ρ

∗
su(δx)ut

+

k
∑

i=0

(δζ(i))su · x2
st(−ri)−

k
∑

i=0

ζ(i)s · [(δx)s−ri ,t−ri
⊗ (δx)ut]

= ρ∗su(δx)ut +

k
∑

i=0

(δζ(i))su · x2
st(−ri).
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In summary, we have derived the representation

δ(J (ρ∗ d x)) = ρ∗δx +

k
∑

i=0

δζ(i) · x2(−ri),

for two regular paths m and x .

If m, x ,ζ(i), i = 0, . . . , k and x2 are smooth enough, we have δ(J (ρ∗ d x)) ∈ ZC 1+
3 and thus belongs

to the domain of Λ due to Proposition 2.2. (Recall that δδ = 0.) Hence, it follows

J (ρ∗ d x) = Λ

 

ρ∗δx +

k
∑

i=0

δζ(i) · x2(−ri)

!

,

and inserting this identity into (45) we end up with

J (m∗ d x) = m∗δx +

k
∑

i=0

ζ(i) · x2(−ri) +Λ

 

ρ∗δx +

k
∑

i=0

δζ(i) · x2(−ri)

!

. (48)

The expression above can be generalized to the non-smooth case, since J (m∗ d x) has been ex-
pressed only in terms of increments of m and x . Consequently, we will use (48) as the definition for
our extended integral.

Proposition 3.5. For fixed 1
3
< κ < γ, let x be a path satisfying Hypothesis 3.4. Furthermore, let

m ∈ Dκ,α̂([a, b];Rd) such that the increments of m are given by (17). Define z by za = α with α ∈ R
and

(δz)st = m∗s (δx)st +

k
∑

i=0

ζ(i)s · x
2
st(−ri) +Λst

 

ρ∗δx +

k
∑

i=0

δζ(i) · x2(−ri)

!

(49)

for a ≤ s ≤ t ≤ b. Finally, set

J (m∗ d x) = δz. (50)

Then:

1. J (m∗ d x) coincides with the usual Riemann integral, whenever m and x are smooth functions.

2. z is well-defined as an element of Qκ,α([a, b];R) with decomposition δz = m∗δx + ρ̂, where

ρ̂ ∈ C 2κ
2 ([a, b];R) is given by

ρ̂ =

k
∑

i=0

ζ(i) · x2(−ri) +Λ

 

ρ∗δx +

k
∑

i=0

δζ(i) · x2(−ri)

!

.

3. The semi-norm of z can be estimated as

N [z;Qκ,α([a, b];R)] ≤ ‖m‖∞ + cint(b− a)γ−κ(|α̂|+N [m;Dκ,α̂([a, b];Rd)]) (51)

where

cint = cκ,γ,T

 

‖x‖γ +
k
∑

i=0

‖x2(−ri)‖2γ

!

with the constant cκ,γ,T depending only on κ,γ and T. In particular,

‖z‖κ ≤ cint(b− a)γ−κ(|α̂|+N [m;Dκ,α̂([a, b];Rd)]). (52)
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4. It holds

Jst(m
∗ d x) = lim

|Πst |→0

N
∑

i=0






m∗t i
(δx)t i t i+1

+

k
∑

j=0

ζ
( j)
t i
· x2

t i t i+1
(−r j)






(53)

for any a ≤ s < t ≤ b, where the limit is taken over all partitions Πst = {s = t0, . . . , tN = t} of

[s, t], as the mesh of the partition goes to zero.

Proof. (1) The first of our claims is a direct consequence of the derivation of equation (48).

(2) Set cx = ‖x‖γ +
∑k

i=0 ‖x2(−ri)‖2γ. Now we show that equation (49) defines a classical weakly
controlled path. Actually, the term m∗δx is trivially of the desired form for an element of Qκ,α. So

consider the term h
(1)
st =

∑k

i=0 ζ
(i)
s · x2

st(−ri) for a ≤ s ≤ t ≤ b. We have

|h(1)st | ≤
k
∑

i=0

‖ζ(i)‖∞|x2
st(−ri)| ≤

�
k
∑

i=0

‖ζ(i)‖∞
�

cx |t − s|2γ

≤
�

k
∑

i=0

‖ζ(i)‖∞
�

cx(b− a)2(γ−κ)|t − s|2κ.

Thus

‖h(1)‖2κ ≤ cx(b− a)2(γ−κ)N [m;Dκ,α̂([a, b];Rd)].

The term

h(2) = ρ∗δx +

k
∑

i=0

δζ(i) · x2(−ri)

satisfies δh(2) = 0. Indeed, recall that the increments of m are given by (17). Hence we have

ρ = δm−
k
∑

i=0

ζ(i)δx(−ri)

and

h(2) = δm∗δx −
k
∑

i=0

δx(−ri)
∗ζ(i)∗δx +

k
∑

i=0

δζ(i) · x2(−ri)

= δm∗δx −
k
∑

i=0

ζ(i) ·δx2(−ri) +

k
∑

i=0

δζ(i) · x2(−ri)

using Hypothesis 3.4 for the Lévy area. But Proposition 2.4 gives

δ(ζ(i) · x2(−ri)) = −δζ(i) · x2(−ri) + ζ
(i) ·δx2(−ri).

Hence it follows

h(2) = δm∗δx −
k
∑

i=0

δ(ζ(i) · x2(−ri))
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and thus
δh(2) = 0

using again Proposition 2.4 and δδ = 0.

Moreover, recalling the notation (8), it holds

‖ρ∗δx‖2κ,κ ≤ cx(b− a)γ−κ‖ρ‖2κ

and

‖
k
∑

i=0

δζ(i) · x2(−ri)‖κ,2κ ≤ cx(b− a)2(γ−κ)
k
∑

i=0

‖ζ(i)‖κ.

Since γ > κ > 1
3

and δh(2) = 0, we have h(2) ∈ Dom(Λ) and

‖h(2)‖3κ ≤ cx(1+ Tγ−κ)(b− a)γ−κN [m;Dκ,α̂([a, b];Rd)].

By Proposition 2.2 it follows

‖Λ(h(2))‖3κ ≤
1

23κ− 2
‖h(2)‖3κ

and we finally obtain

‖h(1)+Λ(h(2))‖2κ ≤ cx

23κ − 1

23κ − 2
(1+ Tγ−κ)(b− a)γ−κN [m;Dκ,α̂([a, b];Rd)]. (54)

Thus we have proved that ρ̂ ∈ C 2κ
2 ([a, b];R) and hence that z ∈ Qκ,α([a, b];R).

(3) Because of (δz)st = m∗s (δx)st + ρ̂st and m ∈ Dκ,α̂([a, b];Rd) the estimates (51) and (52) now
follow from (54).

(4) By Proposition 2.4 (ii) and the decomposition (17) we have that

δ(m∗δx)sut =−(δm∗)su(δx)ut =−ρ∗su(δx)ut −
k
∑

i=0

(δx)∗s−ri ,u−ri
ζ(i)∗u (δx)ut .

Thus, applying again Proposition 2.4 (ii), and recalling Hypothesis 3.4 for the Lévy area, we obtain
that

δ

 

m∗δx +

k
∑

i=0

ζ(i) · x2(−ri)

!

= −


ρ∗δx +

k
∑

i=0

δζ(i) · x2(−ri)



 .

Hence, equation (49) can also be written as

J (m∗ d x) = [Id−Λδ]
 

m∗δx +

k
∑

i=0

ζ(i) · x2(−ri)

!

, (55)

and a direct application of Corollary 2.3 yields (53), which ends our proof.
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Recall that the notation A∗ stands for the transpose of a matrix A. Moreover, in the sequel, we will
denote by cnorm a constant, which depends only on the chosen norm of Rn,d . Then, for a matrix-
valued delayed controlled path m ∈ Dκ,α̂([a, b];Rn,d), the integral J (m d x) will be defined by

J (m d x) =









J (m(1)∗d x)
...

J (m(n)∗d x)









,

where m(i) ∈ Dκ,α̂([a, b];Rd) for i = 1, . . . , n and we have set m = (m(1), . . . , m(n))∗. Now we have
by (51) that

N [J (m d x);Qκ,α([a, b];Rn)] (56)

≤ cnorm

�

‖m‖∞ + cint(b− a)γ−κ(|α̂|+N [m;Dκ,α̂([a, b];Rn,d)])
�

.

For two paths m(1), m(2) ∈ Dκ,α̂([a, b];Rn,d) we obtain the following estimate for the difference of
z(1) = J (m(1) d x) and z(2) = J (m(2) d x): Since m(1)a −m(2)a = 0, we have

N [z(1)− z(2);Qκ,0([a, b];Rn)] (57)

≤ 2cnorm cint(b− a)γ−κN
�

m(1)−m(2);Dκ,0([a, b];Rn,d)
�

.

4 Solution to the delay equation

With the preparations of the last section, we can now solve the equation

¨

d yt = σ(yt , yt−r1
, . . . , yt−rk

)d x t , t ∈ [0, T],
yt = ξt , t ∈ [−rk, 0],

(58)

in the class of classical weakly controlled paths. For this, it will be crucial to use mappings of the
type

Γ :Qκ,α([a, b];Rn)×Qκ,α̃([a− rk, b− r1];R
n)→Qκ,α([a, b];Rn)

for 0 ≤ a ≤ b ≤ T , which are defined by (z, z̃) 7→ ẑ, where ẑ0 = α and δẑ given by δẑ =

J (Tσ(z, z̃) d x), with Tσ as in Proposition 3.2. The first part of the current section will be devoted
to the study of this map. By (56) we have that

N [J (Tσ(z, z̃) d x);Qκ,α([a, b];Rn)]

≤ cnorm

�

‖σ‖∞ + cint(b− a)γ−κ(|α̂|+N [Tσ(z, z̃);Dκ,α̂([a, b];Rn,d)])
�

≤ cnorm

�

‖σ‖∞(1+ cintT
γ−κ) + cint(b− a)γ−κN [Tσ(z, z̃);Dκ,α̂([a, b];Rn,d)]

�

due to |α̂|= |σ(za, s(z̃)a)| ≤ ‖σ‖∞. Since

Tσ(z, z̃) =









Tσ(1)∗(z, z̃)
...

Tσ(n)∗(z, z̃)









,
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where σ(i) ∈ C3
b
(Rn(k+1);Rd) for i = 1, . . . , n and σ = (σ(1), . . . ,σ(n))∗, it follows by (20) that

N [Tσ(z, z̃);Dκ,α̂([a; b];Rn,d)]

≤ cσ,T

�

1+N 2[z;Qκ,α([a, b];Rn)] +N 2[z̃;Qκ,α̃([a− rk, b− r1];R
n)]
�

.

Combining these two estimates we obtain

N
�

Γ(z, z̃);Qκ,α([a; b];Rn)
�

(59)

≤ cgrowth

�

1+N 2[z̃;Qκ,α̃([a− rk, b− r1];R
n)]
��

1+ (b− a)γ−κN 2[z;Qκ,α([a, b];Rn)]
�

,

where the constant cgrowth depends only on cint, cnorm, σ, κ, γ and T . Thus the semi-norm of the
mapping Γ is quadratically bounded in terms of the semi-norms of z and z̃.

Now let z(1), z(2) ∈ Qκ,α([a, b];Rn) and z̃ ∈ Qκ,α̃([a− rk, b− r1];R
n). Then, by (57) we have

N [Γ(z(1), z̃)−Γ(z(2), z̃);Qκ,0([a, b];Rn)] (60)

≤ 2cnorm cint(b− a)γ−κN [Tσ(z(1), z̃)− Tσ(z
(2), z̃);Dκ,0([a, b];Rn,d)].

Applying Proposition 3.3, i.e. inequality (26), to the right hand side of the above equation we obtain
that

N [Γ(z(1), z̃)−Γ(z(2), z̃);Qκ,0([a, b];Rn)] (61)

≤ clip

�

1+ C(z(1), z(2), z̃)
�2N [z(1)− z(2);Qκ,0([a, b];Rn)] (b− a)γ−κ,

with a constant clip depending only on cint, cnorm, σ, κ, γ and T , and moreover

C(z(1), z(2), z̃) =N [z̃;Qκ,α̃([a− rk, b− r1];R
n)]

+N [z(1);Qκ,α([a, b];Rn)] +N [z(2);Qκ,α([a, b];Rn)].

Thus, for fixed z̃ the mappings Γ(·, z̃) are locally Lipschitz continuous with respect to the semi-norm
N [·;Qκ,0([a, b];Rn)].

We also need the following Lemma, which can be shown by straightforward calculations:

Lemma 4.1. Let c,α≥ 0, τ ∈ [0, T] and define

A c,α
τ = {u ∈ R∗+ : c(1+ταu2)≤ u}.

Set also τ∗ = (8c2)−1/α. Then we haveA c,α
τ∗ 6= ; and sup{u ∈ R∗+ ; u ∈A c,α

τ∗ } ≤ (4+ 2
p

2)c.

Now we can state and prove our main result. Recall that we use the notations r = rk and r0 = 0.

Theorem 4.2. Let x be a path satisfying Hypothesis 3.4, let ξ ∈ Qκ,α([−r, 0];Rn) and let σ ∈
C3

b
(Rn(k+1);Rn,d). Then we have:

1. Equation (58) admits a unique solution y inQκ,ξ0
([0, T];Rn) for any 1

3
< κ < γ and any T > 0.
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2. Let F : Qκ,α([−r, 0];Rn)×C γ1 ([0, T];Rd)×
�

C 2γ
2 ([0, T];Rd,d)

�k+1
→ C κ1 ([0, T];Rn) be the

mapping defined by

F
�

ξ, x ,x2(0),x2(−r1), . . . ,x2(−rk)
�

= y,

where y is the unique solution of equation (58). This mapping is locally Lipschitz continuous in

the following sense: Let x̃ be another driving rough path with corresponding delayed Lévy area

~x
2(−v), v ∈ {−rk, . . . ,−r0}, and ξ̃ another initial condition. Moreover denote by ỹ the unique

solution of the corresponding delay equation. Then, for every N > 0, there exists a constant

KN > 0 such that

‖y − ỹ‖κ,∞ ≤ KN

 

‖x − x̃‖γ,∞ +
k
∑

i=0

‖x2(−ri)−~x
2(−ri)‖2γ+ ‖ξ− ξ̃‖κ,∞

!

holds for all tuples (ξ, x ,x2(−r0), . . . ,x2(−rk)), (ξ̃, x̃ ,~x
2(−r0), . . . ,~x

2(−rk)) with

‖ξ‖∞ +N [ξ,Qκ,α([−r, 0];Rn)] + ‖ξ̃‖∞ +N [ξ̃,Qκ,α̃([−r, 0];Rn)]

+ ‖x‖γ,∞ +
k
∑

i=0

‖x2(−ri)‖2γ+ ‖ x̃‖γ,∞ +
k
∑

i=0

‖~x2(−ri)‖2γ ≤ N ,

where ‖ f ‖µ,∞ = ‖ f ‖∞ + ‖δ f ‖µ denotes the usual Hölder norm of a path f .

Proof. The proof of Theorem 4.2 is obtained by means of a fixed point argument, based on the map
Γ defined above.

1) Existence and uniqueness. Without loss of generality assume that T = N r1. We will construct the
solution of equation (58) by induction over the intervals [0, r1], [0,2r1], . . ., [0, N r1], where we
recall that r1 is the smallest delay in (58).

(i) We will first show that equation (58) has a solution on the interval [0, r1]. For this define the
mapping

Γ[0,τ1]
:Qκ,ξ0

([0,τ1];R
n)→Qκ,ξ0

([0,τ1];R
n)

given by ẑ = Γ[0,τ1]
(z), where

(δẑ)st = Jst(Tσ(z,ξ)d x)

for 0≤ s ≤ t ≤ τ1. Moreover, set
τ̃1 = (8c2

1)
−1/(γ−κ) ∧ r1,

where
c1 = cgrowth

�

1+N 2[ξ;Qκ,α([−r, 0];Rn)]
�

.

Clearly, if z is a fixed point of the map Γ[0,τ1]
, then z solves equation (58) on the interval [0,τ1].

We shall thus prove that such a fixed point exists. First, due to (59) we have the estimate

N
�

Γ[0,τ1]
(z);Qκ,ξ0

([0,τ1];R
n)
�

≤ c1

�

1+τ1
γ−κN 2[z;Qκ,ξ0

([0,τ1];R
n)]
�

.
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Thanks to our choice of τ̃1 and Lemma 4.1 we can now choose M1 ∈A
c1,γ−κ
τ̃1

accordingly and obtain
that the ball

B
(1)
1 =

¦

z ∈ Qκ,ξ0
([0, τ̃1];R

n); N [z;Qκ,ξ0
([0, τ̃1];R

n)]≤ M1

©

is left invariant under Γ[0,τ̃1]
. Moreover, by equation (61) we now have

N [Γ[0,τ̃1]
(y(1))−Γ[0,τ̃1]

(y(2));Qκ,0([0, τ̃1];R
n)] ≤ c̃1τ̃

γ−κ
1 N [y(1)− y (2);Qκ,0([0, τ̃1];R

n)]

for y(1), y(2) ∈ B
(1)
1 where

c̃1 = clip

�

1+ 2M1+N [ξ;Qκ,α([−r, 0];Rn)]
�2.

Choosing τ∗1 such that

0< τ∗1 ≤
�

2c̃1
�−1/(γ−κ) ∧ τ̃1

and
N1τ
∗
1 = r1

for an integer N1 ∈ N yields that the mapping Γ[0,τ∗1]
is a contraction on B

(1)
1 . Thus, the Banach the-

orem implies that Γ[0,τ∗1]
has a unique fixed point, which leads to a unique solution z(1) of equation

(58) on the interval [0,τ∗1].

If τ∗1 = r1, the first step of the proof is finished. Otherwise, define the mapping

Γ[τ∗1,2τ∗1]
:Q
κ,z(1)
τ∗1

([τ∗1, 2τ∗1];R
n)→Q

κ,z(1)
τ∗1

([τ∗1, 2τ∗1];R
n)

given by ẑ = Γ[τ∗1,2τ∗1]
(z), where

(δẑ)st = Jst(Tσ(z,ξ)d x)

for τ∗1 ≤ s ≤ t ≤ 2τ∗1. Since 2τ∗1 ≤ r1, it still holds

N [Γ[τ∗1,2τ∗1]
(z);Q

κ,z(1)
τ∗1

([τ∗1, 2τ∗1];R
n)]≤ c1

�

1+τ∗1
γ−κN 2[z;Q

κ,z(1)
τ∗1

([τ∗1, 2τ∗1];R
n)]
�

and thus the ball

B
(1)
2 =

¨

z ∈ Q
κ,z(1)
τ∗1

([τ∗1, 2τ∗1];R
n); N [z;Q

κ,z(1)
τ∗1

([τ∗1, 2τ∗1];R
n)]≤ M1

«

,

where M1 is as in the previous step, is left invariant under Γ[τ∗1,2τ∗1]
. Hence, we obtain as above that

N [Γ[τ∗1,2τ∗1]
(y(1))−Γ[τ∗1,2τ∗1]

(y(2));Qκ,0([τ
∗
1, 2τ∗1];R

n)] ≤
1

2
N [y(1)− y (2);Qκ,0([τ

∗
1, 2τ∗1];R

n)]

for y(1), y(2) ∈ B
(1)
2 and again the Banach fixed point theorem gives the existence of a unique solution

z(2) of equation (58) on the interval [τ∗1, 2τ∗1].

Repeating this step as often as necessary, which is possible since the estimates on the norms of the
mappings Γ[ jτ∗1,( j+1)τ∗1]

, j = 0, . . . , N1 − 1, are as above, i.e. the constants c1 and c̃1 do not change,

we obtain that z =
∑N1

j=1 z( j) 1I j
, where I j = [( j − 1)τ∗1, jτ∗1], is the unique solution to the equation

(58) on the interval [0, r1].
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Now, it remains to verify that z =
∑N1

j=1 z( j) 1I j
is in fact a CCP. First note that by construction z is

continuous on [0, r1] and moreover that z is a CCP on the subintervals I j with decomposition

(δz)st = ζ
( j)
s (δx)st +ρ

( j)
st , s, t ∈ I j ,

for s ≤ t, where
ζ( j)s = σ(zs, s(z)s), s ∈ I j .

Clearly, we have

(δz)st =

jt
∑

j= js

(δz( j))s∨t j ,t∧t j+1

for 0≤ s ≤ t ≤ r1, where t j = ( j − 1)τ1 and js, jt ∈ {1, . . . , N1} are such that

t js
≤ s < t js+1 < . . .< t jt

< t ≤ t jt+1.

Setting

ζs =

N1
∑

j=1

ζ( j)s 1I j
(s), s ∈ [0, r1],

and

ρst =

jt
∑

j= js

(ζ
( j)
s∨t j
− ζ( js)s )(δx)s∨t j ,t∧t j+1

+

jt
∑

j= js

ρ
( j)
s∨t j ,t∧t j+1

we obtain

(δz)st = ζs(δx)st +ρst

for 0≤ s ≤ t ≤ r1.

Now, it follows easily by the subadditivity of the Hölder norms that

sup
s,t∈[0,r1]

|(δz)st |
|s− t|κ ≤

N1
∑

j=1

sup
s,t∈I j

|(δz( j))st |
|s− t|κ

and

sup
t∈[0,r1]

|ζt |= sup
j=1,...,N1

sup
t∈I j

|ζ( j)t |, sup
s,t∈[0,r1]

|(δζ)st |
|s− t|κ ≤

N1
∑

j=1

sup
s,t∈I j

|(δζ( j))st |
|s− t|κ .

Furthermore, we obtain

sup
s,t∈[0,r1]

|ρst |
|s− t|2κ ≤

N1
∑

j=1

sup
s,t∈I j

|(ρ( j))st |
|s− t|2κ + N1 sup

s,t∈[0,r1]

|(δx)st |
|s− t|κ

N1
∑

j=1

sup
s,t∈I j

|(δζ( j))st |
|s− t|κ .

Thus, we have in fact that z ∈ Qκ,ξ0
([0, r1];R

n).

(ii) Let l = 1, . . . , N − 1 and assume that z̃ ∈ Qκ,ξ0
([0, l r1];R

n) is the solution of the delay equation
(58) on the interval [0, l r1]. To show the existence of a unique solution on the interval [l r1, (l+1)r1]

define the mapping

Γ[l r1,l r1+τl]
:Qκ,z̃l r1

([l r1, l r1+τl];R
n)→Qκ,z̃l r1

([l r1, l r1+τl];R
n)
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given by ẑ = Γ[l r1,l r1+τl]
(z), where

(δẑ)st = Jst(Tσ(z, s(z̃))d x)

for l r1 ≤ s ≤ t ≤ l r1+τl . Moreover, set

cl+1 = cgrowth

�

1+N 2[z̃;Qκ,z̃l r1−rk
([l r1− rk, l r1];R

n)]
�

,

τ̃l+1 = (8c2
l+1)
−1/(γ−κ) ∧ r1,

for which Lemma 4.1 leads to a corresponding choice of Ml+1 and B
(l+1)
1 . It remains to define

c̃l+1 = clip

�

1+ 2Ml+1+N [z̃;Qκ,z̃l r1−rk
([l r1− rk, l r1];R

n)]
�2

and to choose τ∗
l+1 such that

0< τ∗l+1 ≤
�

2c̃l+1
�−1/(γ−κ) ∧ τ̃l+1

and
Nl+1τ

∗
l+1 = r1

for an integer Nl+1 ∈ N.

Proceeding completely analogous to step (i) we obtain the existence of a unique path z ∈
Qκ,z̃l r1

([l r1, (l + 1)r1];R
n), which solves the delay equation (58) on the interval [l r1, (l + 1)r1]

for a given "initial path” z̃ ∈ Qκ,ξ0
([0, l r1];R

n). Patching these two paths together, we obtain (using
the same arguments as at the end of step (i)) a path z ∈ Qκ,ξ0

([0, (l + 1)r1];R
n), which solves

equation (58) on the interval [0, (l + 1)r1].

Thus we have shown that there exists a unique path z ∈ Qκ,ξ0
([0, T];Rn), which solves the equation

(58). Moreover, by the above construction we obtain the following bound on the norm of this path:

N [z;Qκ,ξ0
([0, T];Rn)]≤ f

 

‖δx‖γ+
k
∑

i=0

‖x2(−ri)‖2γ+N [ξ;Qκ,α([−r, 0];Rn)]

!

. (62)

Here f : [0,∞) → (0,∞) is a continuous non-decreasing function, which depends only on
κ,γ, n, d, k,σ, T and r1, . . . , rk.

2) Continuity of the Itô map. For convenience and to simplify the notation, we assume now
that n = 1. The general case n ∈ N can be shown similar, but requires more cumbersome no-
tations. Let y = F

�

ξ, x ,x2(0),x2(−r1), . . . ,x2(−rk)
�

. Since y solves equation (58), we have

(δ y)st = Jst(σ
∗(y, s(y))d x) with σ ∈ C3

b
(R1(k+1),Rd). It follows by the Propositions 3.2 and 3.5

that

(δ y)st = m∗s (δx)st +

k
∑

i=0

ζ(i)s · x
2
st(−ri) +Λst

 

ρ̂∗δx +

k
∑

i=0

δζ(i) · x2(−ri)

!

(63)

for 0≤ s ≤ t ≤ T with

ms = σ(ys, s(y)s), ψ(i)s =
∂ σ

∂ x i

(ys, s(y)s) ζ(i)s =ψ
(i)
s m∗s−ri

(64)
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for i = 0, . . . , k. Note moreover that ρ̂ = ρ̂(1)+ ρ̂(2) is given by the relation

ρ̂
(1)
st =

k
∑

i=0

ψ(i)s ρs−ri ,t−ri
, (65)

ρ̂
(2)
st = σ(yt , s(y)t)−σ(ys, s(y)s)−

k
∑

i=0

ψ(i)s (δ y)s−ri ,t−ri
(66)

with ρ in turn given by

ρst =

k
∑

i=0

ζ(i)s · x
2
st(−ri) +Λst

 

ρ̂∗δx +

k
∑

i=0

δζ(i) · x2(−ri)

!

. (67)

Now consider (58) with a different initial path ξ̃, driving rough path x̃ and corresponding delayed
Lévy area~x

2(v) for v ∈ {−rk, . . . ,−r0}. If the assumptions of the theorem are satisfied, then also the
equation

¨

d ỹt = σ( ỹt , ỹt−r1
, . . . , ỹt−rk

) d x̃ t , t ∈ [0, T],
ỹt = ξ̃t , t ∈ [−rk, 0]

admits a unique solution ỹ = F(ξ̃, x̃ ,~x
2(0),~x

2(−r1), . . . ,~x
2(−rk)). Clearly we also have in this case

(δ ỹ)st = m̃∗s (δ x̃)st +

k
∑

i=0

ζ̃(i)s ·~x
2(−ri)st +Λst

 

˜̂ρ ∗δ x̃ +

k
∑

i=0

δζ̃(i) ·~x2(−ri)

!

(68)

for 0≤ s ≤ t ≤ T with m̃, ψ̃(i), ζ̃(i), ˜̂ρ, ρ̃ defined according to (64), (65), (66) and (67).

(i) We first analyze the difference between ρ and ρ̃. Here we have

ρst − ρ̃st = e
(1)
st +Λst(e

(2)) (69)

with

e
(1)
st =

k
∑

i=0

ζ(i)s · (x
2(−ri))st −

k
∑

i=0

ζ̃(i)s · (~x
2(−ri))st ,

e(2) = ρ̂∗δx − ˜̂ρ ∗δ x̃ +

k
∑

i=0

δζ(i) · x2(−ri)−
k
∑

i=0

δζ̃(i) ·~x2(−ri).

Now set

C(y) = ‖x‖γ,∞ +
k
∑

i=0

‖x2(−ri)‖2γ+N [y;Qκ,ξ0
([0, T];R)] + ‖ξ‖∞ +N [ξ;Qκ,α([−r, 0];R)],

define C( ỹ) accordingly for ỹ , and let R be the quantity

R= ‖x − x̃‖γ,∞ +
k
∑

i=0

‖x2(−ri)−~x
2(−ri)‖2γ+ ‖ξ− ξ̃‖κ,∞.
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In the following we will denote constants, which depend only on κ,γ, n, d, k,σ, T and r1, . . . , rk,
by c regardless of their value. Moreover, we will use for quantities, which depend continuously on
c, C(y), C( ỹ), the short notation C , i.e. we set

C := g(c, C(y), C( ỹ))

if g : (0,∞)3→ [0,∞) is a continuous and non-decreasing function.

Fix an interval [a, b] ⊆ [0, T]. By straightforward calculations we have

|e(1)st | ≤ c |t − s|2γ R+ c C( ỹ)|t − s|2γ sup
τ∈[s−rk ,t]

|yτ− ỹτ| (70)

for s, t ∈ [a, b]. Now, consider the term e(2). We have

e
(2)
sut = ρ̂

∗
su(δx)ut − ˜̂ρ∗su(δ x̃)ut +

k
∑

i=0

(δζ(i))su · x2
ut(−ri)−

k
∑

i=0

(δζ̃(i))su ·~x2
ut(−ri)

= (ρ̂∗− ˜̂ρ∗)su(δx)ut + ˜̂ρ∗su(δ(x − x̃))ut

+

k
∑

i=0

(δ(ζ(i)− ζ̃(i)))su · x2
ut(−ri)−

k
∑

i=0

(δζ̃(i))su · (x2
ut(−ri)−~x

2
ut(−ri))

for s,u, t ∈ [a, b]. Clearly, it holds
¯

¯(ρ̂∗− ˜̂ρ∗)su(δx)ut

¯

¯≤ C(y)|t − u|γ|s− u|2κN [ρ̂− ˜̂ρ;C 2κ
2 ([a, b];Rd)],

¯

¯ ˜̂ρ∗su(δ(x − x̃))ut

¯

¯≤ |t − u|γ|s− u|2κN [ ˜̂ρ;C 2κ
2 ([a, b];Rd)]R

and
¯

¯

¯

¯

¯

k
∑

i=0

(δ(ζ(i)− ζ̃(i)))su · x2
ut(−ri)

¯

¯

¯

¯

¯

≤ c C(y)|t − u|2γ
k
∑

i=0

¯

¯

¯(δ(ζ(i)− ζ̃(i)))su
¯

¯

¯ ,

¯

¯

¯

¯

¯

k
∑

i=0

(δζ̃(i))su · (x2
ut(−ri)−~x

2
ut(−ri))

¯

¯

¯

¯

¯

≤ |t − u|2γ R

k
∑

i=0

¯

¯

¯(δζ̃(i))su

¯

¯

¯ .

Furthermore, we have
¯

¯

¯(δζ̃(i))su

¯

¯

¯≤ C( ỹ)|s− u|κ

for any i = 0, . . . , k and we also obtain by tedious but straightforward computations (similar to the
derivation of equation (34)) that

¯

¯

¯δ(ζ(i)− ζ̃(i))su
¯

¯

¯≤ c(1+ C(y) + C( ỹ))2 sup
τ1,τ2∈[s−rk ,u]

|(yτ1
− ỹτ1

)− (yτ2
− ỹτ2

)|

for any i = 0, . . . , k.

Recall that the classical Hölder norm of a path f is defined by

‖ f ‖µ,∞,[s,t] = sup
τ∈[s,t]

| fτ|+ sup
τ1,τ2∈[s,t]

| fτ1
− fτ2
|

|τ2−τ1|µ
.
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Using this notation and combining the previous estimates, we end up with

¯

¯

¯e
(2)
sut

¯

¯

¯≤ C |t − u|γ|s− u|2κ R+ C |t − u|2γ|s− u|κ‖y − ỹ‖κ,∞,[a−rk ,b]

+ C |t − u|γ|s− u|2κN [ρ̂− ˜̂ρ;C 2κ
2 ([a, b];Rd)]. (71)

Hence e(2) belongs to Dom(Λ) and we obtain by Proposition 2.2 that

‖Λ(e(2))‖3κ ≤ C
�

R+ ‖y − ỹ‖κ,∞,[a−rk ,b] +N [ρ̂− ˜̂ρ;C 2κ
2 ([a, b];Rd)]

�

(b− a)γ−κ. (72)

Inserting the estimates for e(1) and Λ(e(2)), i.e. (70) and (72), into the definition (69) of ρ− ρ̃ gives
finally

N [ρ− ρ̃;C 2κ
2 ([a, b];R)] ≤ C |b− a|γ−κ‖y − ỹ‖κ,∞,[a−rk ,b]

+C |b− a|γ−κ R+ C |b− a|γ−κN [ρ̂− ˜̂ρ;C 2κ
2 ([a, b];Rd)],

and due to the subadditivity of the Hölder norms we get

N [ρ− ρ̃;C 2κ
2 ([a, b];R)] ≤ C |b−a|γ−κN [ρ̂− ˜̂ρ;C 2κ

2 ([a, b];Rd)]+C |b−a|γ−κ ‖y− ỹ‖κ,∞,[a,b]

+ C |b− a|γ−κ ‖y − ỹ‖κ,∞,[a−rk ,a] + C |b− a|γ−κ R. (73)

(ii) Now we have to consider the difference between ρ̂ and ˜̂ρ. Recall that ρ̂ = ρ̂(1) + ρ̂(2) is given
by

ρ̂
(1)
st =

k
∑

i=0

ψ(i)s ρs−ri ,t−ri
,

ρ̂
(2)
st = σ(yt , s(y)t)−σ(ys, s(y)s)−

k
∑

i=0

ψ(i)s (δ y)s−ri ,t−ri

and ˜̂ρ accordingly. Analogous to the proof of Proposition 3.3 we obtain

N [ρ̂(1)− ˜̂ρ(1);C 2κ
2 ([a, b];Rd)]≤ CN [ρ− ρ̃;C 2κ

2 ([a− rk, b];R)] + C‖y − ỹ‖κ,∞,[a−rk ,b]

and
N [ρ̂(2)− ˜̂ρ(2);C 2κ

2 ([a, b];Rd)]≤ C‖y − ỹ‖κ,∞,[a−rk ,b].

Inserting this into (73) gives

N [ρ− ρ̃;C 2κ
2 ([a, b];R)] (74)

≤ C |b− a|γ−κN [ρ− ρ̃;C 2κ
2 ([a, b];R)] + C |b− a|γ−κ ‖y − ỹ‖κ,∞,[a,b]

+ C |b− a|γ−κN [ρ− ρ̃;C 2κ
2 ([a− rk, a];R)] + C |b− a|γ−κ ‖y − ỹ‖κ,∞,[a−rk ,a]

+ C |b− a|γ−κ R.
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(iii) Finally, consider the difference between y and ỹ . Completely analogous to step (i) we also
obtain that

N [y − ỹ;C κ1 ([a, b];R)]

≤ C |b− a|γ−κN [ρ− ρ̃;C 2κ
2 ([a, b];R)] + C |b− a|γ−κ ‖y − ỹ‖κ,∞,[a,b]

+ C |b− a|γ−κN [ρ− ρ̃;C 2κ
2 ([a− rk, a];R)] + C |b− a|γ−κ ‖y − ỹ‖κ,∞,[a−rk ,a]

+ C |b− a|γ−κ R.

Moreover, since

sup
τ∈[a,b]

|yτ− ỹτ| ≤ |ya − ỹa|+ (b− a)κN [y − ỹ;C κ1 ([a, b];R)],

we also have

‖y − ỹ‖κ,∞,[a,b] (75)

≤ C |b− a|γ−κN [ρ− ρ̃;C 2κ
2 ([a, b];R)] + C |b− a|γ−κ ‖y − ỹ‖κ,∞,[a,b]

+ C |b− a|γ−κN [ρ− ρ̃;C 2κ
2 ([a− rk, a];R)] + C |b− a|γ−κ ‖y − ỹ‖κ,∞,[a−rk ,a]

+ |ya − ỹa|+ C |b− a|γ−κ R.

(Note that we consider here the case γ− κ ≤ κ without loss of generality. If γ− κ > κ, then only
(b− a)γ−κ had to be replaced by (b− a)κ in (75) and in the following arguments.)

(iv) Now set
∆(a, b) =N [ρ− ρ̃;C 2κ

2 ([a, b];R)] + ‖y − ỹ‖κ,∞,[a,b].

By combining (74) and (75) we finally have that

∆(a, b)≤ C |b− a|γ−κ∆(a, b) + C |b− a|γ−κ∆((a− rk)
+, a)

+ C |b− a|γ−κ ‖ξ− ξ̃‖κ,∞,[−rk ,0] + |ya − ỹa|+ C |b− a|γ−κ R

and thus

∆(a, b)≤ C |b− a|γ−κ∆(a, b) + C |b− a|γ−κ∆((a− rk)
+, a) (76)

+ |ya − ỹa|+ C |b− a|γ−κ R.

Now choose a = 0 and b1 = (2C)−1/(γ−κ). In this case, we obtain from (76) that

∆(0, b1)≤
1

2
∆(0, b1) + |ξ0− ξ̃0|+

1

2
R,

which yields

∆(0, b1)≤ R+ 2|ξ0− ξ̃0| ≤ 3R. (77)

For the next interval [b1, 2b1], we obtain in turn that

∆(b1, 2b1)≤
1

2
∆(b1, 2b1) +

1

2
∆(0, b1) + |yb1

− ỹb1
|+

1

2
R,
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and hence
∆(b1, 2b1)≤∆(0, b1) + 2|yb1

− ỹb1
|+ R≤ 10R,

by (77).

Repeating this step ⌊T/b1⌋-times we obtain that there exists a continuous non-decreasing function
h : (0,∞)→ [0,∞) such that

∆(i b1 ∧ T, (i + 1)b1 ∧ T )≤ h(T/b1)R

for all i = 0, . . . , ⌊T/b1⌋. Using the subadditivity of the Hölder norms, the estimate

∆(0, T )≤ (1+ T/b1)h(T/b1)R=
�

1+ T (2C)1/(γ−κ)
�

h
�

T (2C)1/(γ−κ)
�

R (78)

follows. Now recall that C depends continuously on c, C(y), C( ỹ), where c is an arbitrary constant,
which depends only on κ,γ, n, d, k,σ, T and r1, . . . , rk,

C(y) = ‖x‖γ,∞ +
k
∑

i=0

‖x2(−ri)‖2γ+N [y;Qκ,ξ0
([0, T];R)] + ‖ξ‖∞ +N [ξ;Qκ,α([−r, 0];R)]

and C( ỹ) is defined accordingly. However, by (62) there exists a continuous and non-decreasing
function f : (0,∞)→ [0,∞) such that

C(y)≤ D+ f (D), C( ỹ)≤ D̃+ f (D̃),

where

D = ‖x‖γ,∞ +
k
∑

i=0

‖x2(−ri)‖2γ+ ‖ξ‖∞ +N [ξ;Qκ,α([−r, 0];R)],

and D̃ is again defined accordingly. Thus, we obtain now from (78) that there exists a continuous
function l : [0,∞)→ [0,∞), which depends only on κ,γ,σ, n, d, k, T and r1, . . . , rk, such that

∆(0, T )≤ l(D+ D̃)R.

Hence, the assertion follows.

5 Application to the fractional Brownian motion

All the previous constructions rely on the specific assumptions we have made on the path x . In this
section, we will show how our results can be applied to the fractional Brownian motion.

5.1 Definition

We consider in this section a d-dimensional fractional Brownian motion (fBm) with Hurst parameter
H ∈ (0,1) defined on the real line, that is a centered Gaussian process

B =
¦

Bt = (B
1
t , . . . , Bd

t ); t ∈ R
©

,
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where B1, . . . , Bd are d independent one-dimensional fBms, i.e. each Bi is a centered Gaussian
process with continuous sample paths and covariance function

RH(t, s) =
1

2

�

|s|2H + |t|2H − |t − s|2H
�

(79)

for i = 1, . . . , d. The fBm verifies the following two important properties:

(scaling) For any c > 0, B(c) = cH B·/c is a fBm, (80)

(stationarity) For any h ∈ R, B·+h− Bh is a fBm. (81)

Notice that, for Malliavin calculus purposes, we shall assume in the sequel that B is defined on a
complete probability space (Ω,F , P), and that F = σ(Bs; s ∈ R).

5.2 Malliavin calculus with respect to fBm

Let us give a few facts about the Gaussian structure of fractional Brownian motion and its Malliavin
derivative process, following Section 2 of [18]. Let E be the set of step-functions on R with values
in Rd . Consider the Hilbert space H defined as the closure of E with respect to the scalar product
induced by

¬

(1[t1,t1], . . . ,1[td ,td]), (1[s1,s1], . . . ,1[sd ,sd])
¶

H

=

d
∑

i=1

�

RH(t
i, si)− RH(t

i, si)− RH(t i , s
i) + RH(t i , si)

�

,

for any −∞ < si < si < +∞ and −∞ < t i < t i < +∞, and where RH(t, s) is given by (79). The
mapping

(1[t1,t1], . . . ,1[td ,td]) 7→
d
∑

i=1

�

Bi

t i − Bi
t i

�

can be extended to an isometry between H and the Gaussian space H1(B) associated with B =

(B1, . . . , Bd). We denote this isometry by ϕ 7→ B(ϕ). Let S be the set of smooth cylindrical random
variables of the form

F = f (B(ϕ1), . . . , B(ϕk)), ϕi ∈H , i = 1, . . . , k,

where f ∈ C∞(Rdk,R) is bounded with bounded derivatives. The derivative operator D of a smooth
cylindrical random variable of the above form is defined as theH -valued random variable

DF =

k
∑

i=1

∂ f

∂ x i

(B(ϕ1), . . . , B(ϕk))ϕi.

This operator is closable from Lp(Ω) into Lp(Ω;H ). As usual, D1,2 denotes the closure of the set of
smooth random variables with respect to the norm

‖F‖21,2 = E|F |2+ E‖DF‖2H .
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In particular, if Di F denotes the Malliavin derivative of F ∈ D1,2 with respect to Bi , we have DiB
j
t =

δi, j1[0,t] for i, j = 1, . . . , d.

The divergence operator I is the adjoint of the derivative operator. If a random variable u ∈
L2(Ω;H ) belongs to dom(I), the domain of the divergence operator, then I(u) is defined by the
duality relationship

E(F I(u)) = E〈DF,u〉H , (82)

for every F ∈ D1,2. Moreover, let us recall two useful properties verified by D and I :

• If u ∈ dom(I) and F ∈ D1,2 such that Fu ∈ L2(Ω;H ), then we have the following integration
by parts formula:

I(Fu) = F I(u)− 〈DF,u〉H . (83)

• If u verifies E‖u‖2H + E‖Du‖2H⊗H < ∞, Dru ∈ dom(I) for all r ∈ R and (I(Dru))r∈R is an
element of L2(Ω;H ), then

Dr I(u) = ur + I(Dru). (84)

5.3 Delayed Lévy area and fractional Brownian motion

The stochastic integrals we shall use in order to construct our delayed Lévy area are defined, in a
natural way, by Russo-Vallois symmetric approximations, that is, for a given process φ we have

∫ t

s

φw d◦Bi
w = L2− lim

ǫ→0
(2ǫ)−1

∫ t

s

φw

�

Bi
w+ǫ − Bi

w−ǫ
�

dw,

provided the limit exists. This pathwise type notion of integral can be related to some stochastic
analysis criterions in the following way (for a proof, see [1]):

Theorem 5.1. Fix t ≥ 0 and let φ ∈ D1,2(H ) be a process such that

Tr[0,t]D
Bi

φ := L2− lim
ǫ→0
(2ǫ)−1

∫ t

0

〈DBi

φu,1[u−ǫ,u+ǫ]〉H du

exists, and such that, setting ℓ(t,u) = u2H−1 + (t − u)2H−1 for 0≤ u< t,

∫ t

0

Eφ2
u ℓ(t,u)du+

∫ t

0

∫ t

0

E (DBi

r φu)
2 ℓ(t,u)dudr <∞.

Then
∫ t

0
φwd◦Bi

w exists and verifies

∫ t

0

φwd◦Bi
w = IBi

(φ1[0,t]) + Tr[0,t]D
Bi

φ.

With these notations in mind, the main result of this section is the following:

Proposition 5.2. Let B be a d-dimensional fractional Brownian motion and suppose H > 1
3
. Then

almost all sample paths of B satisfy Hypothesis 3.4.
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Proof. A natural candidate to be the delayed Lévy area (provided it is well-defined) is given, for any
v ∈ {−rk, . . . ,−r0}, by:

B2
st(v) =

∫ t

s

d◦Bu⊗
∫ u+v

s+v

d◦Br , i.e. B2
st(v)(i, j) =

∫ t

s

d◦Bi
u

∫ u+v

s+v

d◦B j
r , i, j ∈ {1, . . . , d}. (85)

When H = 1
2
, the desired conclusion is easily obtained, because the Russo-Vallois symmetric integral

coincides with the Stratonovich integral.

When H > 1
2
, the Russo-Vallois symmetric integral coincides with the Young integral, which is well

defined in this case, and the assertion still follows easily from the properties of Young integrals.

When 1
3
< H < 1

2
, by Theorem 5.1, we shall obtain (see below) the almost sure existence of the

iterated integral (85) for fixed integration bounds, but unfortunately not as a process. In order
to bypass this difficulty, and rather than trying to prove the uniform version of Theorem 5.1, our
strategy actually consists in defining B2(v) by (85) only for rational times and then to consider its
continuous version (which well exists, since B2(v) will verify the Kolmogorov criterion).

Now, let us proceed with the proof in the case where H ∈ (1
3
, 1

2
) is fixed. It is a classical fact that

B ∈ C γ1 ([0, T];Rd) for any 1
3
< γ < H. Due to the stationarity property (81) we will work without

loss of generality on the interval [0, t − s] instead of [s, t] in the sequel.

1) Case i = j. When v = 0, it is readily checked that

E|B2
st(0)(i, i)|2 =

1

4
E|Bt − Bs|4 =

3

4
|t − s|4H .

Let us now consider the case where v < 0. For φ = (Bi
·+v − Bi

v)1[0,t−s](·), the conditions

of Theorem 5.1 are easily verified, hence
∫ t−s

0
φud◦Bi

u exists. Notice moreover that we have

DBi

r φu = 1[v,u+v](r)1[0,t−s](u) and, for u ∈ [0, t − s] and ǫ ∈ [0,−v] (which is always the case,
for a fixed v < 0 and ǫ small enough) it holds

〈1[v,u+v],1[u−ǫ,u+ǫ]〉H =
1

2

�

|v + ǫ|2H − |v − ǫ|2H + |v − u− ǫ|2H − |v − u+ ǫ|2H
�

=
1

2

�

(−v− ǫ)2H − (−v+ ǫ)2H + (−v+ u+ ǫ)2H − (−v+ u− ǫ)2H
�

.

Thus, we obtain

Tr[0,t−s]D
Bi

φ = −H(−v)2H−1(t − s) +
1

2

�

(t − s− v)2H − (−v)2H
�

.

For x ≥ 0, it is well-known that 0≤ ((−v)+x)2H−(−v)2H ≤ 2H(−v)2H−1 x . Applying this inequality
to the second term of the right hand side of Tr[0,t−s]D

Bi

φ we get

¯

¯

¯Tr[0,t−s]D
Bi

φ

¯

¯

¯≤ H(−v)2H−1(t − s). (86)

On the other hand, we have by (84)

DBi
r IBi (φ) = φr + IBi (DBi

r φ) =
�

φr + IBi (1[r−v,+∞)∩[0,t−s])
�

1[0,t−s](r). (87)
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When −v ≥ t − s, then [r − v,+∞)∩ [0, t − s] = ; for any r ∈ [0, t − s]. By using (82) we deduce

E|IBi

(φ)|2 = E‖φ‖2H = E‖Bi
·+v − Bi

v‖
2
H ([0,t−s])

= E‖Bi‖2H ([0,t−s])
= (t − s)4HE‖Bi‖2H ([0,1]), (88)

where the two last equalities are due to the stationarity (81) and scaling (80) properties of fractional
Brownian motion.

When −v < t − s, then

IBi (1[r−v,+∞)∩[0,t−s]) = (B
i
t−s − Bi

r−v)1[0,t−s+v](r). (89)

We deduce

E|IBi

(φ)|2

= E〈DIBi

(φ),φ〉H by (82)

= E‖φ‖2H ([0,t−s])
+ E〈IBi

(1[r−v,∞)∩[0,t−s]),φ〉H ([0,t−s]) by (87)

= E‖φ‖2H ([0,t−s])
+ E〈(Bi

t−s − Bi
·−v)1[0,t−s+v],φ〉H ([0,t−s]) by (89)

≤ E‖φ‖2H ([0,t−s])
+ E
�

‖(Bi
t−s − Bi

·−v)1[0,t−s+v]‖H ([0,t−s]) ‖φ‖H ([0,t−s])

�

≤
3

2
E‖φ‖2H ([0,t−s])

+
1

2
E‖(Bi

t−s − Bi
·−v)1[0,t−s+v]‖2H ([0,t−s])

because ab ≤ 1
2
(a2+ b2)

=
3

2
(t − s)4HE‖Bi‖2H ([0,1])+

1

2
E‖(Bi

t−s+v − Bi)1[0,t−s+v]‖2H ([0,t−s])
by (80) and (81)

=
3

2
(t − s)4HE‖Bi‖2H ([0,1])+

1

2
(t − s+ v)2HE‖(Bi

t−s+v − Bi
(t+s−v)·)‖

2
H ([0,1])

=
3

2
(t − s)4HE‖Bi‖2H ([0,1])+

1

2
(t − s+ v)4HE‖(Bi

1− Bi)‖2H ([0,1]) by (80)

≤
1

2
(t − s)4H

�

3E‖Bi‖2H ([0,1])+ E‖(Bi
1− Bi)‖2H ([0,1])

�

. (90)

Finally, we can summarize (88) and (90) in

E|IBi

(φ)|2 ≤ cH |t − s|4H ,

with a constant cH > 0, which is in particular independent of v. Putting together this last estimate
with inequality (86), we end up with

E|B2
st(v)(i, i)|2 ≤ cH(1+ |v|2H−1)|t − s|4H

for any v ∈ {−rk, . . . ,−r1}.

2) Case where i 6= j. By stationarity (81), we have for any v ∈ {−rk, . . . ,−r0} that

�

B
j
u+v − B j

v , Bi
u

�

u∈[0,t−s]

L
=
�

B j
u, Bi

u

�

u∈[0,t−s].

Thus, the delayed Lévy area B2
0,t−s(v)(i, j) =

∫ t−s

0
(B

j
u+v − B

j
v)d
◦Bi

u for v < 0 behaves as in the case

where v = 0. But it is a classical result that B2
0,t−s(0) is well-defined for H > 1/3 (see e.g. [20]).

Moreover, it follows again by the stationarity (81) and the scaling (80) properties that

E|B2
0,t−s(v)(i, j)|2 = E|B2

0,t−s(0)(i, j)|2 = |t − s|4HE|B2
01(0)(i, j)|2 ≤ cH |t − s|4H .
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Immediately, we deduce that
E|B2

st(v)(i, j)|2 ≤ cH |t − s|4H

for any v ∈ {−rk, . . . ,−r0}.

Both in the cases i = j and i 6= j the substitution formula for Russo-Vallois integrals easily yields that
δB2(v) = δB(v)⊗ δB. Furthermore, since B2(v) is a process belonging to the second chaos of the
fractional Brownian motion B, on which all Lp norms are equivalent for p > 1, we get that

E|B2
st(v)(i, j)|p ≤ cp|t − s|2pH (91)

for i 6= j and
E|IBi (φ)|p ≤ cp|t − s|2pH (92)

when i = j. In order to conclude that B2(v) ∈ C 2γ
2 (R

d×d) for any 1
3
< γ < H and v ∈ {−rk, . . . ,−r0},

let us recall the following inequality from [9]: Let g ∈ C2(V ) for a given Banach space V . Then, for
any κ > 0 and p ≥ 1 we have

‖g‖κ ≤ c
�

Uκ+2/p;p(g) + ‖δg‖κ
�

with Uγ;p(g) =

 
∫ T

0

∫ T

0

|gst |p

|t − s|γp
dsd t

!1/p

. (93)

By plugging inequality (91)-(92) into (93), by recalling that δB2(v) = δB(v)⊗ δB and (86) hold,
we obtain that B2(v)(i, j) ∈ C 2γ

2 (R
d×d) for any 1

3
< γ < H and i, j = 1, . . . , d.

�
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