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Abstract

We consider the Poisson Boolean model of continuum percolation with balls of fixed radius

R in n-dimensional hyperbolic space Hn. Let λ be the intensity of the underlying Poisson

process, and let NC denote the number of unbounded components in the covered region. For

the model in any dimension we show that there are intensities such that NC = ∞ a.s. if R

is big enough. In H2 we show a stronger result: for any R there are two intensities λc and

λu where 0 < λc < λu < ∞, such that NC = 0 for λ ∈ [0, λc], NC = ∞ for λ ∈ (λc, λu) and

NC = 1 for λ ∈ [λu,∞).
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1 Introduction

We begin by describing the fixed radius version of the so called Poisson Boolean model in Rn,

arguably the most studied continuum percolation model. For a detailed study of this model, we

refer to [18]. Let X be a Poisson point process in Rn with some intensity λ. At each point of

X, place a closed ball of radius R. Let C be the union of all balls, and V be the complement

of C. The sets V and C will be referred to as the vacant and covered regions. We say that

percolation occurs in C (respectively in V ) if C (respectively V ) contains unbounded (connected)

components. For the Poisson Boolean model in Rn, it is known that there is a critical intensity

λc ∈ (0,∞) such that for λ < λc, percolation does not occur in C, and for λ > λc, percolation

occurs in C. Also, there is a critical intensity λ∗
c ∈ (0,∞) such that percolation occurs in V if

λ < λ∗
c and percolation does not occur if λ > λ∗

c . Furthermore, if we denote by NC and NV the

number of unbounded components of C and V respectively, then it is the case that NC and NV

are both almost sure constants which are either 0 or 1. In R2 it is also known that λc = λ∗
c and

that at λc, percolation does not occur in C or V . For n ≥ 3, Sarkar [21] showed that λc < λ∗
c , so

that there exists an interval of intensities for which there is an unbounded component in both

C and V .

It is possible to consider the Poisson Boolean model in more exotic spaces than Rn, and one

might ask if there are spaces for which several unbounded components coexist with positive

probability. The main results of this paper is that this is indeed the case for n-dimensional

hyperbolic space Hn. We show that there are intensities for which there are almost surely

infinitely many unbounded components in the covered region if R is big enough. In H2 we also

show the existence of three distinct phases regarding the number of unbounded components,

for any R. It turns out that the main difference between Rn and Hn which causes this, is

the fact that there is a linear isoperimetric inequality in Hn, which is a consequence of the

constant negative curvature of the spaces. In H2, the linear isoperimetric inequality says that

the circumference of a bounded simply connected set is always bigger than the area of the set.

The main result in H2 is inspired by a theorem due to Benjamini and Schramm. In [6] they

show that for a large class of nonamenable planar transitive graphs, there are infinitely many

infinite clusters for some parameters in Bernoulli bond percolation. For H2 we also show that

the model does not percolate on λc. The discrete analogue of this theorem is due to Benjamini,

Lyons, Peres and Schramm and can be found in [4]. It turns out that several techniques from

the aforementioned papers are possible to adopt to the continuous setting in H2.

There is also a discrete analogue to the main result in Hn. In [17], Pak and Smirnova show

that for certain Cayley graphs, there is a non-uniqueness phase for the number of unbounded

components. In this case, while it is still possible to adopt their main idea to the continuous

setting, it is more difficult than for H2.

The rest of the paper is organized as follows. In section 2 we give a very short review of
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uniqueness and non-uniqueness results for infinite clusters in Bernoulli percolation on graphs

(for a more extensive review, see the survey paper [14]), including the results by Benjamini,

Lyons, Peres, Schramm, Pak and Smirnova. In section 3 we review some elementary properties

of Hn. In section 4 we introduce the model, and give some basic results. Section 5 is devoted

to the proof of the main result in H2 and section 6 is devoted to the proof of the main theorem

for the model in Hn.

2 Non-uniqueness in discrete percolation

Let G = (V, E) be an infinite connected transitive graph with vertex set V and edge set E.

In p-Bernoulli bond percolation on G, each edge in E is kept with probability p and deleted

with probability 1 − p, independently of all other edges. All vertices are kept. Let Pp be the

probability measure on the subgraphs of G corresponding to p-Bernoulli percolation. (It is

also possible to consider p-Bernoulli site percolation in which it is the vertices that are kept or

deleted, and all results we present in this section are valid in this case too.) In this section, ω

will denote a random subgraph of G. Connected components of ω will be called clusters.

Let I be the event that p-Bernoulli bond percolation contains infinite clusters. One of the most

basic facts in the theory of discrete percolation is that there is a critical probability pc = pc(G) ∈
[0, 1] such that Pp(I) = 0 for p < pc(G) and Pp(I) = 1 for p > pc(G). What happens on pc

depends on the graph. Above pc it is known that there is 1 or ∞ infinite clusters for transitive

graphs. If we let pu = pu(G) be the infimum of the set of p ∈ [0, 1] such that p-Bernoulli bond

percolation has a unique infinite cluster, Schonmann [22] showed for all transitive graphs, one

has uniqueness for all p > pu. Thus there are at most three phases for p ∈ [0, 1] regarding the

number of infinite clusters, namely one for which this number is 0, one where the number is ∞
and finally one where uniqueness holds.

A problem which in recent years has attracted much interest is to decide for which graphs

pc < pu. It turns out that whether a graph is amenable or not is central in settling this question:

For K ⊂ V , the inner vertex boundary of K is defined as ∂V K := {y ∈ K : ∃x /∈ K, [x, y] ∈ E}.
The vertex-isoperimetric constant for G is defined as κV (G) := infW

|∂V W |
|W | where the infimum

ranges over all finite connected subsets W of V . A bounded degree graph G = (V, E) is said to

be amenable if κV (G) = 0.

Benjamini and Schramm [7] have made the following general conjecture:

Conjecture 2.1. If G is transitive, then pu > pc if and only if G is nonamenable.

Of course, one direction of the conjecture is the well-known theorem by Burton and Keane [8]

which says that any transitive, amenable graph G has a unique infinite cluster for all p > pc.
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The other direction of Conjecture 2.1 has only been partially solved. Here is one such result that

will be of particular interest to us, due to Benjamini and Schramm [6]. This can be considered

as the discrete analogue to our main theorem in H2. First, another definition is needed.

Definition 2.2. Let G = (V, E) be an infinite connected graph and for W ⊂ V let NW be the

number of infinite clusters of G \ W . The number supW NW where the supremum is taken over

all finite W is called the number of ends of G.

Theorem 2.3. Let G be a nonamenable, planar transitive graph with one end. Then 0 <

pc(G) < pu(G) < 1 for Bernoulli bond percolation on G.

Such a general result is not yet available for non-planar graphs. However, below we present a

theorem by Pak and Smirnova [17] which proves non-uniqueness for a certain class of Cayley

graphs.

Definition 2.4. Let Γ be a finitely generated group and let S = {g±1
1 , ..., g±1

n } be a finite sym-

metric set of generators for Γ. The (right) Cayley graph Γ = Γ(G, S) is the graph with vertex

set Γ and [g, h] is an edge in Γ if and only if g−1h ∈ S.

Let Sk be the multiset of elements of Γ of the type g1g2...gk, g1, ..., gk ∈ S and each such element

taken with multiplicity equal to the number of ways to write it in this way. Then Sk generates

G.

Theorem 2.5. Suppose Γ = Γ(G, S) is a nonamenable Cayley-graph and let Γk = Γ(G, Sk).

Then for k large enough,

pc(Γk) < pu(Γk).

Theorem 2.5 is the inspiration for our main result in Hn.

3 Hyperbolic space

We consider the unit ball model of n-dimensional hyperbolic space Hn, that is we consider Hn

as the open unit ball in Rn equipped with the hyperbolic metric. The hyperbolic metric is the

metric which to a curve γ = {γ(t)}1
t=0 assigns length

L(γ) = 2

∫ 1

0

|γ′(t)|
1 − |γ(t)|2 dt,

and to a set E assigns volume

µ(E) = 2n

∫

E

dx1...dxn

(1 − |x|2)2 .
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The linear isoperimetric inequality for H2 says that for all measurable A ⊂ H2 with L(∂A) and

µ(A) well defined,
L(∂A)

µ(A)
≥ 1. (3.1)

Denote by d(x, y) the hyperbolic distance between the points x and y. Let S(x, r) := {y :

d(x, y) ≤ r} be the closed hyperbolic ball of radius r centered at x. In what follows, area (resp.

length) will always mean hyperbolic area (resp. hyperbolic length). The volume of a ball is

given by

µ(S(0, r)) = B(n)

∫ r

0
sinh(t)n−1 dt (3.2)

where B(n) > 0 is a constant depending only on the dimension. We will make use of the fact

that for any ǫ ∈ (0, r) there is a constant K(ǫ, n) > 0 independent of r such that

µ(S(0, r) \ S(0, r − ǫ)) ≥ K(ǫ, n)µ(S(0, r)) (3.3)

for all r. For more facts about Hn, we refer to [20].

3.1 Mass transport

Next, we present an essential ingredient to our proofs in H2, the mass transport principle which

is due to Benjamini and Schramm [6]. We denote the group of isometries of H2 by Isom(H2).

Definition 3.1. A measure ν on H2×H2 is said to be diagonally invariant if for all measurable

A, B ⊂ H2 and g ∈Isom(H2)

ν(gA × gB) = ν(A × B).

Theorem 3.2. (Mass Transport Principle in H2) If ν is a positive diagonally invariant

measure on H2 × H2 such that ν(A × H2) < ∞ for some open A ⊂ H2, then

ν(B × H2) = ν(H2 × B)

for all measurable B ⊂ H2.

The intuition behind the mass transport principle can be described as follows. One may think

of ν(A × B) as the amount of mass that goes from A to B. Thus the mass transport principle

says that the amount of mass that goes out of A equals the mass that goes into A.

4 The Poisson Boolean model in hyperbolic space

Definition 4.1. A point process X on Hn distributed according to the probability measure P

such that for k ∈ N, λ ≥ 0, and every measurable A ⊂ Hn one has

P[|X(A)| = k] = e−λµ(A) (λµ(A))k

k!
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is called a Poisson process with intensity λ on Hn. Here X(A) = X ∩ A and | · | denotes

cardinality.

In the Poisson Boolean model in Hn, at every point of a Poisson process X we place a ball with

fixed radius R. More precisely, we let C =
⋃

x∈X S(x, R) and V = Cc and refer to C and V as

the covered and vacant regions of Hn respectively. For A ⊂ Hn we let C[A] :=
⋃

x∈X(A) S(x, R)

and V [A] := C[A]c. For x, y ∈ Hn we write x ↔ y if there is some curve connecting x to y which

is completely covered by C. Let dC(x, y) be the length of the shortest curve connecting x and

y lying completely in C if there exists such a curve, otherwise let dC(x, y) = ∞. Similarly, let

dV (x, y) be the length of the shortest curve connecting x and y lying completely in V if there

is such a curve, otherwise let dV (x, y) = ∞. The collection of all components of C is denoted

by C and the collection of all components of V is denoted by V. Let NC denote the number of

unbounded components in C and NV denote the number of unbounded components in V . Next

we introduce four critical intensities as follows. We let

λc := inf{λ : NC > 0 a.s.}, λu = inf{λ : NC = 1 a.s.},

λ∗
c = sup{λ : NV > 0 a.s. }, λ∗

u = sup{λ : NV = 1 a.s. }.

Our main result in H2 is:

Theorem 4.2. For the Poisson Boolean model with fixed radius in H2

0 < λc < λu < ∞.

Furthermore, with probability 1,

(NC , NV ) =











(0, 1), λ ∈ [0, λc]

(∞,∞), λ ∈ (λc, λu)

(1, 0), λ ∈ [λu,∞)

The main result in Hn for any n ≥ 3 is:

Theorem 4.3. For the Poisson Boolean model with big enough fixed radius R in Hn, λc < λu.

In what follows, we present several quite basic results. The proofs of the following two lemmas,

which give the possible values of NC and NV are the same as in the Rn case, see Propositions

3.3 and 4.2 in [18], and are therefore omitted.

Lemma 4.4. NC is an almost sure constant which equals 0, 1 or ∞.

Lemma 4.5. NV is an almost sure constant which equals 0, 1 or ∞.

Next we present some results concerning λc and λ∗
c .

1385



Lemma 4.6. For the Poisson Boolean model with balls of radius R in Hn it is the case that

λc(R) > µ(S(0, 2R))−1.

The proof is identical to the Rn case, see Theorem 3.2 in [18].

Proposition 4.7. Consider the Poisson Boolean model with balls of radius R in Hn. There is

R0 < ∞ and a constant K = K(n) > 0 independent of R such that for all R ≥ R0 we have

λc(R) ≤ Kµ(S(0, 2R))−1.

Proof. We prove the proposition using a supercritical branching process, the individuals of which

are points in Hn. The construction of this branching process is done by randomly distorting a

regular tree embedded in the space.

Without loss of generality we assume that there is a ball centered at the origin, and the origin

is taken to be the 0’th generation. Let a be such that a six-regular tree with edge length a can

be embedded in H2 in such a way that the angles between edges at each vertex all equal π/3,

and d(u, v) ≥ a for all vertices u and v in the tree. Suppose R is so large that 2R − 1 > a.

Next pick three points x1, x2, x3 on ∂S(0, 2R) ∩ H2 such that the angles between the geodesics

between the origin and the points is 2π/3. We define a cell associated to xi as the region in

S(0, 2R) \ S(0, 2R − 1) which can be reached by a geodesic from the origin which diverts from

the geodesic from the origin to xi by an angle of at most π/6.

For every cell that contains a Poisson point, we pick one of these uniformly at random, and take

these points to be the individuals of the first generation. We continue building the branching

process in this manner. Given an individual y in the n:th generation, we consider an arbitrary

hyperbolic plane containing y and its parent, and pick two points at distance 2R from y in this

plane such that the angles between the geodesics from y to these two points and the geodesic

from y to its parent are all equal to 2π/3. Then to each of the new points, we associate a cell

as before, and check if there are any Poisson points in them. If so, one is picked uniformly at

random from each cell, and these points are the children of y.

We now verify that all the cells in which the individuals of the branching process were found

are disjoint. By construction, if y is an individual in the branching process, the angles between

the geodesics from y to its two possible children and its parent are all in the interval (π/3, π),

and therefore greater than the angles in a six-regular tree. Also, the lengths of these geodesics

are in the interval (2R − 1, 2R) and therefore larger than a. Thus by the choice of a, if all the

individuals were in the same hyperbolic plane, the cells would all be disjoint.

Suppose all individuals are in H2, with the first individual at the origin. For each child of

the origin we may pick two geodesics from the origin to infinity with angle θ less than π/3

between them that define a sector which contains the child and all of its descendants and no

other individuals, and the angle between any of these two geodesics and the geodesic between
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the origin and the child is θ/2. In the same way, for each child the grandchildren and their

corresponding descendants can be divided into sectors with infinite geodesics emanating from

the child and so on. Now, such a sector emanating from an individual will contain all the sectors

that emanates from descendants in it.

From a sector emanating from an individual, we get a n-dimensional sector by rotating it along

the geodesic going through the individual and its corresponding child. Then this n-dimensional

sector will contain the corresponding n-dimensional sectors emanating from the child. From this

it follows that the cells will always be disjoint.

Now, if the probability that a cell contains a poisson point is greater than 1/2, then the expected

number of children to an individual is greater than 1 and so there is a positive probability that

the branching process will never die out, which in turn implies that there is an unbounded

connected component in the covered region of Hn.

Let BR denote a cell. By 3.3 there is K1 > 0 independent of R such that µ(BR) ≥ K1µ(S(0, 2R)).

By the above it follows that

λc(R) ≤ log 2

µ(BR)
≤ log 2

K1µ(S(0, 2R))
,

completing the proof.

Lemma 4.8. For the Poisson Boolean model in H2, λ∗
c < ∞.

Proof. Let Γ be a regular tiling of H2 into congruent polygons of finite diameter. The polygons

of Γ can be identified with the vertices of a planar nonamenable transitive graph G = (V, E).

Next, we define a Bernoulli site percolation ω on G. We declare each vertex v ∈ V to be in

ω if and only if its corresponding polygon Γ(v) is not completely covered by C[Γ(v)]. Clearly,

the vertices are declared to be in ω or not with the same probability and independently of each

other. Now for any v,

lim
λ→∞

P[v is in ω] = 0.

Thus, by Theorem 2.3, for λ large enough, there are no infinite clusters in ω. But if there are

no infinite clusters in ω, there are no unbounded components of V . Thus λ∗
c < ∞.

In H2, we will need a correlation inequality for increasing and decreasing events. If ω and ω′

are two realizations of a Poisson Boolean model we write ω ¹ ω′ if any ball present in ω is also

present in ω′. An event A measurable with respect to the Poisson process is said to be increasing

(respectively decreasing) if ω ¹ ω′ implies 1A(ω) ≤ 1A(ω′) (respectively 1A(ω) ≥ 1A(ω′)).

Theorem 4.9. (FKG inequality) If A and B are both increasing or both decreasing events

measurable with respect to the Poisson process X, then P[A ∩ B] ≥ P[A]P[B].
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The proof is almost identical to the proof in the Rn case, see Theorem 2.2 in [18]. In particular,

we will use the following simple corollary to Theorem 4.9, the proof of which can be found in

[12], which says that if A1, A2, ..., Am are increasing events with the same probability, then

P[A1] ≥ 1 − (1 − P[∪m
i=1Ai])

1/m .

The same holds when A1, A2, ..., Am are decreasing.

For the proof of Theorem 4.2 we need the following lemma, the proof of which is identical to

the discrete case, see [14].

Lemma 4.10. If limd(u,v)→∞ P[u ↔ v] = 0 then there is a.s. not a unique unbounded component

in C.

5 The number of unbounded components in H2

The aim of this section is to prove Theorem 4.2. We perform the proof in the case R = 1 but

the arguments are the same for any R. We first determine the possible values of (NC , NV ) for

the model in H2. The first lemma is an application of the mass transport principle. First, some

notation is needed.

Definition 5.1. If H is a random subset of H2 which is measurable with respect to the Poisson

process, we say that the distribution of H is Isom(H2)-invariant if gH has the same distribution

as H for all g ∈ Isom(H2).

In our applications, H will typically be a union of components from C or V or something similar.

Lemma 5.2. Suppose H is a random subset of H2 which is measurable with respect to the

Poisson process, such that its distribution is Isom(H2)-invariant. Also suppose that if B is a

bounded subset of H2, then L(B∩∂H) < ∞ a.s. and B intersects only finitely many components

of H a.s. If H contains only finite components a.s., then for any measurable A ⊂ H2

E[µ(A ∩ H)] ≤ E[L(A ∩ ∂H)].

Before the proof we describe the intuition behind it: we place mass of unit density in all of H2.

Then, if h is a component of H, the mass inside h is transported to the boundary of h. Then

we use the mass transport principle: the expected amount of mass transported out of a subset

A equals the expected amount of mass transported into it. Finally we combine this with the

isoperimetric inequality (3.1).

Proof. For A, B ⊂ H2, let

η(A × B, H) :=
∑

h

µ(B ∩ h)L(A ∩ ∂h)

L(∂h)
.
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and let ν(A × B) := E[η(A × B, H)]. (Note that only components h that intersect both A and

B give a non-zero contribution to the sum above.) Since the distribution of H is Isom(H2)-

invariant, we get for each g ∈Isom(H2)

ν(gA × gB) = E[η(gA × gB, H)] = E[η(gA × gB, gH)]

= E[η(A × B, H)] = ν(A × B).

Thus, ν is a diagonally invariant positive measure on H2×H2. We have ν(H2×A) = E [µ(A ∩ H)]

and

ν(A × H2) = E

[

∑

h

µ(h)L(A ∩ ∂h)

L(∂h)

]

≤ E[L(A ∩ ∂H)]

where the last inequality follows from the linear isoperimetric inequality. Hence, the claim follows

by Theorem 3.2.

In the following lemmas, we exclude certain combinations of NC and NV . The first lemma can

be considered as a continuous analogue to Lemma 3.3 in [6].

Lemma 5.3. If H is a union of components from C and V such that the distribution of H is

Isom(H2)-invariant, then H and/or Hc contains unbounded components almost surely.

Proof. Suppose H and D := Hc contains only finite components, and let in this proof H0 and

D0 be the collections of the components of H and D respectively. Then every element h of H0

is surrounded by a unique element h′ of D0, which in turn is surrounded by a unique element

h′′ of H0. In the same way, every element d of D0 is surrounded by a unique element d′ of

H0 which in turn is surrounded by a unique element d′′ of D0. Inductively, for j ∈ N, let

Hj+1 := {h′′ : h ∈ Hj} and Dj+1 := {d′′ : d ∈ Dj}. Next, for r ∈ N, let

Ar :=
r

⋃

j=0

({h ∈ H0 : sup{i : h ∈ Hi} = j} ∪ {d ∈ D0 : sup{i : d ∈ Di} = j}).

In words, Hj and Dj define layers of components from H and D. Thus Ar is the union of all

layers of components from H and D that have at most r layers inside of them. Now let B be

some ball in H2. Note that L(B ∩ ∂Ar) ≤ L(B ∩ ∂C) and E[L(B ∩ ∂C)] < ∞. Also, almost

surely, there is some random r0 such that B will be completely covered by Ar for all r ≥ r0.

Thus the dominated convergence theorem gives

lim
r→∞

E[µ(B ∩ Ar)] = µ(B) and lim
r→∞

E[L(B ∩ ∂Ar)] = 0.

Since the distribution of Ar is Isom(H2)-invariant we get by Lemma 5.2 that there is r1 < ∞
such that for r ≥ r1,

P[Ar has unbounded components] > 0.

But by construction, for any r it is the case that Ar has only finite components. Hence the

initial assumption is false.
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Lemma 5.4. The cases (NC , NV ) = (∞, 1) and (NC , NV ) = (1,∞) have probability 0.

Proof. Suppose NC = ∞. First we show that it is possible to pick r > 0 such that the event

A(x, r) :=

{S(x, r) intersects at least 2 disjoint unbounded components of C[S(x, r)c]}

has positive probability for x ∈ H2. Suppose S(x, r0) intersects an unbounded component of C

for some r0 > 0. Then if S(x, r0) does not intersect some unbounded component of C[S(x, r0)
c],

there must be some ball centered in S(x, r0 + 2)\S(x, r0 + 1) being part of an unbounded com-

ponent of C[S(x, r0 + 1)c], which is to say that S(x, r0 + 1) intersects an unbounded component

of C[S(x, r0 + 1)c]. Clearly we can find r̃ such that

B(x, r̃) := {S(x, r̃) intersects at least 3 disjoint unbounded components of C}.

By the above discussion it follows that P[A(x, r̃) ∪ A(x, r̃ + 1)] > 0, which proves the existence

of r such that A(x, r) has positive probability. Pick such an r and let E(x, r) := {S(x, r) ⊂
C[S(x, r)]}. E has positive probability and is independent of A so A ∩ E has positive proba-

bility. By planarity, on A ∩ E, V contains at least 2 unbounded components. So with positive

probability, NV > 1. By Lemma 4.5, NV = ∞ a.s. This finishes the first part of the proof. Now

instead suppose NV = ∞ and pick r > 0 such that

A(x, r) := {S(x, r) intersects at least two unbounded components of V }

has positive probability. Let

B(x, r) := {C[S(x, r + 1)c] contains at least 2 unbounded components}.

On A, C\S(x, r) contains at least two unbounded components, which in turn implies that B

occurs. Since P[A] > 0 this gives P[B] > 0. Since B is independent of F (x, r) := {|X(S(x, r +

1))| = 0} which has positive probability, P[B ∩ F ] > 0. On B ∩ F , C contains at least two

unbounded components. By Lemma 4.4 we get NC = ∞ a.s.

The proof of the next lemma is very similar to the discrete case, see Lemma 11.12 in [12], but

is included for the convenience of the reader.

Lemma 5.5. The case (NC , NV ) = (1, 1) has probability 0.

Proof. Assume (NC , NV ) = (1, 1) a.s. Fix x ∈ H2. Denote by Au
C(k) (respectively Ad

C(k), Ar
C(k),

Al
C(k)) the event that the uppermost (respectively lowermost, rightmost, leftmost) quarter of
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∂S(x, k) intersects an unbounded component of C\S(x, k). Clearly, these events are increasing.

Since NC = 1 a.s.,

lim
k→∞

P[Au
C(k) ∪ Ad

C(k) ∪ Ar
C(k) ∪ Al

C(k)] = 1.

Hence by the corollary to the FKG-inequality, limk→∞ P[At
C(k)] = 1 for

t ∈ {u, d, r, l}. Now let Au
V (k) (respectively Al

V (k), Ar
V (k), Al

V (k)) be the event that the upper-

most (respectively lowermost, rightmost, leftmost) quarter of ∂S(x, k) intersects an unbounded

component of V \S(x, k). Since these events are decreasing, we get in the same way as above that

limk→∞ P[At
V (k)] = 1 for t ∈ {u, d, r, l}. Thus we may pick k0 so big that P[At

C(k0)] > 7/8

and P[At
V (k0)] > 7/8 for t ∈ {u, d, r, l}. Let

A := Au
C(k0) ∩ Ad

C(k0) ∩ Al
V (k0) ∩ Ar

V (k0).

Bonferroni’s inequality implies P[A] > 1/2. On A, C\S(x, k0) contains two disjoint unbounded

components. Since NC = 1 a.s., these two components must almost surely on A be connected.

The existence of such a connection implies that there are at least two unbounded components

of V , an event with probability 0. This gives P[A] = 0, a contradiction.

Proposition 5.6. Almost surely, (NC , NV ) ∈ {(1, 0), (0, 1), (∞,∞)}.

Proof. By Lemmas 4.4 and 4.5, each of NC and NV is in {0, 1, ∞}. Lemma 5.3 with H ≡ C rules

out the case (0, 0). Hence Lemmas 5.4 and 5.5 imply that it remains only to rule out the cases

(0,∞) and (∞, 0). But since every two unbounded components of C must be separated by some

unbounded component of V , (∞, 0) is impossible. In the same way, (0,∞) is impossible.

5.1 The situation at λc and λ
∗
c

It turns out that to prove the main theorem, it is necessary to investigate what happens regarding

NC and NV at the intensities λc and λ∗
c . Our proofs are inspired by the proof of Theorem 1.1 in

[4], which says that critical Bernoulli bond and site percolation on nonamenable Cayley graphs

does not contain infinite clusters.

Theorem 5.7. At λc, NC = 0 a.s.

Proof. We begin with ruling out the possibility of a unique unbounded component of C at λc.

Suppose λ = λc and that NC = 1 a.s. Denote the unique unbounded component of C by U .

By Proposition 5.6, V contains only finite components a.s. Let ǫ > 0 be small and remove

each point in X with probability ǫ and denote by Xǫ the remaining points. Furthermore, let

Cǫ = ∪x∈Xǫ
S(x, 1). Since Xǫ is a Poisson process with intensity λc(1− ǫ) it follows that Cǫ will

contain only bounded components a.s. Let Cǫ be the collection of all components of Cǫ. We will
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now construct Hǫ as a union of elements from Cǫ and V such that the distribution of Hǫ will be

Isom(H2)-invariant. For each z ∈ H2 we let Uǫ(z) be the union of the components of U ∩ Cǫ

being closest to z. We let each h from Cǫ ∪ V be in Hǫ if and only if supz∈h d(z, U) < 1/ǫ and

Uǫ(x) = Uǫ(y) for all x, y ∈ h. We want to show that for ǫ small enough, Hǫ contains unbounded

components with positive probability. Let B be some ball. It is clear that L(B ∩ ∂Hǫ) → 0 a.s.

and also that µ(B ∩ Hǫ) → µ(B) a.s. when ǫ → 0. Also L(B ∩ ∂Hǫ) ≤ L(B ∩ (∂Cǫ ∪ ∂C))

and E[L(B ∩ (∂Cǫ ∪ ∂C))] ≤ K < ∞ for some constant K independent of ǫ. By the dominated

convergence theorem, we have

lim
ǫ→0

E[µ(B ∩ Hǫ)] = µ(B) and lim
ǫ→0

E[L(B ∩ ∂Hǫ)] = 0.

Therefore we get by Lemma 5.2 that Hǫ contains unbounded components with positive proba-

bility when ǫ is small enough. Suppose h1, h2, ... is an infinite sequence of distinct elements from

Cǫ ∪ V such that they constitute an unbounded component of Hǫ. Then Uǫ(x) = Uǫ(y) for all

x, y in this component. Hence U ∩ Cǫ contains an unbounded component (this particular con-

clusion could not have been made without the condition supz∈h d(z, U) < 1/ǫ in the definition

of Uǫ(z)). Therefore we conclude that the existence of an unbounded component in Hǫ implies

the existence of an unbounded component in Cǫ. Hence Cǫ contains an unbounded component

with positive probability, a contradiction.

We move on to rule out the case of infinitely many unbounded components of C at λc. Assume

NC = ∞ a.s. at λc. As in the proof of Lemma 5.4, we choose r such that for x ∈ H2 the event

A(x, r) :=

{S(x, r) intersects at least 3 disjoint unbounded components of C[S(x, r)c]}

has positive probability. Let B(x, r) := {S(x, r) ⊂ C[S(x, r)]} for x ∈ H2. Since A and B

are independent, it follows that A ∩ B has positive probability. On A ∩ B, x is contained in

an unbounded component U of C. Furthermore, U\S(x, r + 1) contains at least three disjoint

unbounded components. Now let Y be a Poisson process independent of X with some positive

intensity. We call a point y ∈ H2 a encounter point if

• y ∈ Y ;

• A(y, r) ∩ B(y, r) occurs;

• S(y, 2(r + 1)) ∩ Y = {y}.

The third condition above means that if y1 and y2 are two encounter points, then S(y1, r + 1)

and S(y2, r +1) are disjoint sets. By the above, it is clear that given y ∈ Y , the probability that

y is an encounter point is positive.
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We now move on to show that if y is an encounter point and U is the unbounded component

of C containing y, then each of the disjoint unbounded components of U\S(y, r + 1) contains a

further encounter point.

Let m(s, t) = 1 if t is the unique encounter point closest to s in C, and m(s, t) = 0 otherwise.

Then let for measurable sets A, B ⊂ H2

η(A × B) =
∑

s∈Y (A)

∑

t∈Y (B)

m(s, t)

and

ν(A × B) = E[η(A × B)].

Clearly, ν is a positive diagonally invariant measure on H2 × H2. Suppose A is some ball in

H2. Since
∑

t∈Y m(s, t) ≤ 1 we get ν(A × H2) ≤ E[|Y (A)|] < ∞. On the other hand, if y is an

encounter point lying in A and with positive probability there is no encounter point in some of

the unbounded components of U\S(y, r + 1) we get
∑

s∈Y

∑

t∈Y (A) m(s, t) = ∞ with positive

probability, so ν(H2 × A) = ∞, which contradicts Theorem 3.2.

The proof now continues with the construction of a forest F , that is a graph without loops or

cycles. Denote the set of encounter points by T , which is a.s. infinite by the above. We let each

t ∈ T represent a vertex v(t) in F . For a given t ∈ T , let U(t) be the unbounded component

of C containing t. Then let k be the number of unbounded components of U(t)\S(t, r + 1) and

denote these unbounded components by C1, C2,..., Ck. For i = 1, 2, ..., k put an edge between

v(t) and the vertex corresponding to the encounter point in Ci which is closest to t in C (this

encounter point is unique by the nature of the Poisson process).

Next, we verify that F constructed as above is indeed a forest. If v is a vertex in F , denote

by t(v) the encounter point corresponding to it. Suppose v0, v1, ..., vn = v0 is a cycle of length

≥ 3, and that dC(t(v0), t(v1)) < dC(t(v1), t(v2)). Then by the construction of F it follows

that dC(t(v1), t(v2)) < dC(t(v2), t(v3)) < ... < dC(t(vn−1), t(v0)) < dC(t(v0), t(v1)) which is

impossible. Thus we must have that dC(t(vi), t(vi+1)) is the same for all i ∈ {0, 1, .., n − 1}.
The assumption dC(t(v0), t(v1)) > dC(t(v1), t(v2)) obviously leads to the same conclusion. But

if y ∈ Y , the probability that there are two other points in Y on the same distance in C to y is

0. Hence, cycles exist with probability 0, and therefore F is almost surely a forest.

Now define a bond percolation Fǫ ⊂ F : Define Cǫ in the same way as above. Let each edge

in F be in Fǫ if and only if both encounter points corresponding to its end-vertices are in the

same component of Cǫ. Since Cǫ contains only bounded components, Fǫ contains only finite

connected components.

For any vertex v in F we let K(v) denote the connected component of v in Fǫ and let ∂F K(v)

denote the inner vertex boundary of K(v) in F . Since the degree of each vertex in F is at least

3, and F is a forest, it follows that at least half of the vertices in K(v) are also in ∂F K(v). Thus
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we conclude

P[x ∈ T, v(x) ∈ ∂F K(v(x))|x ∈ Y ] ≥ 1

2
P[x ∈ T |x ∈ Y ].

The right-hand side of the above is positive and independent of ǫ. But the left-hand side tends

to 0 as ǫ tends to 0, since when ǫ is small, it is unlikely that an edge in F is not in Fǫ. This is a

contradiction.

By Proposition 5.6, if NC = 0 a.s., then NV = 1 a.s. Thus we have an immediate corollary to

Theorem 5.7.

Corollary 5.8. At λc, NV = 1 a.s.

Next, we show the corresponding results for λ∗
c . Obviously, the nature of V is quite different

from that of C, but still the proof of Theorem 5.9 below differs only in details to that of Theorem

5.7. We include it for the convenience of the reader.

Theorem 5.9. At λ∗
c , NV = 0 a.s.

Proof. Suppose NV = 1 a.s. at λ∗
c and denote the unbounded component of V by U . Then

C contains only finite components a.s. by Proposition 5.6. Let ǫ > 0 and let Z be a Poisson

process independent of X with intensity ǫ. Let Cǫ := ∪x∈X∪ZS(x, 1) and Vǫ := Cc
ǫ . Since

X ∪ Z is a Poisson process with intensity λ∗
c + ǫ it follows that Cǫ has a unique unbounded

component a.s. and hence Vǫ contains only bounded components a.s. Let Vǫ be the collection

of all components of Vǫ. Define Hǫ in the following way: For each z ∈ H2 we let Uǫ(z) be the

union of the components of U ∩ Vǫ being closest to z. We let each h ∈ C ∪ Vǫ be in Hǫ if and

only if supz∈h d(z, U) < 1/ǫ and Uǫ(x) = Uǫ(y) for all x, y ∈ h. As in the proof of Theorem 5.7,

for ǫ > 0 small enough, Hǫ contains an unbounded component with positive probability, and

therefore Vǫ contains an unbounded component with positive probability, a contradiction.

Now suppose that NV = ∞ a.s. at λ∗
c . Then also NC = ∞ by Proposition 5.6. Therefore, for

x ∈ H2, we can choose r > 1 big such that the intersection of the two independent events

A(x, r) :=

{S(x, r) intersects at least 3 disjoint unbounded components of C[S(x, r)c]}

and B(x, r) := {|X(S(x, r))| = 0} has positive probability. Next, suppose that Y is a Poisson

process independent of X with some positive intensity. Now we redefine what an encounter

point is: call y ∈ H2 an encounter point if

• y ∈ Y ;

• A(y, r) ∩ B(y, r) occurs;
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• S(y, 2r) ∩ Y = {y}.

By the above discussion,

P[y is an encounter point | y ∈ Y ] > 0.

If y is a encounter point, y is contained in an unbounded component U of V and U\S(y, r)

contains at least 3 disjoint unbounded components. Again we construct a forest F using the

encounter points and define a bond percolation Fǫ ⊂ F . Let Vǫ be defined as above. Each edge

of F is declared to be in Fǫ if and only if both its end-vertices are in the same component of Vǫ.

The proof is now finished in the same way as Theorem 5.7.

Again, Proposition 5.6 immediately implies the following corollary:

Corollary 5.10. At λ∗
c , NC = 1 a.s.

5.2 Proof of Theorem 4.2

Here we combine the results from the previous sections to prove our main theorem in H2.

Proof of Theorem 4.2. If λ < λu then Proposition 5.6 implies NV > 0 a.s. giving λ ≤ λ∗
c . If

λ > λu the same proposition gives NV = 0 a.s. giving λ ≥ λ∗
c . Thus

λu = λ∗
c . (5.1)

By Theorem 5.7 NC = 0 a.s. at λc, so NV > 0 a.s. at λc by Proposition 5.6. Thus by Theorem

5.9

λc < λ∗
c . (5.2)

Hence the desired conclusion follows by (5.1), (5.2) and Lemma 4.8.

6 The number of unbounded components in Hn

This section is devoted to the proof of Theorem 4.3.

First part of proof of Theorem 4.3. In view of Lemma 4.10, it is enough to show that P[u ↔
v] → 0 as d(u, v) → ∞ for some intensity above λc. We use a duplication trick. Let X1 and X2

be two independent copies of the Poisson Boolean model. If we for some ǫ > 0 can find points u

and v on an arbitrarily large distance from each other such that u is connected to v in X1 with

probability at least ǫ, then the event

B(u, v) := {u is connected to v in both X1 and X2}
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has probability at least ǫ2. So it is enough to show that P[B(u, v)] → 0 as d(u, v) → ∞ at some

intensity above λc.

Fix points u and v and suppose d(u, v) = d. Let k = ⌈d/(2R)⌉. That is, k is the smallest number

of balls of radius R needed to connect the points u and v. Thus, for B(u, v) to occur, there

must be at least one sequence of at least k distinct connected balls in X1, such that the first

ball contains u and the last ball contains v, and at least one such sequence of balls in X2. This

in turn obviously implies that there is at least one sequence of at least k connected balls in X1

such that the first ball contains u, and the last ball intersects the first ball of a sequence of at

least k connected balls in X2, where the last ball in this sequence contains u. In this sequence

of at least 2k balls, the center of the first ball is at distance at most 2R from the center of the

last ball.

Let l ≥ 2k. Next we estimate the expected number of sequences of balls as above of length l.

Denote this number by N(l). Now, if we consider sequences of balls as above of length l, without

the condition that the last ball contains u, then the expected number of such sequences is easily

seen to be bounded by λlµ(S(0, 2R))l (as for example in the proof of Theorem 3.2 in [18]). Let

PR(l) be the probability that the center of the last ball in such a sequence is at most at distance

2R from the center of the first ball. Then N(l) ≤ λlµ(S(0, 2R))lPR(l).

Now

P[B(u, v)] ≤
∞

∑

l=2k

N(l) ≤
∞

∑

l=2k

(λµ(S(0, 2R)))l PR(l).

We will now estimate the terms in the sum above.

Lemma 6.1. Suppose X0, X1, ...Xk is a sequence of distinct points in a Poisson point process in

Hn such that d(Xi, Xi+1) < 2R for i = 0, 1, ..., k − 1. Then there is a sequence of i.i.d. random

variables Y1, Y2, ... with positive mean such that

P[d(X0, Xk) ≤ 2R] ≤ P[
k−1
∑

i=1

Yi ≤ 2R].

In other words, PR(k) ≤ P[
∑k−1

i=1 Yi ≤ 2R].

The distribution of Yi will be defined in the proof.

First part of proof of Lemma 6.1. Note that given the point Xi, the distribution of the point Xi+1

is the uniform distribution on S(Xi, 2R). Put di := d(Xi, Xi+1). Then d0, d1... is a sequence of

independent random variables with density

d

dr

µ(S(0, r))

µ(S(0, 2R))
=

sinh(r)n−1

∫ 2R
0 sinh(t)n−1 dt

for r ∈ [0, 2R]. (6.1)
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Next we write

P[d(X0, Xk) < 2R] = P

[

k−1
∑

i=0

(d(X0, Xi+1) − d(X0, Xi)) < 2R

]

. (6.2)

The terms in the sum 6.2 are neither independent nor identically distributed. However, we will

see that the sum is always larger than a sum of i.i.d. random random variables with positive

mean. Suppose without loss of generality that X0 is at the origin. Let γi be the geodesic between

0 and Xi and let ϕi be the geodesic between Xi and Xi+1 for i ≥ 1. Let θi be the angle between

γi and ϕi for i ≥ 1 and let θ0 = π. Then θ1, θ2, ... is a sequence of independent random variables,

uniformly distributed on [0, π]. Since the geodesics γi, γi+1 and ϕi lie in the same hyperbolic

plane, we can express d(0, Xi+1) in terms of d(0, Xi), d(Xi, Xi+1) and θi using the first law of

cosines for triangles in hyperbolic space (see [20], Theorem 3.5.3), which gives that

d(0, Xi+1) − d(0, Xi) = cosh−1

(

cosh(di) cosh(d(0, Xi))

− sinh(di) sinh(d(0, Xi)) cos(θi)

)

− d(0, Xi).

(6.3)

Next we prove a lemma that states that the random variable above dominates a random variable

which is independent of d(0, Xi). Put

f(x, y, θ) := cosh−1(cosh(x) cosh(y) − sinh(x) sinh(y) cos(θ)) − y.

Lemma 6.2. For fixed x and θ, the function f(x, y, θ) is strictly decreasing in y and g(x, θ) :=

limy→∞ f(x, y, θ) = log(cosh(x) − sinh(x) cos(θ)).

Proof. For simplicity write a = a(x) := cosh(x) and b = b(x, θ) := sinh(x) cos(θ). Then by

rewriting

f(x, y, θ) = log

(

a cosh(y) − b sinh(y) +
√

(a cosh(y) − b sinh(y))2 − 1

exp(y)

)

(6.4)

we get by easy calculations that the limit as y → ∞ is as desired. It remains to show that

f
′

y(x, y, θ) < 0 for all x, y and θ. We have that

f
′

y(x, y, θ) = −1 +
−b cosh(y) + a sinh(y)

√

−1 + a cosh(y) − b sinh(y)
√

1 + a cosh(y) − b sinh(y)
(6.5)

which is less than 0 if

√

−1 + a cosh(y) − b sinh(y)
√

1 + a cosh(y) − b sinh(y) > a sinh(y) − b cosh(y) (6.6)
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If the right hand side in 6.6 is negative then we are done, otherwise, taking squares and simpli-

fying gives that the inequality 6.6 is equivalent to the simpler inequality

a2 − b2 > 1

which holds since a2 − b2 = cosh2(x) − sinh2(x) cos2(θ) > cosh2(x) − sinh2(x) = 1, completing

the proof of the lemma.

Second part of proof of Lemma 6.1. Letting Yi := g(di, θi) we have (since Y0 > 0),

P[d(X0, Xk) < 2R] ≤ P

[

k−1
∑

i=0

Yi < 2R

]

≤ P

[

k−1
∑

i=1

Yi < 2R

]

(6.7)

where g is as in Lemma 6.2, which concludes the proof.

We now want to bound the probability in Lemma 6.1, and for this we have the following technical

lemma, which in a slightly different form than below is due to Patrik Albin.

Lemma 6.3. Let Yi be defined as above. There is a function h(R, ǫ) such that for any ǫ ∈ (0, 1)

we have h(R, ǫ) ∼ Ae−R(1−ǫ) as R → ∞ for some constant A = A(ǫ) ∈ (0,∞) independent of R

and such that for any R > 0,

P

[

k
∑

i=1

Yi < 2R

]

≤ h(R, ǫ)keR. (6.8)

Proof. Let K be the complete elliptic integral of the first kind (see [11], pp. 313-314). Then we

have

E[e−Y1/2|d1] = E

[

1
√

cosh(d1) − sinh(d1) cos(θ1)

∣

∣

∣

∣

d1

]

= E

[

e−d1/2

√

1 − cos(θ1/2)2(1 − e−2d1)

∣

∣

∣

∣

d1

]

=
2e−d1/2K(

√
1 − e−2d1)

π
.

Using the relation K(x) = π 2F1(1/2, 1/2, 1, x)/2 where 2F1 is the hypergeometric function (see

[11], Equation 13.8.5), we have

E[e−Y1/2|d1] = e−d1/2
2F1(1/2, 1/2, 1, 1 − e−2d1).

Since 2F1(1/2, 1/2, 1, ·) is continuous on {z ∈ C : |z| ≤ ρ} for any ρ ∈ (0, 1), this gives

E[e−Y1/2|d1] ≤ A1e
−d1/2 for d1 ≤ x0, (6.9)
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for some constant A1(x0) > 0, for any x0 > 0. Large values of d1 makes the argument of

2F1(1/2, 1/2, 1, 1−e−2d1) approach the radius of convergence 1 of 2F1(1/2, 1/2, 1, ·) so we perform

the quadratic transformation

2F1(a, b, 2b, x) = (1 − x)−a/2
2F1

(

a, 2b − a, b + 1/2,−(1 −
√

1 − x)2

4
√

1 − x

)

,

(see [10], Equation 2.11.30), giving

E[e−Y1/2|d1] = 2F1

(

1/2, 1/2, 1,−ed1(1 − e−d1)2/4
)

.

By the asymptotic behaviour of the hypergeometric function (here the analytic continuation of

the hypergeometric function is used), we have

|2F1(1/2, 1/2, 1, x)| ∼ A2
log |x|
√

|x|

as |x| → ∞ (see [10], Equation 2.3.2.9), for some constant A2 > 0. Combining this with 6.9 we

get

E[e−Y1/2|d1] ≤ A3(1 + d1)e
−d1/2 ≤ A4e

−(1−ǫ)d1/2

for d1 > 0, for any ǫ ∈ (0, 1), for some constants A3 > 0 and A4(ǫ) > 0. Thus

E[e−Y1/2] ≤ E[A4e
−d1(1−ǫ)/2]

= A4

∫ 2R
0 sinh(t)n−1e−t(1−ǫ)/2 dt

∫ 2R
0 sinh(t)n−1 dt

Clearly h(R, ǫ) := A4

∫ 2R
0 sinh(t)n−1e−t(1−ǫ)/2 dtÁ

∫ 2R
0 sinh(t)n−1 dt ∼ Ae−R(1−ǫ) as R → ∞ for

some constant A ∈ (0,∞). Finally we get using Markov’s inequality that

P

[

k
∑

i=1

Yi < 2R

]

= P
[

e−
1

2

P

k

i=1
Yi > e−R

]

≤ eRE
[

e−
1

2

P

k

i=1
Yi

]

= eRE
[

e−Y1/2
]k

≤ h(R, ǫ)keR

completing the proof.

Second part of proof of Theorem 4.3. By the estimates in Proposition 4.7 and Lemma 6.3 we

get that
∞

∑

l=2k

(λc(R)µ(S(0, 2R)))l PR(l) ≤ eR
∞

∑

l=2k

K lh(R, ǫ)l−1
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for any ǫ ∈ (0, 1) and some constant K ∈ (0,∞). Thus if we take R big enough, the sum goes

to 0 as k → ∞. This is also the case if we replace λc with tλc for some t > 1, proving that there

are intensities above λc for which there are infinitely many unbounded connected components

in the covered region of Hn for R big enough.
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