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Abstract

Consider the high-order heat-type equation du/dt = £0Nu /02" for an integer N > 2 and
introduce the related Markov pseudo-process (X (¢))i>0. In this paper, we study several
functionals related to (X (¢))¢>0: the maximum M (¢) and minimum m(¢) up to time ¢; the
hitting times 7,7 and 7, of the half lines (a,+oc) and (—oo,a) respectively. We provide
explicit expressions for the distributions of the vectors (X (¢), M (t)) and (X (¢), m(t)), as well
as those of the vectors (7,7, X (7;7)) and (7, , X (7,))-

Key words: pseudo-process, joint distribution of the process and its maximum/minimum,
first hitting time and place, multipoles, Spitzer’s identity.

AMS 2000 Subject Classification: Primary 60G20; Secondary: 60J25;60K35.

Submitted to EJP on July 13 2006, final version accepted March 23 2007.

*Postal adress: INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LyON
Batiment Léonard de Vinci, 20 avenue Albert Einstein
69621 Villeurbanne Cedex, FRANCE
E-mail: aime.lachal@insa-lyon.fr
Web page: http://maths.insa-1lyon.fr/™ lachal

300


http://dx.doi.org/10.1214/EJP.v12-399

1 Introduction

Let N be an integer greater than 2 and consider the high-order heat-type equation
ou oNu

ot NN
where ky = (—1)'*N/2 if N is even and ky = £1 if N is odd. Let p(t; z) be the fundamental
solution of Eq. (1.1) and put

(1.1)

p(t;z,y) = p(t;z —y).

The function p is characterized by its Fourier transform

/ eMEp(t: €) dE = eI (1.2)
—0o0

With Eq. (1.1) one associates a Markov pseudo-process (X(t)):>0 defined on the real line and
governed by a signed measure P, which is not a probability measure, according to the usual
rules of ordinary stochastic processes:

P {X(t) € dy} = p(t;z,y) dy

and for 0 =ty < t1 < -+ <tp, xg = x,
P.{X(t1) € dz1,...,X(t,) € dzyp} = Hp(t,- —ti—1;Tim1 — x;) dxj.
i=1

Relation (1.2) reads, by means of the expectation associated with P,
Ex<eiuX(t)) — eiu:c—i—/iNt(iu)N'

Such pseudo-processes have been considered by several authors, especially in the particular cases
N =3 and N = 4. The case N = 4 is related to the biharmonic operator 9*/dx*. Few results
are known in the case N > 4. Let us mention that for N = 2, the pseudo-process considered
here is a genuine stochastic process (i.e., driven by a genuine probability measure), this is the
most well-known Brownian motion.

The following problems have been tackled:

e Analytical study of the sample paths of this pseudo-process: Hochberg [7] defined a stochas-
tic integral (see also Motoo [13] in higher dimension) and proposed an It6 formula based on
the correspondence dz* = dt, he obtained a formula for the distribution of the maximum
over [0,¢] in the case N = 4 with an extension to the even-order case. Noteworthy, the
sample paths do not seem to be continuous in the case N = 4;

e Study of the sojourn time spent on the positive half-line up to time ¢, T'(t) = meas{s €
[0,t] : X(s) > 0} = fot Ix(s)>0y ds: Krylov [10], Orsingher [19], Hochberg and Ors-
ingher [8], Nikitin and Orsingher [15], Lachal [11] explicitly obtained the distribution of
T(t) (with possible conditioning on the events {X(¢) > (or =, or <)0}). Sojourn time
is useful for defining local times related to the pseudo-process X, see Beghin and Ors-
ingher [2];
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e Study of the maximum and the minimum functionals

M(t) = (}Igl?étX(s) and m(t) = Olélslth(S) :
Hochberg [7], Beghin et al. [1, 3], Lachal [11] explicitly derived the distribution of M (¢) and
that of m(t) (with possible conditioning on some values of X (¢)). Since the paths may not
be continuous, we should write sup and inf instead. However, because of Definition 3.3,
we prefer to write max and min as done in several works dealing with this matter;

e Study of the couple (X (t), M (t)): Beghin et al. [3] wrote out several formulas for the joint
distribution of X (¢) and M (t) in the cases N =3 and N = 4;

e Study of the first time the pseudo-process (X (t));>0 overshoots the level a > 0, 7,7 =
inf{t > 0: X(¢) > a}: Nishioka [16, 17], Nakajima and Sato [14] adopt a distributional
approach (in the sense of Schwartz distributions) and explicitly obtained the joint distri-
bution of 7,7 and X (7,5) (with possible drift) in the case N = 4. The quantity X (7,") is
the first hitting place of the half-line [a, +00). Nishioka [18] then studied killing, reflecting
and absorbing pseudo-processes;

e Study of the last time before becoming definitively negative up to time ¢, O(t) = sup{s €
[0,t] : X(s) > 0}: Lachal [11] derived the distribution of O(t);

e Study of Equation (1.1) in the case N = 4 under other points of view: Funaki [6], and
next Hochberg and Orsingher [9] exhibited relationships with compound processes, namely
iterated Brownian motion, Benachour et al. [4] provided other probabilistic interpretations.
See also the references therein.

This aim of this paper is to study the problem of the first times straddling a fixed level a (or
the first hitting times of the half-lines (a, +00) and (—o0,a)):
ri=if{t>0:X(t)>a}, 7, =inf{t>0:X() <a}

with the convention inf(()) = +oo. In the spirit of the method developed by Nishioka in the case
N = 4, we explicitly compute the joint “signed-distributions” (we simply shall call “distributions”
throughout the paper for short) of the vectors (X (t), M(t)) and (X(¢), m(t)) from which we
deduce those of the vectors (7,7, X (7)) and (7,7, X(7;)). The method consists of several steps:

e Defining a step-process by sampling the pseudo-process (X (t));>0 on dyadic times ¢, =

k/2™ ke N;

e Observing that the classical Spitzer’s identity holds for any signed measure, provided
the total mass equals one, and then using this identity for deriving the distribution of
(X (tnk), maxogj<k X (tn;)) through its Laplace-Fourier transform by means of that of
X (tn )T where 21 = max(z,0);

e Expressing time 7,7 (for instance) related to the sampled process (X (ty x))ken by means
of (X (tnk), maxogjck X (tn,5));

e Passing to the limit when n — +oo0.
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Meaningfully, we have obtained that the distributions of the hitting places X (7,7) and X (7, ) are
linear combinations of the successive derivatives of the Dirac distribution §,. In the case N = 4,
Nishioka [16] already found a linear combination of d, and §/, and called each corresponding part
“monopole” and “dipole” respectively, considering that an electric dipole having two opposite
charges 044+ and d,—. with a distance ¢ tending to 0 may be viewed as one monopole with
charge ¢/,. In the general case, we shall speak of “multipoles”.

Nishioka [17] used precise estimates for carrying out the rigorous analysis of the pseudo-process
corresponding to the case N = 4. The most important fact for providing such estimates is that
the integral of the density p is absolutely convergent. Actually, this fact holds for any even
integer N. When N is an odd integer, the integral of p is not absolutely convergent and then
similar estimates may not be obtained; this makes the study of X very much harder in this case.
Nevertheless, we have found, formally at least, remarkable formulas which agree with those of
Beghin et al. [1, 3] in the case N = 3. They obtained them by using a Feynman-Kac approach
and solving differential equations. We also mention some similar differential equations for any
N. So, we guess our formulas should hold for any odd integer N > 3. Perhaps a distributional
definition (in the sense of Schwartz distributions since the heat-kernel is locally integrable) of
the pseudo-process X might provide a properly justification to comfirm our results. We shall
not tackle this question here.

The paper is organized as follows: in Section 2, we write down general notations and recall some
known results. In Section 3, we construct the step-process deduced from (X (¢));>0 by sampling
this latter on dyadic times. Section 4 is devoted to the distributions of the vectors (X (t), M (t))
and (X (t),m(t)) with the aid of Spitzer’s identity. Section 5 deals with the distributions of the
vectors (7,7, X(7;7)) and (7,7, X (7, )) which can be expressed by means of those of (X (¢), M(t))
and (X (t),m(t)). Each section is completed by an illustration of the displayed results therein
to the particular cases N € {2,3,4}.

We finally mention that the most important results have been announced, without details, in a
short Note [12].

2 Settings

The relation fj;o p(t;€) d¢ = 1 holds for all integers N. Moreover, if N is even, the integral is
absolutely convergent (see [11]) and we put

“+oo
pz/ Ip(t; &) d€ > 1.

—00

Notice that p does not depend on t since p(t;€) = t=/Np(1;£/t/N). For odd integer N, the
integral of p is not absolutely convergent; in this case p = +o0.

2.1 N*t® roots of ky

We shall have to consider the N*® roots of xx (6; for 0 < 1 < N — 1 say) and distinguish the
indices [ such that R; < 0 and RE; > 0 (one never has R, = 0). So, let us introduce the
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following set of indices

J = {le{0,...,N—1}: R0, > 0},
K = {l€{0,...,N—1}: %6, <0}

We clearly have JUK ={0,...,N —1}, JNK =0 and
#J+#K = N. (2.1)
If N =2p, then ky = (—=1)PT1, §; = el@HHp+DT/N]
J=A{p,...,2p—1} and K =A{0,...,p—1}.
The numbers of elements of the sets J and K are
#J =#K =p.
If N =2p+ 1, two cases must be considered:

e For ky = +1: 6, = '27/N and

_ E} {3_P } :{1_7 3_p} L
J {0,...,2 U 2+1,...,2p and K 2+1,...,2 if p is even,
-1 1 1
J:{O,...,p }U{3p+3,...,2p}andK:{p+ 7”"3p+ } if p is odd.
2 2 2 2
The numbers of elements of the sets J and K are
#J=p+1 and #K =p if p is even,
#J=p and #K =p+1 if pisodd;
e For iy = —1: 6; = el@+DT/N] anq
_ p 3p _fp 3p e
J—{O,...,2 1}U{2+1,...,2p}andK—{2,...,2} if p is even,
B p—1 3p+1 _yp+1 3p—1y .. .
J—{O,..., 5 }U{ 5 ,...,Zp}andK—{ 5 T g } if p is odd.

The numbers of elements of the sets J and K are

#J=p and #K =p+1 if piseven,
#J=p+1 and #K =p if p is odd.

Figure 1 illustrates the different cases.
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Case N =2p+ 1, ky = +1: even p (left), odd p (right)

J %9] >0
Op/2-1

93p/2+1

K : &Eek <0
Opr1)/2

J: 8‘%9] >0
Op—1)2

I 60

O2p

“B%
|
|
—

O(3p+1)/2

Case N =2p+1, ky = —1: even p (left), odd p (right)

Figure 1: The N*" roots of kx

2.2 Recalling some known results

We recall from [11] the expressions of the kernel p(¢;€)

1

p(t;€) = o=

2

/ e—zﬁu—i-/@Nt(—zu) du
—00

(2.2)

together with its Laplace transform (the so-called A-potential of the pseudo-process (X (t))¢>0),

for A > 0,

“+oo
D(\;€) :/0 e Mp(t; €) dt

Notice that

_% AL/N=1 Z 0, eek’vﬁg
keK
% \L/N-1 Z 6, HiVAE
jed

“+oo
d(\;€) = /0 e MAtP{X (t) € —dg}/de.

We also recall (see the proof of Proposition 4 of [11]):

vixe - [ e pLx () < ) de

1 0N/ ¢
mzek
keK

x[l‘ﬁze’

jeJ
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for € > 0,

(2.3)
for £ < 0.
for € > 0,

(2.4)
for £ < 0.



We recall the expressions of the distributions of M (t) and m(t) below.

e Concerning the densities:

+o0o
/ e MdtP{M(t) € dz}/dz = 1 oa(x —z) forz < z,
0 A (2.5)
+o0o Y 1
e NdtP{m(t) € dz}/dz = X Ua(x —z) forz >z,
0
with
= VA S 0,4; 5V (€)= = VA S 0,y e VA (2.6)
jed keK
and 9 9
Aj = H 7 19‘ forjeJ, By= H 7 d for k € K.
engy e\
e Concerning the distribution functions:
+o00
/ e MPL(M(t) < 2)dt = [ ZA eli VA le— Z] for z < z,
’ jed (2.7)
+0o0
/ e MPL(m(t) > 2)dt = [1 — Z By, ORVA (o ] for x > z.
0 keK

We explicitly write out the settings in the particular cases N € {2,3,4} (see Fig. 2).

Example 2.1 Case N = 2: we have kg = +1, 0y = —1,6; = 1, J = {1}, K = {0}, A; =1,
BO =1 m

Example 2.2 Case N = 3: we split this (odd) case into two subcases:

e for k3 = +1, we have ) = 1,6 = 622”/3 0y = e7i12M/3 ] — {0}, K = {1,2}, Ay = 1,

Bi= 1ty = e 5 By = By = L/,
e for k3 = —1, we have 0y = T3 = —1,0, = e P73 J = {0,2}, K = {1}, A4y =
1_6711'47r/3 = % e”r/ﬁaA2 =Ap = % e_“r/GaBl =1
[
Example 2.3 Case N = 4: we have 1y = —1, 0y = ¢!37/4 9, = e‘i3”{4,92 = e i7/4 gy = eiT/4
J:{2,3},K:{0,1}, AQZBozﬁ:T —z7r/4 A3_B1 A2:%62W/4' n
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61 0o 0o 05
0 0, 01 B2
N =2 N=3 rg=+1 N=3 n3=—1 N=4

Figure 2: The N*® roots of ky in the cases N € {1,2,3}

2.3 Some elementary properties

Let us mention some elementary properties: the relation H{i}l(l — @Im/N)y = N entails

N-—1 0 1
I1 L —— for0<m<N-—1. (2.8)
0m—0, N
1=0,l#m

The following result will be used further: expanding into partial fractions yields, for any poly-
nomial P of degree deg P < #J,

Z 43 P(0;) if degP < #J —1,
P(a:) —~ ] — :E/9'
— (e (2.9)
[1(1—x/6;) Z A;P(6;) 1) H if deg P = #J and the highest '
jeJ 1— 33/9 J degree coefficient of P is 1.

e Applying (2.9) to z = 0 and P = 1 gives deJ = > wex Br = 1. Actually, the A;’s
and Bj’s are solutions of a Vandermonde system (see [11]).

e Applying (2.9) to z = 0,k € K, and P =1 gives

0,
Aj R A Ll
B A 1 , — TR
i€ I€ 7€ lek\{ky
which simpliﬁes by (2.8), into (and also for the By’s)
_ 1 0. By _ 1 .
ZQ _9k = NB, for k € K and ZG —6, " NA, for j € J. (2.10)
jeJ keK
e Applying (2.9) to P = 2P, p < #.J, gives, by observing that 1/6; = 0,
z’ if p < #T —
—_ if p<
OPA. [1(1-0;z)
> - J 0} o T (2.11)
jeg + — YT —— + (=17 0; ifp==#J.
H (1 - 9]1') jeJ
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3 Step-process

In this part, we proceed to sampling the pseudo-process X = (X (t));>0 on the dyadic times
tnk = k/2", k,n € N and we introduce the corresponding step-process X,, = (X, (t))s>0 defined
for any n € N by

Xn(t) = Z X(tnvk)]l[tn,kytn,kJrl)(t)'
k=0

The quantity X, is a function of discrete observations of X at times ¢, 3, k € N.

For the convenience of the reader, we recall the definitions of tame functions, functions of discrete
observations, and admissible functions introduced by Nishioka [17] in the case N = 4.

Definition 3.1 Fiz n € N. A tame function is a function of a finite number of observa-
tions of the pseudo-process X at times t,;, 1 < j < k, that is a quantity of the form F, ; =
F(X(tn1),---, X(tak)) for a certain k and a certain bounded Borel function F : R¥ — C. The
“expectation” of Fy, 1, is defined as

E.(Fok) Z/"'/RIc F(x1,..., o) p(1/2"% 2, 21) - - - p(1/2"; 241, 1) dvy - - - doy,.

We plainly have the inequality
o (Fre)| < Pt Sukp |F.
R

Definition 3.2 Fizn € N. A function of the discrete observations of X at times t, , k > 1, is
a convergent series of tame functions: Fx, =Y poq Fy where F, 1 is a tame function for all
k > 1. Assuming the series y oo |E(F, k)| convergent, the “expectation” of Fx, is defined as

Eo(Fx,) =Y Eo(Fug)-
k=1

The definition of the expectation is consistent in the sense that it does not depend on the repre-
sentation of Fly, asaseries (see [17]): if Y 77 F = > poq Gy and if the series Y 77 | [E 5 (F, 1)
and Y 7o |[E4(Gp )| are convergent, then > 72 Eo(Fok) = > poq Ex(Gnk)-

Definition 3.3 An admissible function is a functional Fx of the pseudo-process X which is the
limit of a sequence (Fx, )nen of functions of discrete observations of X :

FX = lim FXn,
n—oo
such that the sequence (E.(Fx, ))nen s convergent. The “expectation” of Fx is defined as

EI(F)() = lim E:c(FXn)

n—~o0

This definition eludes the difficulty due to the lack of o-additivity of the signed measure P. On
the other hand, any bounded Borel function of a finite number of observations of X at any
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times (not necessarily dyadic) t; < --- < tj is admissible and it can be seen that, according to
Definitions 3.1, 3.2 and 3.3,

E.[F(X(t),....X(t))] = /.../kF(:Eb...,xk)p(tl;:ﬂ,:ﬁl)p(tg—tl;ggl,g;2)...
R
X p(ty — th—1;Tp—_1, k) dxy - - - dxg,

as expected in the usual sense.

For any pseudo-process Z = (Z(t))¢>0, consider the functional defined for A € C such that
RAN) >0, ueR, v>0by

+oo )
Fz(\ p,v) = / e MHHz(O—vEz(O 1, (1) dt (3.1)
0

where Hy, Kz, I, are functionals of Z defined on [0,4+00), Kz being non negative and Iy
bounded; we suppose that, for all ¢ > 0, Hz(t), Kz(t),Iz(t) are functions of the continuous
observations Z(s), 0 < s <t (that is the observations of Z up to time t). For Z = X,,, we have

e n,k+1 A
Fx,(Apv) = Z/ e AFIH X (b )= KX (bnt) [ (t, 1) dlt

k=0 " tn.k
0 tn kt1 )
_ Z </ oM dt) et Hx, (tn,k)_VKXn(tn,k)IXn (tnr)
k=0 tn,k
1—e M2 & ;
= — Z e Mn ki H x, (tn k) = Kx, (tn,k)IXn (tn,k)- (3.2)
k=0

Since Hx,, (tn.k), Kx, (tnk), Ix, (tn i) are functions of X, (¢, ;) = X (t,;), 0 < j < k, the quantity
X (tn )=V K (b k) T (1, 1) is a tame function and the series in (3.2) is a function of discrete
observations of X. If the series

o
k=0
converges, the expectation of Fx, (A, i, v) is defined, according to Definition 3.2, as

1 o _)\/2'” [e.e] )
k=0

Finally, if lim, 400 Fix, (A, 1, ) = Fx (A, p,v) and if the limit of E,[Fy, (A, u,v)] exists as n
goes to 00, Fx (A, u,v) is an admissible function and its expectation is defined, according to
Definition 3.3, as

EZ‘[FX()‘7M7 V)] = nETmEI[FXn(A’M’V)]

4 Distributions of (X (t), M(t)) and (X(t), m(t))

We assume that N is even. In this section, we derive the Laplace-Fourier transforms of the
vectors (X (t), M(t)) and (X (t), m(t)) by using Spitzer’s identity (Subsection 4.1), from which
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we deduce the densities of these vectors by successively inverting—three times—the Laplace-
Fourier transforms (Subsection 4.2). Next, we write out the formulas corresponding to the
particular cases N € {2,3,4} (Subsection 4.3). Finally, we compute the distribution functions of
the vectors (X (), m(t)) and (X (¢), M (t)) (Subsection 4.4) and write out the formulas associated
with N € {2,3,4} (Subsection 4.5). Although N is assumed to be even, all the formulas obtained
in this part when replacing N by 3 lead to some well-known formulas in the literature.

4.1 Laplace-Fourier transforms

Theorem 4.1 The Laplace-Fourier transform of the vectors (X (t), M (t)) and (X (t),m(t)) are
given, for R(A\) > 0,u € R,v > 0, by

+o0 1 u—v)x
E:c|:/ o MHX (D) v M (1) gy | _ elin=v) _ 7
0 I TTOYX = G —v)0y) T1 (VX — iny)
jeJ kEK
(4.1)
+00 7 u+tv)x
Em[/ e~ MFIX () +vm(t) gp| _ elint 1)V ‘
0 P TN = ipby) T (VX = G+ v)0k)
jed kEK

PrOOF. We divide the proof of Theorem 4.1 into four parts.
e Step 1
Write functionals (3.1) with Hx (t) = X (¢), Kx(t) = M(t) or Kx(t) = —m(t) and Ix(t) = 1:

+o0 . “+oo )
1{7)'("()\”117 v) = /0 e~ MHX ()= M) 3 and F)}()‘7M7 V) = /0 o AtHX () +vm(t) gy

So, putting X, = X(tnr), Mn(t) = maxogs<t Xn(s) = maxogj<|2nt| Xn,j Where |.| denotes
the floor function, and next M, , = M, (t, 1) = maxogj<k Xn, j, (3.2) yields, e.g., for F;gn,

+ 1 € )\/ ! E —At + /I,X M,
m n, ? n, ViMip,
F n(A, 71/) — A e k k— k
k=0

The functional F ;n()\, w,v) is a function of discrete observations of X. Our aim is to compute
its expectation, that is to compute the expectation of the above series and next to take the limit
as n goes to infinity. For this, we observe that, using the Markov property,

‘Ew|:e_)\tn,k:+iﬂXn,k_VMn,k:| |e_)\tn,k:|

k
2 : uXn k—vXn,j
Ew[e " nj]l{Xn,lg«Xn,jv---v«Xn k:\XnJ}:|

e RN/ eHITIEIp(1)2% e — 1) -+ p(1/2% a1 — ay) day - - - day

{z1<j,..., o <x5}

< (k+1)(pe ( )/2n) .

So, if R(A) > 2" In p, the series Y E ,[e s FinXns=vMni] ig absolutely convergent and then we
can write the expectation of F;n()\, Wy V):

1 o _)\/2” o
E[Fy (A uv)]= c Z e Ak ot (nvsx)  for R(A) > 2" Inp (4.2)
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with
(p;‘;k(u’ I/, x) — Em[eiﬂXn,k_VMn,k] — e(iu—u)m EO e_(l/_i/’l‘)Mn,k_i;u'(Mn,k_Xn,k) .

However, because of the domain of validity of (4.2), we cannot take directly the limit as n tends
to infinity. Actually, we shall see that this difficulty can be circumvented by using sharp results
on Dirichlet series.

e Step 2

Putting z = e=*/2"

and noticing that e~k = ¥ (4.2) writes

R —
Eo[Ff, (A )] === émplmvi) 2
k=0

The generating function appearing in the last displayed equality can be evaluated thanks to an
extension of Spitzer’s identity, which we recall below.

Lemma 4.2 Let ({)r>1 be a sequence of “i.i.d. random variables” and set Xo = 0, X}, =
Z?:l & for k > 1, and My, = maxogjcr X; for k > 0. The following relationship holds for

|z| < 1:
iE[eiuXk—uMk] 2% = exp [iE{ei,uXk—uX,j] Z_k]
k=0 k=1 K

Observing that 1 — z = exp[log(1 — 2)] = exp[— Y7o, 2¥/k], Lemma 4.2 yields, for &, = X, x —
Xn,k—l:
1 g, 1 X e Mk
+ _ = (ip—v)x
ESE[FXn ()‘7 s V)] - b et eXp [ 3_1 tn,k

O (v tn,k)] (4.3)
where

1/}+(M7V;t) = EO
E

+o0o
= [ () pe-gast [ (o) p-gde @)
—00 0

We plainly have |y (u,v;t)] < 2p, and then the series in (4.3) defines an analytical function
on the half-plane {\ € C : ®(\) > 0}. It is the analytical continuation of the function A —
Ew[F;gn(/\,u,y)] which was a priori defined on the half-plane {\ € C : ®(\) > 2"Inp}. As
a byproduct, we shall use the same notation E,[Fy (A, p,v)] for R(A) > 0. We emphasize
that the rhs of (4.3) involves only one observation of the pseudo-processus X (while the lhs
involves several discrete observations). This important feature of Spitzer’s identity entails the
convergence of the series in (4.2) with a lighter constraint on the domain of validity for A.

e Step 3
In order to prove that the functional F ; (A, p,v) is admissible, we show that the series
ZEI[e_)‘tnvk““X”»k_” M”»k] is absolutely convergent for R(A) > 0. For this, we invoke a lemma

of Bohr concerning Dirichlet series ([5]). Let 3 age % be a Dirichlet series of the complex vari-
able A, where (ag)ken is a sequence of complex numbers and (8 )ken is an increasing sequence of
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positive numbers tending to infinity. Let us denote o, its abscissa of convergence, o, its abscissa
of absolute convergence and o the abscissa of boundedness of the analytical continuation of its
sum. If the condition limsup,_, . In(k)/Br = 0 is fulfilled, then o, = 0, = 0y.

In our situation, we will show that the function of the variable A in the rhs in (4.3) is bounded
on each half-plane () > ¢ for any € > 0. We write it as

)\tn k 0 e_Atn,k: .
o [0 it ] = e [30 I (e 1)1, )

k=1 k=1
[(e(iu—u)Xn,k —_ 1) ]I{Xnk/ }]]

[e.e]
cexp lz
For any « € C such that ®(a) < 0, we have

[Eol (0 =1) 1ixon ]|

—)\tn k

[Eol (=0 = 1) dixcuzo]|

+o0
| et -l ag

/N

N

< 20|af

where we set ¢ = 0+°O €1p(1; —&)] d¢ (o < 4+00) and we used the elementary inequality |e¢ —1| <
2|¢| which holds for any ¢ € C such that £(¢) < 0. Similarly,

[Eo| (e7¥0 = 1) 11x<0y] | < 20alt™™.

Therefore,

X

—)\tn k

[( (@Xnp _ > ]I{Xnk/ 0 (or <0)}}

i éR()‘ 2 nk
1N ol
< 20l Yl = ol g o
k=1 nk

n,k+1 _%()\ +o0 _§R
S 29|O‘|Z/ i v @ 29|O‘|/ i —iiw @

2T(1/N)o |a|
= §R()\)1/N

(4.5)

This proves that the rhs of (4.3) is bounded on each half-plane () > € for any £ > 0. So, the
convergence of the series in (4.2) holds in the domain R(\) > 0 and the functional F}(\, 1, )
is admissible.

e Step 4

Now, we can pass to the limit when n — 400 in (4.3) and we obtain

. +m
E [FE(\ p,v)] = %e(’”_”)x exp [/0 e Myt (u,vit) % for () > 0. (4.6)
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A similar formula holds for F'y .

From (4.4), we see that we need to evaluate integrals of the form

/+OO e M dt /+Oo(e°‘£ — Dp(t; =€) d¢  for R(a) <0
0 0

t

and
too dt [
/ e 7/ (€™ = D)p(t; =€) dE for R(ar) >0
0 —0o0

We have, for R(«) < 0,

T [T ey
| [ e - - ae

- | o / s g / e () e
- /:oo +oo(e“5 —1)d§/0+0o e p(t; =€) dt
o) +oo

dt
ds/
0
— /V\;)\ dg/o -1) <29j e‘giag) d¢ (by putting o = ¥/s)
jeJ
_ +OO > —(0j0—a)§ _ —0508 }
L ol o

:Z/ <90—a > = D _log 0 a9 (4.7)

jed jeJ

In the last step, we used the fact that the set {6;,j € J} is invariant by conjugating.
In the same way, for R(«) > 0,

+Ooe—)\t@ 0 eaf_ B W
/ 7 - pte—gas - > Vi (1)

Consequently, by choosing o = iy in (4.7) and o = iy — v in (4.8), and using (2.1), it comes
from (4.4):
+o0 +
exp [/ e Mt (p,vst) d?] = A
0

[T (VX = (ip = v)05) TT (VA —ipby)

jeJ kEK

From this and (4.6), we derive the Laplace-Fourier transform of the vector (X (¢),M(t)). In a
similar manner, we can obtain that of (X (¢),m(t)). The proof of Theorem 4.1 is now completed.
[

Remark 4.3 The formulas (4.1) can be deduced from each other by using a symmetry argu-
ment.
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e For even integers IV, as assumed at the beginning of the section, the obvious symmetry

property X 45t _ X holds and entails
Eo ei,uX(t)—i—u mingg s<e X(s)] - E 0|:e—i,uX(t)+l/ minogsgt(—X(s))]

B EQ[B_iMX(t)_V maxog s<t X(S)] .

Observing that in this case {6,k € K} = {—0;,j € J}, we have

H\/’ :H

jedJ keK \/_—I_Z'uek
and
- VA 11 VA
jeJ \/_+(ZN+V)9j keK \/_ ZN+V)

which confirms the simple relationship between both expectations (4.1).

e If N is odd, although this case is not recovered by (4.1), it is interesting to note formally

at least the asymmetry property X+ 4t x— and X~ ™' X+ where X* and X~ are
the pseudo-processes respectively associated with xy = +1 and ky = —1. This would give
Eo[eiuX+(t)+V minpg s<t X+(s):| _ Eo[e—iu){*(t)ﬁ-u minogsgt(—X’(s))}

_ Eo[e—mX* (t)—v maxoe st X*(s)} .

Observing that now, with similar notations, {Hj,j eJ}={-0,,ke K} and {9,:’, k€
K*} ={-0;,j € J7}, the following relations hold:

H \/_—z,u9+ B H \/_—H,ue

jeJt keK—

and

VA VA
)

jg VA + (i + V)6 kek+ (ip + 1/)9+

Hence (X (t),m"(t)) and (X~ (t),—M(t)) should have identical distributions, which
would explain the relationship between both expectations (4.1) in this case.

Remark 4.4 By choosing v = 0 in (4.1), we obtain the Fourier transform of the A-potential of
the kernel p. In fact, remarking that

N-1
TTVX = iudy) TT (VA= ipby) = T (VA= ipb)) = X — sn (i)™,
je keK 1=0
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(4.1) yields

E [ +oo MAX (1) d :| ethT
- e Tt |l =—
/0 A — k()N

which can be directly checked according as

+oo +oo
/ e—)\tEx[eiuX(t)} dt = / eiux—()\—nN(iu)N)t dt.
0 0

4.2 Density functions

We are able to invert the Laplace-Fourier transforms (4.1) with respect to u and v.

4.2.1 Inverting with respect to v

Proposition 4.5 We have, for z > =,

+oo 1—#J)/N gip
N AR, [P X0, M) € dz] Jdz = NFD e 30,4, iV,

0 ; 7 H (% - Zlu’ek) jeJ

and, for z < x, S (4.9)
+oo 1—#K)/N jipzx

e MdtE [ei”x(t) m(t) € dz} Jdz = — X e Z 0x By, el VA) (o),

0 ’ 7 HJ(W —i1195) ik

j€

PROOF. Observing that {0;,j € J} = {0;,7 € J} = {1/0;,j € J}, we have
1 1 \—#I/N

TT(VX = (i — v)6;) vy V) AN
LS TRY (R Y ey

Applying expansion (2.11) to z = (ip — v)/ VX yields:

1
— \H#IN I \A=#D)/N (4.10)
IL(VA= (i = 0)6)) ;1——6;& Z W+e R
Writing now
e e V? zu 0; \f)(z x) dz
v —ip+0; \/_ ’

we find that
400 .
/ 6—)\tEx|:emX(t)—uM(t)] gt
0
A(l_#J)/NeiWC

“+oo
= / E_VZ Z HjAj e(i,u—ej%)(m—z) dZ.
[T (VA —iuby) Ja :

e/
KeK J
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We can therefore invert the foregoing Laplace transform with respect to v and we get the
formula (4.9) corresponding to the case of the maximum functional. That corresponding to the
case of the minimum functional is obtained is a similar way. m

Formulas (4.9) will be used further when determining the distributions of (7,7, X(7;5)) and
(ra s X(73))-
4.2.2 Inverting with respect to pu

Theorem 4.6 The Laplace transforms with respect to time t of the joint density of X (t) and,
respectively, M(t) and m(t), are given, for z > x V y, by

/+OO e MdtP{X(t) € dy, M(t) € dz}/dydz = %cpx(a;—z) Ua(z —y),
and, for z éox AY, (4.11)
“+oo
/ e MAtP{X(t) € dy,m(t) € dz}/dydz = %1#)\(:17 —2)palz —y),
0

where the functions @y and ¥y are defined by (2.6).

PROOF. Let us write the following equality, as in the previous subsubsection (see (4.10)):

1 Aa-#RN OB HkBk

K];[K(W — iu@k) o e IEVAN

Set
+o00 )
GO\ iz, 2) = / e thx[e’”X(t),M(t) € dz] Jdz
0

We get, by (4.9) and (2.1), for z > =z,

A(l—#J)/Nei,um

IT (VX —iubr)
keK
; 0. B . N
—  _\@#I#EK)/N jipz Z L Z 0;A; elin=0VA) (=)
feze W= Ok 2 jeJ

(z,u 0; \/_)z
= NN VA g, HkBki.
jelkeK — 0, VA

0;A; elin=0,VX) (=)

jed

G\ p;x, 2)

Writing now
e(iu—GjN\/X )z

_ (ek—en%z/z (in-0:/%)w g
=€ (&
i/L — ka —00 4

gives

G(A,u;w,Z)=—>\2/N_11{z>x}/ emy[ > 04 0By VRO 000) | gy
o0 jeJkeK
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and then
+0o0
/ e M AtP{X(t) € dy, M(t) € dz}/dy dz
0

CNNTL ST 9450, By VA Otk Ot g
jeJkeK

This proves (4.11) in the case of the maximum functional and the formula corresponding to the
minimum functional can be proved in a same manner. m

Remark 4.7 Formulas (4.11) contain in particular the Laplace transforms of X(¢), M (t) and
m(t) separately. As a verification, we integrate (4.11) with respect to y and z separately.

e By integrating with respect to y on [z, +00) for z < x, we get

/ T N @, (1) € dz) /dz
0

“+oo
_ _)\2/]\/'—1 Z HJA]/ e—@j%(y—z) dy Z ekBk eek%(w—z)

jeJ z keK
— _)\1/N—1 Z Aj Z HkBk eek%(x—z)
jeJ  keK
_ /Nl g{ekBk HVA@—z) _ %w(w _ ).

We used the relation Zje ;7 A; = 1; see Subsection 2.3. We retrieve the Laplace trans-
form (2.5) of the distribution of m(t).

e Suppose for instance that © < y. Let us integrate (4.11) now with respect to z on (—oo, z].
This gives

/ = e M At P {X(t) € dy}/dy
0

T

— _)\2/]\/—1 Z QJA] ek‘Bk eek%x—é)j%y/ e(é)j—ek)]\\’/Xz dZ

jEJkKEK -
— \/N-1 Z 0;A; Ok By eGjIY/X(r—y)

jelkeK O —0;

_ 1/N—-1 EkEk i . 0-\/XZ‘—
= )\/ E <§ Tj)HJA]eJ (z—y)

jeJ \keK

1

= 5 A\L/N-1 Zoﬂ' i ﬁ(x—y)7
jedJ

where we used (2.10) in the last step. We retrieve the A-potential (2.3) of the pseudo-

process (X (t))i>0 since

+00 too
/ e M dtPL{X(t) € dy}/dy = / e M p(t;x —y) dt.
0 0
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Remark 4.8 Consider the reflected process at its maximum (M (t) — X (¢))s>0. The joint dis-
tribution of (M (t), M(t) — X (t)) writes in terms of the joint distribution of (X(¢), M (t)), for
x =0 (set P =Py for short) and z,{ > 0, as:

P{M(t) € dz, M(t) — X(t) € dC} = P{X(t) € z — dC, M(t) € dz}.

Formula (4.11) writes

/0 o Ne MAtP{M(t) € dz, M(t) — X(t) € dC}/dzd¢ = @r(2)1hr(—C)
+oo

= / +OOAe—wﬂP{M(t) € dz}/dz x / Ae M atP{—m(t) € d¢}/d¢.  (4.12)
0 0

By introducing an exponentially distributed time T\ with parameter A which is independent of
(X (t))t=0, (4.12) reads

P{M(Ty) € dz, M(Ty) — X(Ty) € d¢} = P{M(Ty) € dz} P{—m(T}) € d¢}.

This relationship may be interpreted by saying that —m(T)) and M(T)) — X (7)) admit the
same distribution and M(Ty) and M (Ty) — X (T») are independent. m

Remark 4.9 The similarity between both formulas (4.11) may be explained by invoking a
“duality” argument. In effect, the dual pseudo-process (X*(t))i>0 of (X (t))¢>0 is defined by
X*(t) = —X(t) for all ¢ > 0 and we have the following equality related to the inversion of the
extremities (see [11)):

P.{X(t) e dy,M(t) € dz}/dydz = P, {X"(t) € de,m"(t) € dz}/dxdz
= P_,{X(t) € d(—x),m(t) € d(—2)}/dx dz.

Remark 4.10 Let us expand the function ¢, as A — 07:

#I 1y N/ el
(&) = VA 04, | Y %JFO(A(#JA)/N)]
jed 1=0 ’
#J-1
)\(l+1)/N§l
= > (Zej AJ) 0 +o()\ / >
=0 \jeJ
We have by (2.11) (for & = 0) > e, 9;+1Aj =0for 0 <! < #J—2and >, fﬁJA

(—1)#/ 1 [I;c;0;- Hence, we get the asymptotics (recall that f ~ g means that lim(f/g) = 1),

s#J-

ea(§) ~ (-D)* 1H9 A#J/N (4.13)

A OJr
- jedJ
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Similarly
g

o~ (L1#K
A (€) H9 R =1

A +
—0 keK

As a result, putting (4.13) and (4.14) into (4.11) and using (2.1) and leial 0, = (—1)N"1ky
lead to

AFEIN (4.14)

(z —2)* 1z —y) Kt
(#J = DH#K - 1)!
By integrating this asymptotic with respect to z, we derive the value of the so-called 0-potential

of the absorbed pseudo-process (see [18] for the definition of several kinds of absorbed or killed
pseudo-processes):

+o00
/ e MAtP{X(t) € dy, M(t) € dz}/dy d= N
0 —

dz.

- a — (1) #1 @ (y— )1y -y #E
/0 P.{X(t) € dy, M(t) < a}/dy = (1) N /xvy (#J = DI (#K - 1)!

4.2.3 Inverting with respect to A

Formulas (4.11) may be inverted with respect to A and an expression by means of the successive
derivatives of the kernel p may be obtained for the densities of (X (t), M (t)) and (X (t), m(t)).
However, the computations and the results are cumbersome and we prefer to perform them in
the case of the distribution functions. They are exhibited in Subsection 4.4.

4.3 Density functions: particular cases

In this subsection, we pay attention to the cases N € {2,3,4}. Although our results are not
justified when N is odd, we nevertheless retrieve well-known results in the literature related to
the case N = 3. In order to lighten the notations, we set for, R(\) > 0,

+oo
®y\(,y,2) :/ e MAtP{X(t) € dy, M(t) € dz}/dy dz,
0

Uy(z,y,2) = /0+00 e MAtP{X(t) € dy,m(t) € dz}/dy dz.
Example 4.11 Case N = 2: using the numerical results of Example 2.1 gives
oA(§) = VAV and (€)= VAe VA,
and then
D)\ (z,y,2) = VA @ty=22) I>avyy and Wy(z,y,2) = VM 22—2=y) Licany)-

[ |
Example 4.12 Case N = 3: referring to Example 2.2, we have
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o for k3 = +1:
oa() = Vxe¥rE,

a6 = _Z\\;?? <eem/3‘%f— ee%W/S\%g) _ 2 e <§ {ﬁ5>,

which gives

2

sty 3m (V3o
Pir(z,y,2) = meﬁ( 39739 sin <7 \/_( )> Leo>avyys
2 INE z—La— \/7
\I/)\(‘Tayaz) = ﬁ%eﬁ(g % v) sin <7 \/_(.Z'—Z)> ]I{ZSIE/\?J};
o for k3 = —1,
Z\3/X ein/3YNe e—in/3YN¢e 2\3/X ﬂg . (\/3\3/—>
= ey —_ = — 2 B A s
O = & (e e ) Jo e S (3 Ve
() = e Ve
which gives
2 ¥X(lasy3a . (V3
CI))\(‘Tayaz) = \/g\g/xe\/x(; y Z )Sln <7 \S/X(Z_x)> ﬂ{Z?.’EV?J}?
2 YN(E aa iy . (V3
\I/)\(‘Tayaz) = \/g\g/xe\/x(2 %y) sin <7 \S/X(y_z)> ]I{ZSIE/\?J}'

Example 4.13 Case N = 4: the numerical results of Example 2.3 yield

.4)\ —im i
or(6) = _Z\\//;(ee YRE _ e /4<‘A§> _ \f\/xefssm<

- 4 . .
) = ? (e VR TAE) VBN f€51n<

IS
<[5

o)
‘)

IS
<[5

which gives

By(z,y,2) — \La o V3 @Hu=22) [cos <% (= — y)) — cos <% (@+y— 22)” 150vy),
Uy(2,y,2) = \% e va e [cos <% (& — y)> — cos <% (@ 4y — 22)” 1ocony)-

4.4 Distribution functions

In this part, we integrate (4.11) in view to get the distribution function of the vector (X (t), M (t)):
P.{X(t) < y,M(t) < z}. Obviously, if z > z, this quantity vanishes. Suppose now = < z. We
must consider the cases y < z and z < y. In the latter, we have P, {X(¢) < y, M(t) < z} =
P{M (t) < z} and this quantity is given by (2.7). So, we assume that z > = V y. Actually, the
quantity P,{X (t) <y, M(t) > z} is easier to derive.
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4.4.1 Laplace transform

Put for R(\) > 0:

+00
Fy(e,y,2) = / e N PB{X(1) < g M(t) < 2} dt
0

Fy(e,y,z) = / N BX () < g, M) > 2} dr.
0

The functions Fy and F) are related together through
Fx(z,y,2) + Fa(z,y,2) = U (A2 — y) (4.15)
where W is given by (2.4). Using (4.11), we get

F)\(ﬂf,y,Z)
Yy “+0oo p+00
_ —At
_ /_Oo/ /0 e MB{X (1) € de, M(t) € dC} dt

Y
= NNTLST 9,4,0,B, Ve /

N too N
o0k VAE d{/ eOk—05) \5\(][{(>IV£} dc.
jeJkeK 0 z

We plainly have ¢ > z > 2z Vy > z V § over the integration set (—o0,y] X [z, +00). So, the
indicator Ijc>,vey is useless and we obtain the following expression for F).

Proposition 4.14 We have for z > x V y and R(\) > 0:

+m . .
/ eNPUX() <y<z<M@))dt = - % VA=) 40K ()
0 jeskex Ik
and for z < x ANy:
o0 )
/ ENPAX(H) 2y m}dt = = Y % VA=) 10, N 2)
0 jeskek F Y

As a result, combining the above formulas with (4.15), the distribution function of the couple
(X (t),M(t)) emerges and that of (X (), m(t)) is obtained in a similar way.

Theorem 4.15 The distribution functions of (X (t), M (t)) and (X (t), m(t)) are respectively de-

termined through their Laplace transforms with respect to t by

“+oo
/ e MP{X(t) <y, M(t) < z}dt
0

1 0;A;Be g N/x(a—2)+0, YA (s—y) , L 0N/ A (2 —) :
- Z - k y+N—>\Z€k Y nyéxéz,

_ jenwer Ok =0 ek (4.16)
% [1 _ %Z eGj%(w—y) + Z % e@j%(:v—z)—l-Gk]\\f/X(z—y) zfa; <y<z,
jed jeskek kT Vi

and
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+0o0
/ e MPAX(t) > y,m(t) > 2} dt
0

2 : + S E <z <
9]_9k N)\. ‘ yesesy
jedkeK =

1 1 gk%(;p—y) ‘1 6k:Bk‘ 9 f(w Z) +01 \/X( ) .
)\ [1 N (& ; A ZfZ YT
keK jeJkeEK

4.4.2 Inverting the Laplace transform

Theorem 4.16 The distribution function of (X (t), M(t)) admits the following representation:

Iyo(s — 052 — y)
P{X(t) < = E m o;x dsd 4.17
(XM <y<z<M@)} = 2 Ak // axm - z) (t —s)1- (my1)/N 540 ( )
o<m<#I—1

where Iy is given by (5.14) and

NBk Ajajm
m+1 Z 9. _ Qk’

the ajm’s being some coefficients given by (4.18) below.

PROOF. We intend to invert the Laplace transform (4.16). For this, we interpret both expo-

nentials eeﬂ'%(x_z) and eek%(z_y) as Laplace transforms in two different manners: one is the
Laplace transform of a combination of the successive derivatives of the kernel p, the other one
is the Laplace transform of a function which is closely related to the density of some stable
distribution. More explicitly, we proceed as follows.

e On one hand, we start from the A-potential (2.3) that we shall call ®:

ZH i Vae for £ < 0.
jed

(A €) = W

Differentiating this potential (#J — 1) times with respect to £ leads to the Vandermonde

. : IRVAN )
system of #.J equations where the exponentials €% are unknown:
[
29§+1€€j%5 — N)\l—(l-i-l)/N %()\75) for 0 < 1 < #J —1.
x
jeJ

Introducing the solutions a;y,, of the #.J elementary Vandermonde systems (indexed by m
varying from 0 to #J — 1):

> 0eym =0, 0SI<#J—1,

JjeJ
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we extract

#J-1

93 9%{ . Oéjm ome .
S e Z St g i 6)

_ [ =7 S Ny Oy de
= (L) 9 5 (t — s)l-(mTD/N’

The explicit expression of oy, is

mOgrm(Ol € I\ ) _ ()"
HleJ\{j}(el - 0]') HleJ i

where the coefficients c;q, 0 < ¢ < #J — 1, are the elementary symmetric functions of the
0’s, L€ J\ {j}, that is cjo = 1 and for 1 < ¢ < #J — 1,

co=og(Ole I\ = D, 6,6,

l15-5lgeI\{7}
1<--<lqg

= (1)

Cjpg—1-m0jAj (4.18)

e On the other hand, using the Bromwich formula, the function £ — e VAE can be written
as a Laplace transform. Indeed, referring to Section 5.2.2, we have for k € K and £ > 0,

+o00
VRS = / e M Iyo(t; ) dt
0

where Iy is given by (5.14).

Consequently, the sum in Proposition 4.14 may be written as a Laplace transform which gives
the representation (4.17) for the the distribution function of (X (¢), M (t)). m

Remark 4.17 A similar expression obtained by exchanging the roles of the indices j and k in
the above discussion and slightly changing the coefficient ay,, into another b;,, may be derived:

Lio(s — o2 — 2)
PAX() <y<e< M@= Y bjn// Gz =) P D dsdo (0.19)
0<nJ<E#IK 1
where

N9 Aj QkBkﬁlm
oL

However, the foregoing result involves the same number of integrals as that displayed in Theo-
rem 4.16. =

323



4.5 Distribution functions: particular cases
Here, we write out (4.16) and (4.17) or (4.19) in the cases N € {2,3,4} with the same remark

about the case N = 3 already mentioned at the beginning of Subsection 4.3. The expressions
are rather simple and remarkable.

Example 4.18 Case N = 2: the double sum in (4.16) reads

3 0;4; Bl o, Yxa—2)+0, VA(a—y) _ P1A15B0 6, VR(a—2)+00vA(z—y)

jekeK O — 0 00— 01
with 991;%0310 = —%, and then
1
o\ [e‘ﬁ(m_y) - eﬁ(“'y_%)} ify<z<z,
F)\(ﬂj, Y, Z) = 1 1 \f( ) \f( )
L Az—y T+y—2z : <y <z
y 2/\|:€ ] fe<y<z

Formula (4.17) writes

t rs
Px{X(t)gyéng(t)}:aoo// ployx — 2) Ipg(s — 032 — y) ds do
0J0

Vit—s
with ) )
¢
;) = —e 4.
p(t;€) N
The reciprocal relations, which are valid for £ < 0,
VX¢
oy € VXE _ )
PN &)= —— and eV =2V 0P\
imply that a;g = 1. Then agy = % ‘5‘%‘58 = % On the other hand, we have for £ > 0
by (5.14),
Io(t§) = 2 {z / eTNHIEA G\ 4 / o=tV —if0sx d)\}
27t 0 0
_ £ / T e gy / o gy
2t 0 0
. 3 oo —tAZ4iEN _ 3 e
= 2—71't . € d)\_72\/%t3/2€ 4t |
Consequently,
B %)? Zwﬁ)
<y<Lz< M .
Pm{X(t)\y\Z\ 471'3/2// \/_8—0'3/2\/md8d0-
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Using the substitution o = us_i p
Bessel function K /5, we get

_ (== z)2 _ (== y)2 (zfz)2+(zfy)2

4o 4(s—o) e~ 4s /OO _ (W*Z)z u— (z*y)z d'LL
do = ——M e s2 4u -
\/— s—o) 3/2 NG 0 ud/2
z—z—y)>
_ ﬁ e_(2 &2 D) '
(z—y)s
Then
o (22*1*34)2
PAX() <y<:<Mi)=— [ C— = 4
Y2 =5 —F——= as
! 2m Jo \Jo(t—s)
Finally, it can be easily checked, by using the Laplace transform, that
: (2z—wfy)2 _52 oo
=T dt = 27T/ p(t; —&) dt.
O’(t — S 2z—x—Yy \/_ 2z—x—y

As a result, we retrieve the famous reflection principle for Brownian motion:
PAX(H) Sy<z < M)} =P{X(t) > 2z -z —y}.
[ ]
Example 4.19 Case N = 3: we have to cases to distinguish.
e Case k3 = +1: the sum of interest in (4.16) reads here

0o Ao B1 00 VA (@=2)+01 VA(z—y) 4 205072 0o Ao B2 00 VA(@=2)+02 VA(z—y)

91 — 90 92 - 90
with 913190 = 923_290 = —1, and then

2 [ _& V3
Z e (@) Yo —
o [e 2 cos< 5 VA (x y))

byt o (? Uz — y)>] ify<o<s,

F)\(ﬂj, Y, Z) =
11 @
A 3A
42 VA@+35-52) o <§ VA(z - y))} ifz<y<z
We retrieve the results (2.2) of [3]. Now, formula (4.17) writes
ds do
PAX(t) <y<z< M)} = // ;T — 2) aloflo—i-agofgo)(s—a;z—y)m
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where, by (2.2),
1 [T
p(t; &) = —/ cos(EX — tA3) dA.
T Jo
The reciprocal relations, for £ < 0,

e
(& 3
(X&) = 5355 and e VA8 = 3000 d (X €)

imply that agg = 1. Then

a - 3Bl AOO(()O o 1
T T(1/3) 6o—6, T(1/3)
3Bg AOO(()O . 1

20 T(1/3) 6o — 0, T(1/3)

Consequently,

P{X(t) Sy <z < M)} = F(ll/?)) /O/OSP(a;w —2)q(s — o2 —y) 7@%95;/3

with, for & > 0, by (5.14),
q(t;€) = (Io + I20)(t;€)

i€ in [T _teeFen in [T 3si0e Fea
= — |bies e N HOIET A g\ _he7 s e~ H0ie T EA g\
27Tt 0 0

. 400 ir . o0 i
+ Ores / emtA 02 TEN gy Ore™ 3 / e tA 02T 8 6 d)\}
0 0
i€ [ in [T _paieFen i [T e Fea
= — |:€3/ e tAHeE d)\—e_S/ e"tAHe B g
0 0

+oo
= £ e~ 3 g <£ EN+ E) dX.
Tt 0 2 3

o Case k3 = —1: the sum of interest in (4.16) reads here

o Ao B1 0o VA@—=2)+01 VX(=-y) | 0242 B 02 VA (z—=2)+61 VA(z—y)

0, — b6y 01 — 0
with 9910:4900 = —% e!™/3 and % = —% e~'7/3 and then
(
S e V\a—y) _ 26%(%904‘3/—% %) cos ﬁ \J/X(ﬂj —2z)+ il
3 2 3
ify<z<z,
= 1 1
F)\(Z'7y7 Z) X . 3_)\ |:26‘2F(x—y) COS <§ \/X( . y)>

—l—e%a(%“y_%z) cos <§ V(@ —2) + §>]

ife<y<z
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We retrieve the results (2.2) of [3]. Next, formula (4.19) writes

Po{X(t) Sy <z< M)
— Z bjo/o/o p(o;z —y) Lio(s —a;x—z)%

j€{0,2}
ds do
= // o5z —y) (booloo + b2ol20) (s — 03¢ — 2) =)
where, by (2.2),
1 [t
p(t;€) = — / cos(EX +tA3) d).
m™Jo
From the reciprocal relations, which are valid for £ > 0
— e .
oy € —INe _ 9y2/3 .
@()\76) = W and — € =3\ ﬁloq)()\, é.)
we extract the value B19 = —1. Therefore,

360 A0 9131510

0= T B </>

30249 61B1f1g e s
b = =

I(1/3) 6, —6, TI(1/3)

Consequently,

1 Lre ds do

PAX(@) Sy<z< M)} = —— 1z — -0 —2) —————

(X(0) v <= < M) = gy [ [ wlosz = w)ats—oio =) 52
where, for £ <0, by (5.14),

g(t:6) = (€5 Ioo + e 5 Ing) (1)

i€ T e e i [T eie0e Fex
= = —90/ et e 58 d)\—HoeT/ et HB0e T EA g\
27t 0 0

. +oo im 400 im
+ 926_% / e~ AT 02T EN gy + 65 / et +02eT 5 6 d)\}
0 0

“+oo +0o0
% [\/5/ e~ HEN g\ +/ e~ =3 P gin (f EX+ ) d)\]
0 0

Example 4.20 Case N = 4: in this case, we have

3 0;4i Bk 0, Yx@—2)+01 V()

0, — 0.
jelkerx kT Vi
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02 A2 By 92\/_(96 2)+00 VA (2~ y)_|_

02 A2 B4 92\/_(96 z)+61 \/X( Y)

00— 02 )
_|_63A3BO 05 VA (2—2)+00 VA(2—y) + 034381 s VA (@—2)+01 VA(z—y)
0o — 03 1 — 03
with ‘ '
02 A9 By - 1 03 A3 B - _i 02 A5 B . _e_lﬂ/‘l 03 A3 Bg - _6”/4
90—92 4’ 91—93 4’ 91—92 2\/5 ’ 90—93 2\/5‘
Hence,
(1 _3_5\( _ A\ ) _
e vEEY) VA ) L o Ety=22)
2/\[6 2 cos(\/§($ y)) e V2
4 4 4
X (cos <%(x - y)) — sin <%(x - y)) — sin <%(x +y— 2z)>}
ify<z<z,
F)\(:Ev Y, Z)
<1/— 4
4 4 4
X <cos <%(z - y)> — sin <%(z — y)> — sin <ﬁ(x +y— 22))}
| ifz <y <z
We retrieve the results (3.2) of [3]. Now, formula (4.17) writes
dsdo
]P’I{X(t) <Y<z« M } = // o; a:—z CL00[00+CL10[10)( ) (t—8)3/4
dsdo

where, by (2.2),

p(t;€) =

Let us consider the system

0y 02 VAE | gy o3 VAE

02 02 VAE 1 92 03 VA

which can be conversely written
65 ef2 Ve

05 03 VAE

z) (ap1loo + a11110)(s — o032 — y)

s

1 [t
—/ et cos(&N) dA
0

™

ANAD(N; €)
WA 22 e

¢
(03A3/4<I><A;5> VA0 s>>
e0:9)

B,
3/4
( 9 @(Ag)+xf8§

03 — 02
4
03 — 65
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or, by means of the coefficients asg, o1, 30, @31,
02 VNE 3/4 ) 0% .
0y %2 = 4 a1 D (N, £)+a21\/xa—§()\7£) ,
03 VNE 3/4 ) 0P .
f3 e’ = 4 azoA 1@\ €) + az VA 8_5()\’5) :

Identifying the two above systems yields the coefficients we are looking for:

o . 03 4 = 6_%
20 = s — 05 2= ok
92 e%r
azyg = —03_02—143—%
1 )
p— —_— = — A N
a1 — oAy = oA
1 /)
g _ — A —_— —_—-—_—
a3y — 03 A3 ok
and next:
agp = 4BQ [ A2a20 Agago ) _ 1
U(1/4) [02—60  03—060] 2T(1/4)
a0 = 4B1 [ Asagy | Aszazg | _ 1
U(1/4) [0a—61  63—061] 2r(1/4)
a B 4By [ Asas Asazy ] o 6_%r
O T TA/2) [6,—06  O5—60] or
a . 431 [ A2a21 + A3()é31 ] - 6%r
T T(1/2) |6,—61  05—061] Vor
Consequently,
dsdo
P{X(t)<y<z<M // o;x —z)qu(s — 052 —y) =5

// (5—oiz— )dsda
(9 Q2 a; Y Ta—

with, for £ > 0, by (5.14),

q1(t;€) = (aooloo + aiolio)(t;€) = m (Zoo + L10)(t; €)
and
w(t:€) = (oo +anlio)(:€) = —= (e Fho+ e FH)(:6)

= % (Ioo + T10)(t;€) — i (Zoo — T10)(; €)-
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Let us evaluate the intermediate quantities (Ipg £ I19)(¢;€):

i€ in [ 4 i in [T 4 —im
(Ioo + I0)(1:6) = — [Hoef / e N e TEX gN — Goe T / e~ AT Hloe T EX )
Q 0 0

T +o0 )\4 0 % A T +o0 )\4 2] *%r A
+ 9164/ e N HOe T A g\ 916_4/ e AT HOie EEA gy
0 0

_ £ /+OO et cos(&X) dA
0

mt
and
(loo — L) (1) = —= [/Jrooe_txl_&d)\—/+Ooe_t)‘4sin(f)\)d)\]
00 — 110)(%; =y i ‘
Then
; = # e —tAt
a(t:€) = AT 4)t/0 e " cos(EX) dA
w0 = 5o [ e (con(en) +sin(EN) — ) ax
7 272t J, :
[

4.6 Boundary value problem

In this part, we show that the function ac — F\(x,y, z) solves a boundary value problem related
to the differential operator D, = K}N . Fix y < z and set F(x) = F)\(x,y, z) for x € (—o0, 2].

Proposition 4.21 The function F satisﬁes the differential equation

AF(x) =1 forxz € (—o0,y),
PaF(z) = { )\FE:L'; ;07“ x € Ey,z),y) (4.20)
together with the conditions
FOGTY =0 for0<I<#J—1, (4.21)
FOuH —FO@y™) =0 for0<I<N-—1. (4.22)

PrOOF. The differential equation (4.20) is readily obtained by differentiating (4.16) with respect
to z. Let us derive the boundary condition (4.21):

AN 0T A; By, /N N
rFO7) A Zi TR 0NNy A Z AR V(z—y)
jelkeK 9’“ —0; NA kK
91+1A 91+1
\/N-1 Z Z J ?\f VA=) _
keK yEJ

l"rlA el-i-l
where the last equality comes from (2.11) with = = 6 which yields Z 6 — 0, = — NkB .
k— k

Condition (4.22) is quite easy to check. m
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Remark 4.22 Condition (4.22) says that the function F' is regular up to the order n — 1. It
can also be easily seen that F(M(yt) — FN)(y~) = gy which says that the function F)
has a jump at point y. On the other hand, the boundary value problem (4.20)—(4.21)—(4.22)
(the differential equation together with the N + #J conditions) augmented of a boundedness
condition on (—oo,y) may be directly solved by using Vandermonde determinants. m

5 Distributions of (7,7, X (7)) and (7, , X(7,))

The integer N is again assumed to be even. Recall we set 7,7 = inf{t > 0 : X(¢) > a} and
7, = inf{t > 0 : X(¢t) < a}. The aim of this section is to derive the distributions of the
vectors (7,7, X(7;5)) and (7,7, X (7, )). For this, we proceed in three steps: we first compute
the Laplace-Fourier transform of, e.g., (7,7, X(7,7)) (Subsection 5.1); we next invert the Fourier
transform (with respect to p, Subsubsection 5.2.1) and we finally invert the Laplace transform
(with respect to A, Subsubsection 5.2.2). We have especially obtained a remarkable formula for

the densities of X (7,7) and X (7, ) by means of multipoles (Subsection 5.4).

5.1 Laplace-Fourier transforms

We have a relationship between the distributions of (7,7, X (7.;5)) and (X (¢), M (t)), and between
those of (7,7, X (7)) and (X (t), m(t)).

a

Lemma 5.1 The Laplace-Fourier transforms of the vectors (t,7, X(7;})) and (7, ,X (7)) are

related to the distributions of the wvectors (X(t),M(t)) and (X(t),m(t)) according as, for
R(A) >0 and p € R,

Ex{e_)‘ﬂ#”“‘x(ﬁ)] = (A= rn(ip)V) / e_)‘tEx[e’“X(t),M(t) > a] dt  forx < a,
°+ (5.1)
Ex[e_”‘;”“X(T‘;)] = (A— HN(iM)N) / e_’\tEx[ei“X(t),m(t) < a} dt  forxz > a.
0
PrOOF. We divide the proof of Lemma 5.1 into five steps.
e Step 1

For the step-process (X, (t))¢>0, the corresponding first hitting time 7'; ,, is the instant t,, ;, with
k such that X (t, ;) < a forall j € {0,...,k — 1} and X (¢, ) > a, or, equivalently, such that
My -1 < a and M, > a where M, = maxogj<i Xn,j and X, = X(t, ) for £ > 0 and
M, _1 = —oo. We have, for z < a,

o0

Ao n+ipXn (ta, _ 2 : =AMy e +iuX
e a,n T n( a,n) — e n,k T n'k]l{Mn,k71<a<Mn,k}
k=0
%)
_ =y e +ipuX
- Z e Tk mE |:]I{Mn,k>a} B ]]'{Mn,k71>a}:|' (5.2)
k=0
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Let us apply classical Abel’s identity to sum (5.2). This yields, since v, y>ap = 0 and
limg— 400 e~ Mn .k FilXn ]I{Mn,k>a} =0, for ®(\) > 0:

o0
e_)\Tt;‘:n'l'iﬂXn(Ttin) — 5 |:e_)‘tn,k+i;ufxn,k — e_)‘tn,k+1+i;ufxn,k+l

k=0

Lo, >a)-

—)\T;n-‘rian (Tjn)

The functional e is a function of discrete observations of X.

e Step 2

In order to evaluate the expectation of the foregoing functional, we need to check that the series
(o]
Z Ex[(e_Atn,k'l'iﬂXn,k _ e_)‘tn,k+1+i;ufxn,k+1> ]l{M >CL}:|
n,k
k=0

is absolutely convergent. For this, we use the Markov property and derive the following estimate:
‘Ex[e—)\tn,k+iﬂX7L,k 1, kga}] ‘ _ ‘e—)\tn,kEI[eiMXn,k 1(x,  <on.x, k@}} ‘

K / / T p(1/2% x — x1) - - - p(1/2"; 2y — x3) day - - - day,
< (pe ROy

We recall that in the last inequality p = fj;o Ip(t; 2)|dz < 4o00. Similar computations yield

the inequality [ [e™nst#nr]| < (p e RN/2")k Because of the identity Ynt,p>ay = 1=
]I{Mn,k <a}s W€ plainly get

‘Ex[e—)\tn,k'f‘iMXn,k ]I{Mn k>a}] ‘ <2(p e~ RN /2" )k
Upon adding one integral more in the above discussion, it is easily seen that
‘Ex[e—)\tn,k+iﬂxn,k+l Ty pa}” < 2pe RN/2M kL,
As a result, when choosing A such that R(\) > 2" In p, we have

o —R(N)/2"

_ ; _ ; 2(1+pe
> ‘ExKe A FiiXne e )\tn'k+1+lan’k+l>]1{M7L,k>a}:| ‘ < (1 — e R/ ) < +o0.
k=0

e Step 3
Therefore, we can evaluate the expectation of e~ AanFinXn (Tdn). By the Markov property we
get, for R(\) > 2" Inp,
E e—)\TIn+Z'/.I,Xn(T;:n):|
X
o

= Z e_)‘t")kEx[ei"X"’k ]I{Mn p>a} (1 —e M ei“(X"v’f“_X"vk))}
k=0

e}

= S [ty (1 g (0 )]
k=0
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Since EX,L,,C(GZ'“(X”J_X”’O)) = emv (i)™ /2" we obtain, for R(A) > 2" 1np,

Em[e—Arfim-an(—r;n)] — ogn (1 _ e—(A—HN(i“)N)/2n>
1 & ,
X3y e_’\t”’kEx[e“‘X”’k 1 Mn’k>a}] . (5.3)
k=0

e Step 4

In order to take the limit of (5.3) as n tends to co, we have to check the validity of (5.3) for any
A such that $(A) > 0. For this, we first consider its Laplace transform with respect to a:

too + o +
/ e—l/aEw|:e—)\Ta,n+ZMX7L(Ta,n):| da
€T

— (1—6 (A=rin (in) /2n>Ze )‘t""/ e_”aEx[ei”X"v’“]l{Mnypa}] da.

k=0 z

The sum in the above equality writes, using the settings of Subsection 4.1,

o
E e_)‘t"'k

k=0

+o00 X
e—l/aEI[eZM n,k ]I{Mn,k>a}] da

At inX Mk
e~ n,kEx ettt n,k/ e V% da
x

S~

I
NE

k=0
o0 )\t
= Z ¢ m |: _VxEx(ei/J'Xn,k) — Em(eiﬂXn,k_VMn,k)]
v
k=0
o0
— l [ (ip—v)z Z e~ (A= mn ()N )Vt k Z e~ An T, WXn,k—VMn,k) ]
1%
k=0

zu V) \
= — +
v [1 - e‘(*‘“N@MN)/W oo Eal P, (A v)) ]

(ip—v)z 1 1 1 % At
—_— e e + )
R [1 P P VL W Vot (272 i Y (%Vvtn,k))]-

k=1 "™

We then obtain

too + o +
/ e—l/aEw|:e—)\Ta,n+ZMX7L(Ta,n)i| da
€T

(ip—v)z 1 — e—O—=rn@m)™N)/2m 1 & e Mk

(& e e

= - X § : + .

1% [1 1 _ e_)\/Q" € p <2n p] tn7 ¢ (“’ ]/’ tn,k) .

Inverting the Laplace transform yields, noting that the function a —— Ew[e_)‘ﬁ”“'“x"(ﬁv”)} is

right-continuous,

+ . 4 c+i00
E e—ATa7n+ZMXn(Ta7n) _ lim (zu v)z+v(ate)
z =
2z7r e—0t Joo
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1 — e_()‘_RN(iiu‘)N)/2n 1 ©© e_)‘tn,k n dV
X [1 - 1_ e_)\/gn exp 2n kZ ¢ (:uv v tn,k) 7

t
1 n,k

Putting
O (py v5t) = Y1 (ipst) + holip — v;5t)
with

P1(ast) = Eo[(ffax(t) - 1) ]I{X(t)<0}} o Pa(ast) = Eo[(eax(t) - 1) ]I{X(t>>o}},

the exponential within the last displayed integral writes

LS i)
exp | — , U,
p on - tn, w n,k
1 0 e_Atnk e—)\tnk
<nz - diliptag) | exp | 55 Pa(ip — vitny) |-
k=1

k 1 n, n?

Noticing that

T pevgerra W _ i
2im c—100 7
we get
Nt . + . 1— e_(A_HN (Z/J') )/2n 1 i e_)‘tn,k .
E;c|:€ )\Ta,n-i-Zan(Ta,n)] = ' [1 — 1— e_)\/zn €xp 2n Z t 1/}1 (l,ul; tn,k)
k=1 ™
1 fetioo 1 o= e Mk dv
_ (a—z)v S — e il
X e ex 7 v;t .
Sir ). p <2n ; - Ya(ip k) »

By imitating the method used by Nishioka (Appendix in [17]) for deriving subtil extimates, it
may be seen that this last expression is bounded over the half-plane R(\) > ¢ for any ¢ > 0.
Hence, as in the proof of the validity of (4.2) for ®(\) > 0, we see that (5.3) is also valid for

R(N\) > 0. It follows that the functional e~ +inX(1d) ig admissible.
e Step 5
Now, we can let n tend to +o0 in (5.3). For R(\) > 0, we obviously have

lim 2”(1 - e—(A—“N(WN)/?”) =\ — (i)™

n—-+00

and we finally obtain the relationship (5.1) corresponding to 7. The proof of that corresponding
to 7, is quite similar. m

Theorem 5.2 The Laplace-Fourier transforms of the vectors (7,5, X(7;5)) and (7,7, X (7)) are
determined, for R(\) >0 and p € R, by

EI{G_ATJH;LX(T;)} _ ZAJ' H (1 _ i—\%@) eej’Y/X(x—a) e for z < a,
jed  1leJ\{j}

' (5.4)
Em[ Ao +ipX (ta } Z By H <1 _ IZV_\;‘X §l> eek%(m—a) e for x> a.

keK  1eK\{k}
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PROOF. Using (4.9) gives

+oo .
/ e_)‘tEx[e’“X(t),M(t) > a] dt
0

_ NI=#J)/N ipz 0,4, /+ e(w_ej%)(z_m) ” 55)
TG
Plugging the following equality
N-1
A —rn(ip)N = H(W—iuH;):H( A —ipbj) x H A — iuby)
1=0 jeJ kEK

into (5.5) and remarking that the set {;,j € J} is invariant by conjugating yield

+oo .
/ e_)‘tEx[eZ“X(t),M(t) > a] dt
0
HJ(% - zuﬂj) A N
/\(1—#J)/N iux J€ : J _ —(ip—0;X)(z—a)
: T

A—K
— A I (1 _ g) o~ (in=0;")(z—a) (5.6)
_ N Z N l
A= kN (ip) jed  le\{j) 2

Consequently, by putting (5.6) into (5.1), we obtain (5.4). =

Remark 5.3 Choosing 1 = 0 in (5.4) supplies the Laplace transforms of 7,7 and 7, :
Em[e_kfj] = Z Aj SIVAE=a)  for 4 <a,
jeJ
[_Ma] = ZBkeek @=a)  for 2 > a.

Remark 5.4 An alternative method for deriving the distribution of (7,7, X(7;5)) consists of
computing the joint distribution of (X (£), 1(_ugq)(M(t))) instead of that of (X (t),M(t)) and
next to invert a certain Fourier transform. This way was employed by Nishioka [17] in the case
N = 4 and may be applied to the general case mutatis mutandis. =

Remark 5.5 The following relationship issued from fluctuation theory holds for Levy processes:
if x < a,
fo—l-oo e~ At Ex[ew(M(t)_a),M(t) > CL] dt

f0+oo e~ Xt Eo[eiuM(t)] dt
Let us check that (5.7) also holds, at least formally, for the pseudo-process X. We have, by (2.5),

+oo .
/ e_)‘tEm[ew(M(t)_“),M(t) > a} dt
0

Ex{e—ATJHuX(TJ)} _ ima (5.7)
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+oo +o00
= / eitlz—a) dz/ e MAtP{M(t) € dz}/dz
a 0

_ /+°° AN g, pin(z—a) -0,V (==2) g,
@ jeJ
_ 1 Z iV (z—a). (5.8)
jeJ \/x
For = = a, this yields, by (2.11),

-1
Foo , 1 0;A,; 1 i -
A PRSP )
0 jed N/x jes

As a result, by plugging (5.8) and (5.9) into (5.7), we retrieve (5.4). m

Example 5.6 Case N = 2: we simply have
Em[e Ard +iuX (rd )} = cinatVi(@=a) for g < q,
Ex{e_)‘ﬂ;”“x(”;)} = ema—VA(@=a) for > a.
[ ]
Example 5.7 Case N = 3:

e In the case k3 = +1, we have, for z < a,

- ) —a Y\ (z—a VX (z—a
Y4 ] <1_ 3_\//%91> VA @=a) _ g VA a—a) _ YA (o-a)
jeJ leJ\{j}

and, for x > a,

z',u ) 3 r—a
ZB’f H <1_3—\/X91> VX (z—a)

keK  1eK\{k}

= Bl (1 — i 9_2> 661%(50—@) + 32 <1 _ 7’“ é > 692%(1;—0,)

IX
L 1% (a—a) K —inf6 M > B YN (1—a) < in/6 M ) i3 %(z_a)]
= —e¢72 e + o= + (™0 — = e .
V3 VA VA

Therefore, (5.4) writes

Em[e—)\rj+iuX(T;r):| _ ei,ua+{5/x(m—a) for » < a,
Ex|:e—)\7¢;+iﬂX(T¢;):| — j_ Z/J,CL—*\/_(ZE CL) [COS <\/_\/7( ) — %)
(U \/§3
R - — = a.
+ \S/Xsm< 5 VA (z a))] forz >a
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e In the case k3 = —1, we similarly have that

i +ipX () _ i ipa+i \Sﬂ(x—a) ﬁ 3 B T
E:c[e } \/ge 2 cos 5 \/X(a: a) + :
o V3,

_ 7Xsm <7\/X(:E —a)>] for x < a,
Em[e_)‘T‘:Jri“X(T‘:)} = it~ VA (@-a) for x > a.

Example 5.8 Case N = 4: we have, for =z < a,

ZAJ' H (1_7X9l> 0;,VX (z—a)

jeJ leJ\{j}

= Ay (1- ) e g (1_1'_”@)663%@—@
( ﬁ) (1=

1 L ¥X(a—a) K Cinfa M > —iL VX (2—a) ( inja M > i 4¢X(w—a)]
= —eVv2 e ——=]e V2 +le +—-=]e V2 )
2 0) 0)

and, for = > a,

ZB’f H (1_ i_ﬂ§l> OV (@-a)

keK  1eK\{k}

>

W = 4 I = 4 —a
= BO <1 {7—/% 91 600 >\ :c a) + B ( ?'u)\ 90) eﬁlﬁ(x )
L L X@-a) | —irja i-L VX (@—a) 4 M\ i VX(z—a)
= —e V2 e + ——= e V2 + (e ——=]e V2 .
7 (G 7

Therefore, (5.4) becomes

Ex[e_)‘T‘j”“X(T‘j)} = V2 VA (=a) [cos <L\47X(x —a)+ z)

V2 4
+\;—Nxsin<%\4/x(x—a)>} for r < a,
— . _ . 4
Ex[e_)‘ﬂ‘ +iuX (14 ):| _ ﬂelﬂa_% VX (z—a) |:COS <%€/X($ _ CL) _ %)
(T 1 4
+ Zsin | —V\(z—a for x > a.
o (e -]

We retrieve formula (8.3) of [17]. =

5.2 Density functions

We invert the Laplace-Fourier transform (5.4). For this, we proceed in two stages: we first invert
the Fourier transform with respect to u and next invert the Laplace transform with respect to A.
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5.2.1 Inverting with respect to u

Let us expand the product HZEJ\{j} (1 — 51:17) as

) #J—1
I (t=bz)= > g(—a) (5.10)
1eJ\{s} q=0

where the coefficients cj,, 0 < ¢ < #J — 1, are the elementary symmetric functions of the 6;’s,
1€ J\ {j}, that is, more explicitly, cjo = 1 and for 1 < ¢ < #J — 1,

ce=oq@le NN =D b6,

l5--5lg€I\{5}
11 <<lgq

In a similar way, we also introduce dpyg =1 and for 1 < ¢ < #K — 1,

qu:O'q(el,ZEK\{k}): Z 911---91q.

By applying expansion (5.10) to z = i/ VA, we see that (5.4) can be rewritten as

J—1 .
Exe—mj+mx@;q _ E:/%%E:i%q<__¥i>qe%%5@_@ewa
jeJ q=0 \/X
#I1 N '
= Z YT [Z quAjeej ‘/X(m_“)] (—ip)? et
q=0 jeJ

Now, observe that (—iu)?e® is nothing but the Fourier transform of the ¢'® derivative of the
Dirac distribution viewed as a tempered Schwartz distribution:

. +m .
(—ip)d et = / ez 519 (2) dz. (5.11)

Hence, we have obtained the following intermediate result for the distribution of (7.7, X (7))
and also for that of (7, , X (7,)).

a

Proposition 5.9 We have, for R(\) > 0,

a

#J-1
Ex[e_’\T‘j,X(T:) € dz} Jdz = Z ATUN [Z CigAj eaj%(x_“)] 59 (z)  forz<a,
q=0

jed
(5.12)
A1y - - N 7 0N/ X (z—
Ex[e Ta X(1,) Edz} Jdz = Z A~/ deque RVA@=a) 1§D () for x> a.
q=0 keK

The appearance of the successive derivatives of J, suggests to view the distribution of
(r;5, X(7])) as a tempered Schwartz distribution (that is a Schwartz distribution acting on
the space S of the C°°-functions exponentially decreasing together with their derivatives char-
acterized by

Vo, €S, / / P(E)0(2) Pe{riF € dt, X(13) € d2} = Efp(r )o(X (7))
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5.2.2 Inversion with respect to A\

In order to extract the densities of (7,7, X (7)) and (7, , X (7)) from (5.12), we search functions
Iig, 0 < ¢ <max(#I — 1,#J — 1), such that, for £(6,£) <0,

“+oo
/ e M, (t;€) dt = A—UN BVAE, (5.13)
0

The rhs of (5.13) seems closed to the Laplace transform of the probability density function of a
completely asymmetric stable random variable, at least for ¢ = 0. Nevertheless, because of the
presence of the complex term #; within the rhs of (5.13), we did not find any precise relationship
between the function Ij, and stable processes. So, we derive below an integral representation
for I;,.
Invoking Bromwich formula, the function I;, writes

1 100 N 1 “+o00

Ly(t:€) = o [ ATUNMUEVAGL =

2m —i00 2T —00

(Z’)\)—%eit)\-i-elf% d\

. +o0 i . +oo (%

_ 2i [e—m/ )\—J‘{,eitM-GzeWE%d)\_i_eg]f\?/ )\—%e—it)\+9167W§%d)\ ]
Q 0 0

The substitution A — AV yields

] + 7T
Ly(t:6) = N - OO)\N—q—leit)\N-i-@leWg)\ I\
7 27 0

iTq +o0 S \N — i
+ ean / )\N—q—le—lt)\ +6e 2N EX d)\:|
0

and the substitutions \ —— eT3% )\ together with the residues theorem provide

; . +o00 i
e 2T 0
. —+00 i1
— e AN ==t =tA T+ Ve d)i :
0
In particular, for ¢ = 0 we have, by integration by parts,

: ) +o0o in in +o0 _im
In(t:;€) = i3 eN e HOEN N gy _ oo e HOETNEN gy 1 (5.14)
10\ ot 0 )

Remark 5.10 The following relation holds between all the functions I;,’s:
0" Iy,
oEm

(t:6) = 0" L1 g—m(t;€) for 0 <m < gq.
n

Hence, (5.12) can be rewritten as an explicit Laplace transform with respect to A:

+oo #J—-1
Em[e_’\T‘j,X(Tj) € dz} Jdz = /0 e~ dt Z <Zéquj Lig(t;x — a)) 649 (2)

q=0 Jj€J

We are able to state the main result of this part.
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Theorem 5.11 The joint “distributional densities” of the wectors (7,7,X(7;})) and

(14, X (1)) are given by
#J-1
P {r, €dt,X(r,]) € dz}/dtdz = Z Ty(t;x —a) 69 (2)  forz < a,
q=0
e (5.15)
P {7, €dt,X(r,) € dz}/dtdz = Z Ky(t;z—a) 8 (2) forz>a,
q=0

where
€)= CigAj Lig(t:€) and Ko(t:€) = Y digBi Ing(15€)-

jeJ keK

Remark 5.12 Another expression for J;(¢;§), for instance, may be written. Indeed, for £ < 0
and 0 < ¢ < #J — 1,

N’ T +o0 im
Jq(t:€) = Q_Z [e_Tq / <Z CigAj e 5A> AN=a=1=tAY gy
u 0

JjEJ
img (10 _ ;6 TN ) \Nog—1_—tAN
—eN chqu e’ AT e d\|. (5.16)
0 jeg
The second integral displayed in (5.16) is the conjugate of the first one. In effect, by introducing
the symmetry o : j € J —— o(j) € J such that 0,(;) = 0;, we can see that

0 05 0 -
o= T gt T == 11 7% -4

-y 0
lenfoG) L 00 ey oW T 70 ey

and
Cotiyg = 0q (01,1 € T\{o(5)}) = 0 (05),1 € T\ {5}) = 04 (61,1 € T\ {5}) = &g
So, the sum within the second integral in (5.16) writes

> CotiiaAa €0° Fo = o e Ko (ZCJqA et )_'

JjeJ jeJ jeJ

As a result,
N im +oo im
(t 5) - [6_7(1 / <Zc]qu 69j6N§A> )\N_q_le_t)\N d)\] .
" 0 jed
In particular, J,(t; ) is real and for ¢ = 0 we have, since cjo = 1 and Y, ; A; = 1,

N +oo im N
j()(t,f) — _? S / ZA] eGjeNg)\ )\N—le—f)\ d\
0

jeJ

— _ig e%/—mo ZH.A,EGJ'G%S)\ e_t)‘Nd)\
Tt ) FREY/

jed

which is nothing but P, {7, € dt}/dt. =
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5.3 Distribution of the hitting places

We now derive the distribution of the hitting places X (7,5) and X (7). To do this for X(7;")
for example, we integrate (5.15) with respect to ¢:

+o0
Py {X(r) € dz} /dz = / Py {rt € dt, X(r) € dz}/d=
0
471

S [ O+OO Jot:z —a) dt} 59 (2)

q=0

#J 1 00 ) im d\
= —— Z |II: — a|q [/ %(e_T ZE)[]A‘] e_GjENA> )\q—l-l] 5([1)( ) (517)

jeJ
We need two lemmas for carrying out the integral in (5.17).

Lemma 5.13 For any integers m,n such that 1 < n < m — 1 and any complexes aq,...,an
andbl,...,bmsuchthati&(j)/Oand\s( =145 ]> for0<Ii<n—1,

/+OO% ia-e‘bﬁ)‘ @ )" f: b”_llogb-
0 = ’ A = a

ProOOF. We proceed by induction on n.

CZ?

For n = 1, because of the condition %(Z;nzl aj) = 0, we can replace (a,,) by —%(Z;n:_ll aj>.

['his gives
> = ) dA o ! _ dA
/0 %(jglaje bﬂ)‘)—/\ ——/0 %[ g a; (e biX _e bm}‘)]—)\.

i=1

The foregoing integral involves the elementary integral below:

; A

Therefore,

m—1

+o0 m
/ %(Zaje—bﬂ)‘” S[Zajlogb logb] [Zajlogb]
0 -

j=1 j=1

which proves Lemma 5.13 in the case n = 1.

Assume now the result of the lemma valid for an integer n > 1. Let m be an integer such
that m > n+ 2 and ay,...,a, and by,..., b, be complex numbers such that R(b;) > 0 and

%(Z;”:l ajbé-) =0 for 0 < I < n. By integration by parts, we have

[e.9]

TR

0
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Applying I’Hoépital’s rule n times, we see, using the condition %(Z] 1 aj bj) =0for 0 <!l < n,
o0
that { n/\n\s (Zj_l aje —bj/\ﬂo = 0. Putting a; = a;b;, we get

R

We have & ( Doy @y bl> <Z;n:1 a; bé-“) = 0 for 0 <! < n—1. Then, invoking the recurrence
hypothesis, the intermediate integral writes

/+OO% id-e‘bﬂ"\ @ i f:d I 1logb
0 = ’ A"

Jj=1
and thus
oo [ dx (=) &
—bi A n
/0 %(Zaje J ))\n+1 = o R E:lajbj log b;
j=1 =

which achieve the proof of Lemma 5.13. m
Lemma 5.14 We have, for 0 <p < g < #J —1,
_ 0 ifp<qg—1
P A ;
ZCJIIHJ-AJ { (-1 ifp=q.
jeJ

PRrROOF. Consider the following polynomial:

#J—-1 #J-1
Z <chq9§Aj>(_x)q = ZHPA Z C]q

q=0 jeJ jeJ
= > 6h4, H (1—6x)
jeJ leJ\{j}
_ 0P A,
= H(l—@lin)z b .
leJ jeJ 1 =02

We then obtain, due to (2.11), if p < #J —

#il (chqe A) x)? = 2P

q=0 JjeJ
which entails the result by identifying the coefficients of both polynomials above. m

Now, we state the following remarkable result.

Theorem 5.15 The “distributional densities” of X (7,7) and X(7,7) are given by
#J-1

P {X (7)) €dz}/dz = Z (—1)7 (@ ;!a)q 59 (z)  forxz < a,
= (5.18)
#K—1 .
P AX (7, ) € dz}/dz = Z (—1)‘1(95% 69 (2) forz>a.
q=0 '
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It is worth that the distributions of X (7;5) and X () are linear combinations of the successive
derivatives of the Dirac distribution d,. This noteworthy fact has already been observed by Nish-
ioka [16, 17] in the case N = 4 and the author spoke of “monopoles” and “dipoles” respectively re-
lated to &, and ¢/, (see also [18] for more account about relationships between monopoles/dipoles
and different kinds of absorbed /killed pseudo-processes). More generally, (5.18) suggests to speak

of “multipoles” related to the 5,(;1)’8

In the case of Brownian motion (N = 2), the trajectories are continuous, so X (7) = a and
then we classically write P,.{X(7) € dz} = d,(dz) where 4, is viewed as the Dirac probablhty
measure. For N > 4, it emerges from (5.18) that the distributional densities of X (7) are
concentrated at the point a through a sequence of successive derivatives of d, where J, is now
viewed as a Schwartz distribution. Hence, we could guess in (5.18) a curious and unclear kind
of continuity. In Subsection 5.6, we study the distribution of X (7:¥—) which will reveal itself to
coincide with that of X (7;5). This will confirm this idea of continuity.

PROOF. Let us evaluate the integral in (5.17). We have, thanks to Lemma 5.14,
”ch]q (Hjegv) =en( Zc]qAH =0ifl <qg—1.
jed jeJ

Therefore, the conditions of Lemma 5.13 are fulfilled and we get

P.{X(7,}) € dz}/d=

#J 1 qN i 1T
- ] s (1)) |00
LjeJ
#J 1 q r
N ™
- ¥ & —aff 3?(251«114)'9? arg(@-)) +N%<Zéjqz4j-e;?) 319 (2).
=0 SR jed

The second sum within the brackets is equal, by Lemma 5.14, to (—1)7. _The first one vanishes:
indeed, by using the symmetry o : j € J +—— o(j) € J such that 0,(;) = 0;,

R ( Z (équjH?) arg(Hj)> = % (Z Cjq ;05 arg(0;) + Z cjqA;0] arg( ))

jet jeJ jeJ
= (ZCWA 9 arg(f +Zc )arg(H G ))>
jeJ jeJ

The terms of the second last sum are the opposite of those of the first sum since
Co(i)aAa(i) 05y = CigAj0]  and  arg(8,(;)) = —arg(6))

which proves the assertion. As a result, we get (5.18). m

5.4 Fourier transforms of the hitting places

By using (5.18) and (5.11), it is easy to derive the Fourier transforms of the hitting places X (7;")
and X (7).
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Proposition 5.16 The Fourier transforms of X (7,7) and X (7, ) are given by

, + I s (x — a)?
Ex[e’“x(ﬂl )] = 't Z ; (i)t for xz < a,
q=0 T
(5.19)
- - I i (x — a)?
Em[e“‘X(Ta )] = M Z ; (i)t for x > a.
q!
q=0

In this part, we suggest to retrieve (5.19) by letting A tend to 07 in (5.4). We rewrite (5.4), for

instance for z < a, as

B e +X] = o] (1 _ 9l> S A o ¥Re

leJ \/X jeJ I- N 9]'

< in >#J_1 (H_> .

__" 0. | eina
N J
VA jeJ
0,V 0;A; N
1 _ J k) 6, \/X(Z‘—a)‘ 520
XH( iﬂ)zl_oj%ej (5.20)
jeJ jeJ m
Using the elementary expansions, as A — 07,
#J-1 N p
1 -y <9j‘\/x) +0<)\(#J—1)/N),
9]‘ A (7%
1-— T p=0
#J-1
r—a 1 q —
IV (@—a) _ z; 0 0N/ ( — a)) Yo (A(#J 1)/N>7
q:
yields
#J-1 [ »r
S B e = Sy | 5 | S (0)' | o ()
jes 1 — ajif jed =0 \q=0 q!(ip)r=1

= #i—:l (ZQ;?HAJ. (ZT: W) )\T’/N_i_O()\(#J—l)/N).

On the other hand, applying (2.11) to x = 0 gives

ZH’THA:{O s if r < #J — 2,
= i (D)7 ey b0 ifr=4#J -1
Therefore,
#J—1
0i4; 0./ (@—a) #J—1 (x —a) (#J-1)/N
jes 1 — ejif A=0T jed q=0 q!(ip)* !
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Consequently, the limit of E m[e‘”‘j FinX (ra )} as A\ — 0% ensues. The constant arising when
combining (5.20) and (5.21) is

1)#]—1 < H 9]) (H 0. > #J Lgipa _ (iu)#J_lei“a.
jeJ jed

In view of (5.19), we have proved the equality

lim, Ex[e—xrmw(r;)] _ Ex[ewa*)} ,

Remark 5.17 The distribution of X (7,7) may also be deduced from the joint distribution of
(r;F, X (7)) through (5.12). Indeed, by letting A tend to 0 in (5.12) and using elementary
expansions together with Lemma 5.14,

DRI IR LG N Z AP/N+0<X1/N)

jeJ jGJ
> (z%A 9P> = iy (s
p=0 \ j&J p

~ (_1)q(x—7a)q NN
A—0F q!

which, with (5.12), confirms (5.18). m

5.5 Strong Markov property for 7

We roughly state a strong Markov property related to the hitting times 7.-.

Theorem 5.18 For suitable functionals F and G, we have

Bl F((Xogrcrs ) GIX -+ 7)) i20)

- EI[F((X@))KK%) Ex2) [G((X(t))@o)]}’ (5.22)
#J-1 (x—a)t &
EfG((X(+mNz0)] = Y T g BAG(X®)z0))  ifa
N ) (5.23)

#K-1 (@ —
Eo[G((X(t+7))ez0)] = >
q=0

PrROOF. We first consider the step-process X, and we use the notations of Subsection 5.1.
On the set {75, = k/2"}, the quantities F<(X (t ))0<t<ﬂm> and G((Xn(t +7,,))i=0) depend
respectively on Xy, 0, Xp 1, ..., Xpp—1 and Xp g, X py1,- .- So we can set, if 7.7, = k/2",

F((Xn(t))0<t<.r;r’n> - Fk‘(Xn,Oy Xn,la cee 7Xn,k—1) = n,k—1,
G((Xn(t+70))e0) Gr(Xnk, Xngt1,---) = Gupe
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Therefore,

F((Xaorar, ) OUXalt +7500)20) = D Fuk1Gri s, oy <asat -
k=1

Taking the expectations, we get for x < a:

Ex[F«X"(t))OSKTIn) G((Xn(t + T;,_n))tZO)]

00
= Z Ex[Fn,k—l]l{Mn,k,1 <a<Mn,k}EXn,k (Gn,O)]
k=1

B Ew{F«X”(t))O@«%) Ex () [G((Xn(t))tzo)]} (5.24)

and (5.22) ensues by taking the limit of (5.24) as n tends to +oo in the sense of Definition 3.3.

In particular, choosing F' = 1, (5.22) writes for x < a

+oo
E[G((X(t+7))=0)] = / Po{ X (7,7) € dz}EJG((X(t))r>0)]

which, by (5.18), immediately yields (5.23). m

The argument in favor of discontinuity evoked in [11] should fail since, in view of (5.13), a term
is missing when applying the strong Markov property.

5.6 Just before the hitting time

In order to lighten the notations, we simply write 7* = 7, and we introduce the jump A, X =
X(1q) — X(10—).

Proposition 5.19 The Laplace-Fourier transform of the vector (74, X (14—), Ao X) is related to
those of the vectors (14, X (1,—)) and (14, X (74)) according as, for R(A\) >0 and p,v € R,

Ew e—)\Ta+iﬂX(Ta_)+iVAaX:| — Em[e—ATa+iﬂX(Ta_):| — Ex[e_)\Ta‘i‘iﬂX(Ta) X (525)

PROOF. The proof of Proposition 5.19 is similar to that of Lemma 5.1. So, we outline the main
steps with less details. We consider only the case where 7, = 7,7 and x < a, the other one is
quite similar.

e Step 1

Recall that for the step-process (X, (t))i>0, the first hitting time 7.7, is the instant ¢, with &
such that M, ;1 < a and M, ; > a, and then X(7,,—) = X, -1 and X (74n) = Xy Set
Apr = Xnr — Xpr—1. We have, for x < a,

e_)\Ta,n+iMXn(Ta,n_)"l"iVAaXn

o0
— _)\tn,k'i'i/ixn,kfl'i'iVA 1,k
Z € " ]I{Mn,kfl <a<M, .}

k=1
_ e—Atn,l +iHXn,O+iV(X7L,1_Xn,O)

o0
+ § |:e_)‘tn,k+1+7quXn,k+“’An,k+1 _ e—)\tn,k-l-WXn,kﬂ-l-WAn,k 1{Mn,k<a}‘ (5.26)
k=1
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e Step 2
We take the expectation of (5.26):

E |:e—)\'ra,n+ian(Ta,n—)+iVAaX7l:| _ e—)\/2"+iux+nN(iu)N/2"
= =
oo
§ : -\t X p— —\/2"+iuA, +HivA ivA
—+ e n,kEx|:e HAn K 1]1{Mn’k,1<[l} (e / KA,k nk+l _ o n,k) ]I{Xnykga}]
k=1

The expectation in the rhs of the foregoing equality can be evaluated as follows:

Xy —\/2"+iu\,, +HivA wwA
Ex[e“ n,k I]I{Mn,kqéa} (e / JI7ANN nktl _ o nk) ]I{Xn,kéa}}

= / ey Px{Xn,k—l € dy, Mn,k—l < a}

— 00

—A/2" +iuN g, 1 Hiv A, W,
XE%@ [F At A — ¢ “ﬁ“mm§%w]

a
:!/emeWJEWMWAQM

— 00

e B,y B ) — B, o)

For computing the term within brackets, we need the following quantities:

) a=y . . n
E0<ez,u(or V) Xn1 ]I{Xn,1<a—y}) _ / ez,u(or v)z p(1/2n; —Z) dz, Eo(ean,l) _ e;-gN(w)N/2 ]

—00
With these relations at hand, we get

E x|:e_)\7'a,n+iMXn(Ta,n_)+iVAaX7L:|

. o 1 & a
= e_(’\_"”V(’”)N)/2 Ty on Z e Ak / ety ]P)x{Xn,k—l € dy, M, -1 < a}
k=1 o

. L ra-y a-y
><2"[6_0‘_””\’(“’)N)/2 / e p(1/2"; —2)dz —/ e p(1/2" —2)dz|. (5.27)

—00 —00

e Step 3
We now take the limit of (5.27) as n tends to infinity:

E e—)\Ta—i-iuX(Ta—)—i-il/AaX]
xr

= +/ e dt/ e o(\, 1, v;y) P {X (t) € dy, M(t) < a}
0

—00

where we set, for y < a,
e—0t € — 0o — 0o

1 ) a-y a—y
(A pyviy) = lim — [e‘(*‘“N(’”N)a/ e p(e; —z) dz—/ e p(e;—z)dz|. (5.28)

e Step 4

For evaluating the above function ¢, we need two lemmas.
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Lemma 5.20 For 0 < p < N, we have

1 forp=0,
Eo[X(t)"] =4 0 for I<p< N -1,
kNNt forp=N.
ProoFr. By differentiating k times the identity Eg (ei“X (t)) = e (W)t with respect to u and
next substituting u = 0, we have that

k
Bo[X(1)}] = () o [ (™)

u=0
Fix a complex number « # 0. It can be easily seen by induction that there exists a family of
polynomials (Py)ren such that, for all k£ € N,
8k
ouk

N

(ea“N) = Pr(u)e™ . (5.29)

In particular, we have Py(u) = 1 and Pj(u) = Nau¥ 1. Using the Leibniz rule, we obtain

Pi(u) = e_““Naa—Il(eo‘“N) = e_a“N—aakI:I (NozuN_leo‘“N>
u u

k-1 N+j—k
k—1 ut I
~ Na % < ) >7.p.<u>.
_ 177
j=max(0,k—N) J (N +J k)

This ascertains the aforementioned induction and gives, for u = 0,

0 F1<k<N—1,
Pk(o)—{ NlaPy0) = Nla if k= N.

Choosing a = kniVt and u = 0 in (5.29), we immediately complete the proof of Lemma 5.20.
[ |

Lemma 5.21 For a < 0 < 3, the following expansion holds as e — 07 :
6
/ €M ple;—z)dz = 1+ ky(ip)Ne + ofe). (5.30)

PROOF. Performing a simple change of variables and using some asymptotics of [11], we get

8 5/51/1\7 ' +oo
/el“zp(s;—z)dz = / e p(1; —2) dz :/ eh= 2 p(1;—2) dz + o(e)
«a afet/N -
= S W [ o)
p=0 e

Observing that fj;o 2P p(1;—z)dz = Eo(X(1)P), we immediately derive from Lemma 5.20 the
expansion (5.30). m
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e Step 5
Now, plugging (5.30) into (5.28), it comes

o\ u,vsy) = El_i)%l+ é (1= (A= kn(i)N)e+o(e) (1+ wn(ip)Ne +o(e))
— (14 v (iv)Ne + o(e))] = -2+ rn (ip)N.
Therefore,

Em[e—)\ra-i-iuX(Ta—)-i-iuAaX] _ ine _ (A — /{N(W)N)/ oM Ew[emX(t)’M(t) < a} dt.
0

Writing finally
/ e M Ex[ei“X(t),M(t) < a} dt
0

_ /0 Y Ex[emx <t>] dt — /0 sy Ex[emx O M(t) > a} dt

1 o [inx
= — Ey|eX® M (¢ dt
A —kn(ip)N /0 c [e  M(t) > a] ’

we obtain (5.25) by invoking the relationship (5.1) and by noting that the result does not depend
on v (and hence we can choose v =0). m

Choosing p# = 0 or v = 0, we obtain the corollary below.
Corollary 5.22 We have, for R(A) >0 and p,v € R,

E, e—)\Ta-l-i,uX(Ta—)] _ Em[e—,\TaerX(Ta)] and Em[e_’\T“””A“X} _ Ex[e_’\“}.

From Corollary 5.22, we expect that A, X = X(7,) — X (7,—) = 0 in the following sense: Vo € S,
Eo[p(AsX)] = ©(0). This provides a new argument in favor of continuity.
5.7 Particular cases
Example 5.23 Case N = 3:
e In the case k3 = +1, densities (5.15) write
P {7} €dt, X (1)) € dz}/dtdz = To(t;x — a) 6,(z) for x < a
and
P {1, €dt,X (1)) €dz}/dtdz = Ko(t;z — a) 64(2) + K1(t;z — a) 8, (2) for z > a.

Here, we have di; = 6 = 01, do1 = 01 = 65 and

o £ [ = [T foe Fen _—tA3
Jo(t:€6) = ——=S|es fpAp e e dX
0

Tt

g in +00  ix 3
= ——t%[es/ et 7 AIA d)\]
n 0

+00
— £ p3EAN <£ X+ E) d\;
Tt 0 2 3
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Tt

_ £ i [T oy e Fe) s

= —ﬂ\/gt%[e?)/o (e —e )e d\
__¢ /+oo 1o tax VB ] mov gy
3t o 5 € e25" cos 5 EX 3 e dX;

o ol m [T b1 T en foe TN —tr3
Ko(t,f) = ——X5|e3 01Bie + 60>Bs e e d\
0

Ki(t:€) = 2% e % <d11B1 e 4 4, B, 692@%&) Ae N d)\]
= £ 3‘%[ / <e_£)‘ - ee%ig)‘> etV d)\]
T
— —? 0 " E e~ — 3 cos (? EA+ g)] Aem™ dA,
o In the case k3 = —1, densities (5.15) write
P {75 € dt, X (1)) € dz}/dtdz = To(t;x — a) 64(2) + Ji(t;x — a) 8, (2) for z < a

and
P {1, €dt,X(1,) € dz}/dtdz = Ko(t;z — a) d4(2) for z > a.

In this case, we have cq; = 0 = 6, c21 = 0y = 65 and

Jo(t:§) = _wjﬁt/ [; e + e728 cos (?@\Jrgﬂe‘”?’d/\

too 1 3
Ji(t;€) = —ﬁ F e — 72 cos <§ EXN— z)] Ae ™ d
Y 0 2 3
o0 1
Ko(t;¢) = —% e~ 3t gin <\/_ EN— —> dA.
0

Let us point out that the functions Jy, J1, Ko and K1 may be expressed by means of Airy
functions.

Example 5.24 Case N = 4: formulas (5.15) read here

P {7} € dt, X(1)[) € dz}/dtdz = Jo(t;x — a) 6,(2) + Ti(t;x — a) 8, (2) for z < a

and

P.{r, €dt,X(r,) € dz}/dtdz = Ko(t;x — a) 6,(2) + K1(t;x — a) 8, (2) for x > a.
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We have Co1 = 93 = ég, C31 = 92 = ég, dOl = 91 = éo = —ég, dll = 90 = él = —ég and

E im +oo im im 4
Jo(t;€) = ——%‘[ef/ (92A2 P2 T EN 4 g3 A, 69364§’\) et d)\]
Tt 0
§ i [T ey -
= Rles (e%* — €M) e a)
7T\/§t 0
_ £ [ e T\T s
= 2—7715/0 [e —\/§cos<£>\+z)]e dX
£ [T 4
= %/ [eg’\ —cos(EN) + sin(f)\)} e~ d;
0
4 i [T Fer b5 Fer A
jl(t;f) = —— |:€ 4 621A2 6026 € + €31 A3 e3¢ £ >)\2 et d)\:|
m 0
+oo
= 2\/5 |:6_T7r/ _ 25)\ A2 —tA% d>\:|
0

= = [ — V2 cos (gA - —)} AZ e~ g
/ - cos(N) +sin(€X) — 65)‘] A2 e dA
0

and similarly

é‘ 400 \
Ko(t;€) = o [008(5)\)+sin(§)\)—e_f)‘] e~ A dX;
0
Kl = 2 [ [ cosln) + smen] W an
0

We retrieve formulas (8.17) and (8.18) of [17]. m

5.8 Boundary value problem

We end up this work by exhibiting a boundary value problem satisfied by the Laplace-Fourier
transform U(z) = E, [e_)‘TJHNX(TJ) , T € (—00,a).

Proposition 5.25 The function U satisfies the differential equation
D,U(z) = AU(z) forxze (—o0,a) (5.31)
together with the conditions
UD @) = (ip)e™  for 0 <1< #J—1. (5.32)

PROOF. The differential equation (5.31) is readily obtained by differentiating (5.4) with respect
to x. Let us derive the boundary conditions (5.32): by (5.4),

T 0LA; .
UD@™) = )\I/NH (1— i—”@) <Z ]7.J>ew“.
VA o150

i€ V0
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By (2.11) we see that

A _ (in)
Zl— i 9‘ - i —j)

jE€J i Mljes <1— N>

h

which proves Condition (5.32). m

We also refer the reader to [18] for a very detailed account on PDE’s with various boundary
conditions and their connections with different kinds of absorbed/killed pseudo-processes.
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