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Abstract

In this paper we shall derive asymptotic expansions of the Green function and the transition
probabilities of Markov additive (MA) processes (ξn, Sn) whose first component satisfies
Doeblin’s condition and the second one takes valued in Zd. The derivation is based on a
certain perturbation argument that has been used in previous works in the same context. In
our asymptotic expansions, however, not only the principal term but also the second order
term are expressed explicitly in terms of a few basic functions that are characteristics of
the expansion. The second order term will be important for instance in computation of the
harmonic measures of a half space for certain models. We introduce a certain aperiodicity
condition, named Condition (AP), that seems a minimal one under which the Fourier analysis
can be applied straightforwardly. In the case when Condition (AP) is violated the structure
of MA processes will be clarified and it will be shown that in a simple manner the process,
if not degenerate, are transformed to another one that satisfies Condition (AP) so that from
it we derive either directly or indirectly (depending on purpose) the asymptotic expansions
for the original process. It in particular is shown that if the MA processes is irreducible as
a Markov process, then the Green function is expanded quite similarly to that of a classical
random walk on Zd.
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Introduction

Let (T,T ) be a measurable space. Let (ξn, Sn) (n = 0, 1, 2, . . .) be a Markov additive process
(MA process in abbreviation) taking values in the product space T × Zd, namely it is a time
homogeneous Markov process on the state space T × Zd whose one step transition law is such
that the conditional distribution of (ξn, Sn − Sn−1) given (ξn−1, Sn−1) does not depend on the
value of Sn−1.

Among various examples of MA processes those which motivated the present work are Markov
processes moving in the Euclidian space whose transition laws are spatially periodic like the
random walk on a periodic graph or the Brownian motion on a jungle-gym-like manifold. These
processes are expected to be very similar to classical random walks or Brownian motions in
various aspects but with different characteristic constants that must be determined. The results
in this paper will serve as the base for verification of such similarity in fundamental objects of
the processes like the hitting distribution to a set as well as for computation of the corresponding
characteristic constants. (Another example is given in Remark 5.)

From the definition of MA process it follows that the process ξn is a Markov process on T and
that with values of ξn being given for all n, the increments

Yn := Sn − Sn−1

constitute a conditionally independent sequence. Let pn
T (ξ, dη) denote the n-step transition

probability kernel of the ξn-process and Pξ the probability law (on a measurable space (Ω,F)
common to ξ) of the process (ξn, Sn) starting at (ξ, 0). Set pT = p1

T . We suppose that pT is
ergodic, namely it admits a unique invariant probability measure, which we denote by µ, and
that Doeblin’s condition is satisfied. With the ergodic measure at hand the latter may be
presented as follows:

(H.1) there exist an integer ν ≥ 1 and a number ε > 0 such that

sup
ξ∈T

pν
T (ξ,A) ≤ 1 − ε if µ(A) ≤ ε.
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If there is no cyclically moving subset for the process ξn, this amounts to supposing that for
some constant ρ < 1,

(H.1′) |pn
T (ξ,A) − µ(A)| ≤ const ρn (n = 1, 2, 3, . . .)

uniformly in A ∈ T and ξ ∈ T . (See Remark 2 in the next section for the other case.) We also
suppose that

∫

µ(dξ)Eξ [Y1] = 0, (1)

where Eξ represents the expectation under Pξ.

In this paper we shall derive asymptotic expansions of the Green function (d ≥ 2) and the
transition probabilities of the process (ξn, Sn) that satisfies (H.1) and (1). The derivation is
based on a certain perturbation argument that has already been applied in previous works
on (local) central limit theorems (cf. (6), (20), (17), (18) etc.) or on estimates of the Green
functions (cf. (1), (9)) of MA processes. In our asymptotic expansions, however, not only the
principal term but also the second order term are expressed explicitly in terms of a few basic
functions that are characteristics of the expansion. The second order term will be important in
computation of the harmonic measures for the walks restricted on a half space ((16)) (of which
we shall give a brief outline after the statement of a main result) or other regions ((4),(14), (19),
(22)).

We introduce a certain aperiodicity condition, named Condition (AP), that seems a minimal one
under which the Fourier analysis can be applied straightforwardly. In the case when Condition
(AP) is violated the structure of MA processes will be studied in detail and it will be shown
that in a simple manner the process, if not degenerate, can be transformed to another one that
satisfies Condition (AP) so that from it we derive either directly or indirectly (depending on
purpose) the asymptotic expansions for the original process. It in particular is shown that if
(ξn, Sn) is irreducible as a Markov process on T × Zd, then the Green function is expanded
quite similarly to that of a classical random walk on Zd (Theorems 1 and 2). In the case when
T is countable we also obtain a local limit theorem that is valid without assuming Condition
(AP) nor irreducibility (Theorem 15). The results obtained here directly yield the corresponding
ones for classical random walks on Zd, of which the estimates of transition probabilities valid
uniformly for space-time variables outside parabolic regions seem not be in the existing literatures
(Theorem 4, Corollary 6).

Other aspects of MA processes have been investigated under less restrictive settings than the
present one by several authors: see (13) and (9) as well as references therein for renewal theorems
or (21) for large deviations; a general theory of continuous time MA processes (construction,
regularity property, Lévy-Ito-like decomposition etc.) is provided by (2). There are a lot of
interesting examples of MA processes and several of them are found in (1). The term ‘Markov
additive process’ is used by Cinlar (2). In some other works it is called by other names: a process
defined on a Markov process, a random walk with internal states, a semi-Markov process or a
Markov process with homogeneous second component etc.

The plan of the paper is as follows. In Section 1 we introduce basic notations and the aperi-
odicity condition (AP) and present the asymptotic expansions for the Green function and the
transition probabilities. Several Remarks are made upon the results after that. The proofs of
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the asymptotic expansions are given for the Green function and for the transition probabilities
in Sections 2 and 3, respectively, by assuming that the condition (AP) holds and ξn makes no
cyclic transition, whereas the case of its making cyclic transitions and that when (AP) is violated
are dealt with in Sections 4 and 5, respectively. In Section 6 we compute derivatives at 0 of
κ(θ) the principal eigenvalue of a transfer operator. In Section 7 we show that the characteristic
functions of Sn converge to zero geometrically fast away from the origin. The consequences of
these two sections are taken for granted and applied in Sections 2 and 3. In the last section
four Appendices are given: the first three provide certain standard proofs or statements of facts
omitted in Sections 2 and 3; in the third we review a standard perturbation argument for the
Fourier operator which is introduced in Section 2 and made use of in the proof of the main
theorems.

1 Main Results

Let (ξn, Sn) be a MA process on T × Zd and pn
T and Pξ the transition probability of the first

component and the probability law of the process, respectively, as in Introduction. We suppose
the conditions (H.1) and (1) to be true unless otherwise stated explicitly. To state the main
results we introduce some further notation. Let p stand for the integral operator whose kernel
is pT : pf =

∫

pT (·, dη)f(η). Define an Rd-valued function h on T by

h(ξ) = Eξ[Y1]

and let c be a solution of (1 − p)c = h (µ-a.e.) that satisfies µ(c) :=
∫

cdµ = 0, which, if it
exists, is unique owing to the ergodicity of pT . We shall impose some moment condition on the
variable Y1, which incidentally implies that h is bounded and that c exists and is bounded and
given by

c(ξ) = (1 − p)−1h(ξ) := lim
z↑1

∞
∑

n=0

znpnh(ξ). (2)

(If (H.1′) is true, the last series is convergent without the convergence factors, hence c(ξ) =
limn→∞Eξ[Sn]; see Remark 1 after Corollary 6 and Section 4 in the case when there are cyclically
moving subsets; the convention that (1−p)−1 is defined by the Abel summation method as above
will be adopted throughout the paper.)

Put Ỹn = Yn − c(ξn−1) + c(ξn). Then

Eξ[Ỹ1] = (h− c+ pc)(ξ) = 0. (3)

Let Q be the matrix whose components are the second moments of Ỹ1 under the equilibrium

Pµ :=

∫

µ(dξ)Pξ

and denote its quadratic form by Q(θ):

Q(θ) := θ ·Qθ := Eµ(Ỹ1 · θ)2, (4)
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where θ ∈ Rd, a d-dimensional column vector, y ·θ stands for the usual inner product in Rd and
Eµ denotes the expectation by Pµ . Owing to (3) we have

Q(θ) = lim
n→∞

1

n
Eµ|Sn · θ|2

since Sn − S0 = Ỹ1 + · · · + Ỹn − c(ξn) + c(ξ0).

We also define functions h∗ and c∗, dual objects of h and c, by

h∗(η) = Eµ[−Y1| ξ1 = η],

and
c∗ = (1 − p∗)−1h∗, (5)

where p∗ denotes the conjugate operator of p in L2(µ): c∗ is a unique solution of (1−p∗)c∗ = h∗

such that µ(c∗) = 0 as before. Alternatively c∗ may be defined as a µ-integrable function such
that µ(c∗f) = −∑∞

n=0Eµ[Y1p
nf(ξ1)] for every bounded f .

The transition probability p of the process (ξn, Sn) may be expressed as

p((ξ, x), (dη, y)) := pT (ξ, dη)qξ,η(y − x),

where qξ,η(x) = Pξ[Y1 = x|ξ1 = η]. We denote by pn the n-step transition probability which is
defined by iteration for n ≥ 1 and p0((ξ, x), · ) = δ(ξ,x)( · ) as usual.

We call the process (ξn, Sn) symmetric if p((ξ, x), (dη, y)) is symmetric relative to µ×the counting
measure on Zd. From the expression of p given above we see that it is symmetric if and only
if pT is symmetric relative to µ and qξ,η(x) = qη,ξ(−x) for every x and almost every (ξ, η) with
respect to µ(dξ)p(ξ, dη). If this is the case, h∗ = h and c∗ = c.

We introduce two fundamental conditions, one on irreducibility and the other on aperiodicity.

Irreducibility. A MA process (ξn, Sn) is called irreducible if there exists a set T◦ ∈ T with
µ(T◦) = 1 such that if ξ ∈ T◦, x ∈ Zd and µ(A) > 0 (A ∈ T ), then for some n

Pξ[ξn ∈ A,Sn = x] > 0. (6)

Condition (AP). We say a MA process (ξn, Sn) or simply a walk Sn satisfies Condition (AP)
or simply (AP) if there exists no proper subgroup H of the additive group Zd such that for every
positive integer n, the conditional law P [Sn −S0 = · |σ{ξ0, ξn}] on Zd is supported by H +a for
some a = a(ξ0, ξn) ∈ Zd with Pµ-probability one; namely it satisfies (AP) if no proper subgroup
H of Zd fulfills the condition

∀n ≥ 1, Pµ

[

∃a ∈ Zd, Pµ[Sn ∈ H + a |σ{ξ0, ξn}] = 1
]

= 1. (7)

Here σ{X} denotes the σ-fields generated by a random variable X. (See Corollary 22 in Section
7 for an alternative expression of (AP).)

Condition (AP) is stronger than the irreducibility and often so restrictive that many interesting
MA processes do not satisfy it (some examples are given in 5.2 of Section 5). For the estimate
of Green function we need only the irreducibility, while the local central limit theorem becomes
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somewhat complicated without (AP). In practice the results under the supposition of (AP) are
enough, the problem in general cases of intrinsic interest often being reduced to them in a direct
way as well as by means of a simple transformation of the processes (cf. Section 5).

We shall see in Section 5.4 that the matrix Q is positive definite if the process is irreducible.
Here we see it to be true under (AP). Indeed, if Q(θ◦) = 0 for some θ◦ 6= 0, then for every n ≥ 1,
Eµ|(Sn − c(ξ0) + c(ξn)) · θ◦|2 = nQ(θ◦) = 0, so that Sn is on the hyperplane perpendicular to θ◦

with Pµ-probability one, contradicting (AP).

We use the norm
‖x‖ := σ

√

x ·Q−1x, where σ := (detQ)1/2d,

provided that Q is positive definite. Multiplication of Q by a constant does not change ‖x‖;
in particular, if Q(θ) is of the form σ2|θ|2 (hence σ2 = 1

dEµ|Ỹ1|2), then ‖x‖ coincides with the

usual Euclidian length |x| :=
√

x2
1 + · · · + x2

d for x ∈ R.

The Green functions. We define the Green function (actually a measure kernel)G((ξ, x), (dη, y))
for d ≥ 3 by

G((ξ, x), (dη, y)) =
∞
∑

n=0

pn((ξ, x), (dη, y)) (d ≥ 3).

Put κd = 1
2π

−d/2Γ(1
2 (d− 2)).

Theorem 1. Let d ≥ 3. Suppose that (ξn, Sn) is irreducible and that

sup
ξ
Eξ[|Y1|2+m+δ ] <∞ if d = 3

sup
ξ
Eξ[|Y1|d−2+m+δ ] <∞ if d ≥ 4

for some δ ∈ [0, 1) such that δ 6= 0 if d = 4, and for some nonnegative integer m. Then the
Green function G admits the expansion (as |x| → ∞)

G((ξ, 0), (A,x)) =
κd

σ2‖x‖d−2
µ(A) + T1 + · · · + Tm +

∫

ARm(x, ξ, η)µ(dη)

|x|d−2+m+δ
(8)

(x 6= 0, A ∈ T ) with lim|x|→∞ supξ

∫

|Rm(x, ξ, η)|µ(dη) = 0. Here Tk =
∫

A

[

{x3k}/‖x‖d−2+4k
]

µ(dη) = O
(

µ(A)/‖x‖d−2+k
)

with {xj} representing a certain homoge-

neous polynomial of x of degree j whose coefficients, depending on η as well as ξ, are L1(µ(dη))-
bounded uniformly in ξ; and T1 + · · · + Tm is understood to be zero if m = 0. Moreover T1 is of
the form

T1 =
1

‖x‖d+2

∫

A

[

U(x) + (d− 2)κd‖x‖2(Q−1x) ·
(

c(ξ) − c∗(η)
)]

µ(dη), (9)

where U(x) is a homogeneous polynomial of degree 3 (given by (30) in Section 2 ) that does not
depend on variables ξ, η. If (ξn, Sn) is symmetric (in the sense above), then U = 0 and c∗ = c.
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In the two dimensional case we define

G((ξ, x), (dη, y)) =

∞
∑

n=0

[

pn((ξ, x), (dη, y)) − pn((ξ, 0), (dη, 0))
]

(d = 2).

Theorem 2. Let d = 2. Suppose that (ξn, Sn) is irreducible and that for some δ ∈ (0, 1)
and some integer m ≥ 0, supξ Eξ[|Y1|2+m+δ ] < ∞ . Then G admits the following asymptotic
expansion

G((ξ, 0), (A,x)) = −µ(A)

πσ2
log ‖x‖ + Cξ(A) + T1 + · · · + Tm +

∫

ARm(x, ξ, η)µ(dη)

|x|d−2+m+δ

(x 6= 0, A ∈ T ). Here Tk and Rm are as in the preceding theorem (but with d = 2) and Cξ(dη)
is a bounded signed measure on T (given by (31) in the next section). Moreover

T1 =
1

‖x‖4

∫

A

[

U(x) +
1

π
‖x‖2(Q−1x) ·

(

c(ξ) − c∗(η)
)

]

µ(dη).

In Theorems 1 and 2, some explicit expressions are presented not only for the principal term but
also for the second order term, i.e. T1, in the expansion of G. The second order term sometimes
plays an important role in applications. In (16) a random walk on a periodic graph, say (V,E)
whose transition law is spatially periodic according to the periodicity of the graph is studied
and the results above are applied to compute the hitting distribution of a hyper plane where the
second order term mentioned above is involved. Typically the vertex set of the graph is of the
form V = {u + γ : u ∈ F, γ ∈ Γ} where F is a finite set of Rd and Γ is a d-dimensional lattice
spanned by d linearly independent vectors e1, . . . , ed ∈ Rd. The random walk Xn moves on V
whose transition law is invariant under the natural action of Γ so that π(Xn) is a Markov chain
on F , where πF : V → F denotes the projection, and is viewed as a MA process on T × Rd.
Suppose that there is a hyper plane M relative to which the reflection principle works so that
if v̄ denotes the mirror symmetric point of v relative to M and u, v ∈ V \M , then the Green
function G+ of the walk Xn killed on M is given by G+(u, v) = G(u, v) −G(u, v̄) if u, v are on
the same side of V separated by M and G+(u, v) = 0 otherwise. Let V + be one of two parts
of V separated by M and e a unit vector perpendicular to M . Then under suitable moment
condition one can deduces from Theorems 1 and 2 that for u, v ∈ V +,

G+(u, v) =
2Γ(d/2)|detA|
πd/2Q(e)

·

[

(u+ c(ξ)) · e
][

(v + c∗(η)) · e
]

‖v − u‖d
µ(η) ×

{

1 + o(1)
}

,

as |v − u| → ∞ in such a manner that (u · e)(v · e)/|u − v|2 → 0, where ξ = πF (u), η = πF (v)
and A is the matrix made of column vectors e1, . . . , ed. The asymptotic formula for the hitting
distribution of M is readily obtained form this.

In the next result the same assumption as in Theorem 2 is supposed.

Corollary 3. Let d = 2. In the definition of G one may subtract (2πσ2n)−1µ(dη) instead of
pn((ξ, 0), (dη, 0)); so define G̃ by

G̃((ξ, x), (dη, y)) =
∞
∑

n=1

[

pn((ξ, x), (dη, y)) − 1

2πσ2n
µ(dη)

]

, (10)
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which only causes an alteration of the constant term Cξ(A) and an additional error term,
r(x)µ(dη) say, of order O(‖x‖−4) in the expansion of Theorem 2: the constant term is given by

(πσ2)−1
(

− γ + log(σ
√

2 )
)

µ(A)

where γ is Euler’s constant. (r(x) appears only if ξn makes a cyclic transition.)

Corollary 3 is actually a corollary of Theorem 2 and Theorem 4 below. For a proof, see the end
of the proof of Theorem 2 given in the next section.

We shall prove these results first under the supposition of (AP), and then reduce the general
case to them . In the case when the condition (AP) does not hold, it is natural to consider the
minimal subgroupH that satisfies (7) and the process, denoted by an, that is the projection of Sn

on the quotient group Zd/H. If the process (ξn, an), which is a Markov process on T × (Zd/H),
is ergodic (namely it has a unique invariant probability measure), then the Green function is
shown to well behave. This ergodicity of course follows from the irreducibility of (ξn, Sn) (see
Lemma 10). On the other hand, if it is not ergodic, the formulae in the theorems above must
be suitably modified for obvious reason.

Local Central Limit Theorem. The method that is used in the proof of Theorems 1 and 2 also
applies to the derivation of local central limit theorems just as in the case of classical random
walks on Zd. We give an explicit form of the second order term as in the estimate of the Green
function given above. The next order term is computable in principle though quite complicated
(cf. Corollary 5).

In the expansion of the Green function there is no trace of cyclic transitions of ξn (if any), which
is reflected in the transition probability pn((ξ, x), (A, y)) for obvious reason. In general there
may be cyclically moving subsets of T so that the set T can be partitioned into a finite number
of mutually disjoint subsets T0, . . . , Tτ−1 (τ ≥ 1) such that for j, k, ℓ ∈ {0, . . . , τ − 1},

pnτ+ℓ
T (ξ,A) = pnτ+ℓ

T (ξ,A ∩ Tk) if ξ ∈ Tj, k = j + ℓ (mod τ). (11)

To state the next result it is convenient to introduce the probability measures µj (j = 0, . . . , τ−1)
on T which are defined by

µj(A) = τµ(A ∩ Tj) (A ∈ T ). (12)

If τ = 1, we set µ0 = µ.

Theorem 4. Let τ and µj be as above. Suppose that Condition (AP) holds and
supξ Eξ[|Y1|k+δ] <∞ for some k ≥ 2 and δ ∈ [0, 1). Then, if ξ ∈ Tj, A ∈ T , 0 ≤ ℓ ≤ τ − 1, and
n = mτ + ℓ > 0,

(2πσ2n)d/2Pn((ξ, 0), (A,x)) (13)

= exp

(

−‖x‖2

2σ2n

)

[

µj+ℓ(A) + Pn,k(x)
]

+ o

(

1
√
n

k−2+δ
∧ n

|x|k+δ + 1

)

,

as n + |x| → ∞. Here a ∧ b stands for the minimum of a and b; Pn,k(x) is a polynomial of x
such that Pn,2 ≡ 0 and if k ≥ 3

Pn,k(x) =
1√
n
PA

1

(

x√
n

)

+ · · · + 1
√
n

k−2
PA

k−2

(

x√
n

)
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where PA
j (y) is a polynomial (depending on ξ, ℓ as well as A but determined independently of m)

of degree at most 3j and being odd or even according as j is odd or even. The first polynomial
PA

1 is given by

PA
1 (y) =

∫

A

[

H(
√

Q−1 y) +Q−1y ·
(

c(ξ) − c∗(η)
)]

µj+ℓ(dη) (y ∈ Rd)

where H (defined via (40) (valid also for the case τ ≥ 2)) is a linear combination of Hermite
polynomials (in d-variables) of degree three with coefficient independent of ξ,A; in particular H
is identically zero if the process is symmetric.

The error estimate in Theorem 4 is fine: the expansions of the Green functions as in Theorems
1 and 2 can be obtained from Theorem 4 (except for d = 4) in view of the inequality

∞
∑

n=1

1
√
n

d

(

1
√
n

k−2+δ
∧ n

|x|k+δ + 1

)

≤ C

|x|d+k−4+δ
(14)

if d = 2, δ > 0 or d = 3, δ ≥ 0; and a similar one with C/|x|k+δ on the right side for d ≥ 5 (we
need to multiply the right side by log |x| for d = 4).

Corollary 5. Suppose that (ξn, Sn) satisfies (AP) and supξ Eξ[|Y1|6] < ∞. Then, if ξ ∈ Tj ,
A ∈ T , ℓ = 0, . . . , τ − 1, and n = mτ + ℓ,

(2πσ2n)d/2pn((ξ, 0), (A,x)) (15)

= exp

(

−‖x‖2

2σ2n

)[

µj+ℓ(A) +
1√
n
PA

1

(

x√
n

)

− aA(ξ)

2n

]

+O

(

1 + |x|2
n2

)

µj+ℓ(A)

as n→ ∞ uniformly for |x| ≤ C
√
n and ξ ∈ T (with C being any positive constant). Here aA(ξ)

is a certain function on T .

In the special case when the ξn process degenerates into a constant we have the result for a
classical random walk on Zd which is an extension of that of Spitzer (22) . Its n-step transition
probability pn(x, y) is given in the form pn(y − x).

Corollary 6. Suppose that the random walk is strongly aperiodic in the sense of (22),
∑

p1(x)x = 0 and
∑

p1(x)|x|k+δ] <∞ for some k ≥ 2 and δ ∈ [0, 1). Then

(2πσ2n)d/2pn(x) = exp

(

−‖x‖2

2σ2n

)

[

1 + Pn,k(x)
]

+ o

(

1
√
n

k−2+δ
∧ n

|x|k+δ + 1

)

,

as n + |x| → ∞. Here Pn,k(x) is a polynomial of x as described in Theorem 4 except that PA
j

therein is independent of A (κ(θ) in (40) is nothing but the characteristic function of p1).

Remarks for Theorems 1 to 4.

Remark 1 If there are cyclically moving subsets of T for the process (ξn) as in (12), the
relation (H.1′) does not hold any more. However, under Doeblin’s condition and ergodicity, it
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holds that for j, k, ℓ ∈ {0, . . . , τ − 1},

(H.1′′) sup
ξ∈Tj

|pnτ+ℓ
T (ξ,A) − µk(Tk)| ≤ const ρn if k = j + ℓ (mod τ)

uniformly in ξ ∈ Tj , A ∈ T . (For proof see Doob (3), Section V.5 (especially pages 205-206,
207). The function c, defined as a solution of (1 − p)c = h, is obtained by taking the Abel sum
as in (2) of possibly divergent series

∑

pnh; c∗ may be similarly given. (In the special case when
every Ti consists of one point, the process is a deterministic cyclic motion on a finite set and
c = h+ (1 − τ−1)ph+ (1 − 2τ−1)p2h+ · · · + τ−1pτ−1h. For the general case see Section 4.)

Remark 2 One might consider a class of MA processes which satisfy Condition (AP) and
wish to prove that the estimates as given above hold uniformly for the processes in the class (cf.
(10), (26)). For expecting such uniform estimates to be true it is reasonable to suppose that the
following bounds hold uniformly for the class:
(i) supξ Eξ |Y1|k+δ ≤ C; ∃λ > 0, inf |θ|=1Q(θ)/|θ|2 > λ
(ii) ‖(p − Π)n‖L∞(µ) ≤ Cρn for all n (ρ < 1);

(iii) ∃n◦,∀ε > 0, ∃α < 1, sup|θ|>ε, θ∈[−π,π]d Eµ

∣

∣

∣Eµ

[

eiSn◦ ·θ
∣

∣

∣ σ{ξ0, ξn◦}
]∣

∣

∣ ≤ α

(provided that τ is bounded), where Π is the principal part of p made of eigenprojections
corresponding to eigenvalues of modulus unity (see Section 6). (For (iii) see (83) of Section 7.)
Unfortunately it is not fully clear whether the uniformity of these bounds is sufficient since it
does not seem to provide appropriate bounds for derivatives of κ(θ),Mθ(f) (cf. Section 2 for
the notation).

Remark 3 For the local central limit theorem the zero mean condition (1) is not essential.
With the mean vector b = Eµ[Y1] we have only to replace x by x− nb on the right sides of (13)
and (15) to have the corresponding formulas. The same proofs as in the case of mean zero go
through if h and h∗ are defined by h(ξ) = Eξ[Y1]− b and h∗(η) = b−Eµ[Y1|ξ1 = η], respectively.

Remark 4 We have supposed the Doeblin’s condition (H.1) to hold, which amounts to sup-
posing the uniform bound of the exponentially fast convergence (H.1′′). We may replace it by
the Lp(µ) (p ≥ 1) bound under some auxiliary condition on pT (which is satisfied eg. if T is a
countable set), although the estimates stated in Theorems above must be generally not uniform
relative to ξ0 = ξ any more. (Cf. (1) for a such extension.)

Remark 5 The case when the distributions of Sn is not supported by any lattice can be
dealt with in a similar way under some reasonable conditions. If the asymptotic formulae are
for measure kernels and understood in a weak sense (cf. the last section of (25)), it suffices to
suppose, in place of Condition (AP), that for some positive integer n◦,

Pµ

[

lim sup
|θ|→∞

∣

∣

∣Eµ[exp(iSn◦ · θ) |σ{ξ0, ξn◦}]
∣

∣

∣ < 1
]

> 0. (16)

If it is for the density, we need suppose a more restrictive one, eg, the condition that for some
integers n◦, k ≥ 1

sup
ξ,η

∫

Rd

∣

∣

∣
Eξ[exp(iSn◦ · θ) | ξn◦ = η]

∣

∣

∣

k
dθ <∞, (17)
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which in particular implies that if 2j ≥ k, the conditional distribution of Sjn◦ with ξ0, ξn◦ being
fixed has a square integrable density. It follows from each of (16) and (17) that for every ε > 0

sup
|θ|>ε

∣

∣

∣Eµ[exp(iSjn◦ · θ) |σ{ξ0, ξn◦}]
∣

∣

∣ < 1

with positive Pµ-probability, so that the estimates as given in Section 7 can be verified in a
similar way as therein. It may be worth pointing out that to have an expansion analogous to the
right side of (8) the first several terms P 1, . . . , P ℓ must be discarded from the Green function G
since they may possibly behave very badly even when they possess densities.

Let (Mn, un) (n ≥ 1) be an i.i.d. sequence of pais of random d × d-matrices Mn and random
d-vectors un and define ξ0 = I (unit matrix), ξn = M1 · · ·Mn, S0 = 0 and recursively Sn+1 =
Sn + ξnun+1. The pair (ξn, Sn) is then a Markov additive process starting from (I, 0). If Mn are
taken from the special orthogonal group SO(d), the conditions (16) as well as (H.1) is satisfied
under mild restrictions on the distribution of (M1, u1) (cf. (1)). This model is s closely related
to the random difference equation Yn = MnYn−1 + un: in fact, given Y0, Yn has the same
distribution as Sn + ξnY0. (Cf. (15), (1) for more general cases of Mn. )

Other expressions of Q. In some of previous works the covariance matrix Q is expressed in
apparently different forms, which we here exhibit. Define

Q◦(θ) := θ ·Q◦θ = Eµ

[

(Y1 · θ)2
]

.

Let R be another symmetric matrix defined through the quadratic form:

R(θ) = 2Eµ

[

(−Y1 · θ)(c(ξ1) · θ)
]

.

Then R(θ) = 2µ((c∗ · θ)(h · θ)) = 2µ((h∗ · θ)(c · θ)) and

Q = Q◦ −R. (18)

In fact from the identity E · [Y1] − c+ pc = 0, we deduce the equality

E · |Ỹ1 · θ|2 = E · [ |Y1 · θ|2 + 2{Y1 · θ}{c(ξ1) · θ}] − |c · θ|2 + p|c · θ|2,

which, on integrating by µ, yields (18). In particular, if Q is isotropic, namely Q(θ) = σ2|θ|2,
then σ2d = Eµ |Y1|2 +2Eµ[Y1 ·c(ξ1)]. If the process (ξn, Sn) is symmetric, then R(θ), being equal
to 2µ(h · θ(1 − p)−1h · θ), is the central limit theorem variance for the sequence h(ξn) · θ under
the stationary process measure Pµ, in particular σ2 ≤ (detQ◦)1/2d. The last inequality is not
necessarily true in the asymmetric case (see Example 6.1 of (16)).

Let m(ξ, η) be the first moment of the conditional law of Y1 given (ξ0, ξ1) = (ξ, η), namely
m(ξ, η) = Eξ[Y1 | ξ1 = η]. Then h(ξ) =

∫

pT (ξ, dη)m(ξ, η), and we infer that

R(θ) = −2

∞
∑

n=1

Eµ

[

(m(ξ0, ξ1) · θ)(m(ξn, ξn+1) · θ)
]

.
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Let Qm denote the central limit theorem variance for the sequence m(ξn, ξn+1). Then Qm(θ) =

Eµ

[(

m(ξ0, ξ1) · θ
)2 ]

−R(θ). Hence Q may be expressed as the sum of two variances:

Q(θ) = Eµ

[ ∣

∣

∣

(

Y1 −m(ξ0, ξ1)
)

· θ
∣

∣

∣

2 ]

+Qm(θ). (19)

The expression (4) appears in (6) and (1), whereas (18) and (19) appear in (18) and (24),
respectively.

2 Proofs of Theorems 1 and 2

Let f be a bounded measurable function on T . We are to compute

Eξ[e
iSn·θf(ξn)] =

∑

x∈Zd

eix·θEξ[f(ξn);Sn = x], θ ∈ Rd.

Define the following complex measure kernel:

pθ(ξ, dη) = Eξ[e
iY1·θ; ξ1 ∈ dη] (20)

and let pθ be the integral operator given by it. Then

Eξ[e
iSn·θf(ξn)] = pn

θ f(ξ).

We regard the operator pθ as a perturbation of p. In doing so, we suppose for simplicity that
there are no cyclically moving subsets of T for the process (ξn) so that we can use (H.1′). (See
Section 4 in general cases.) Under this supposition it follows that if δ◦ > 0 is small enough
and |θ| ≤ δ◦, then there are an eigenfunction eθ and an eigen-complex-measure µθ such that
pθeθ = κ(θ)eθ, µθpθ = κ(θ)µθ, µ(eθ) = µθ(eθ) = 1 and

pθ = κ(θ)eθ ⊗ µθ + rθ, (21)

with κ(θ) → 1 as |θ| → 0 and lim supn→∞ ‖rn
θ ‖1/n < (ρ + 1)/2 uniformly for |θ| ≤ δ◦ (see

Appendix D). Here eθ ⊗ µθ is a projection operator defined by (eθ ⊗ µθ)f = µθ(f)eθ. Since it
commutes with pθ, we have pn

θ = [κ(θ)]neθ ⊗ µθ + rn
θ . Accordingly for n = 1, 2, . . .

Eξ[e
iSn·θf(ξn)] = [κ(θ)]neθ(ξ)µθ(f) + rn

θ f(ξ), (22)

and, on performing summation over n,

∞
∑

n=0

Eξ[e
iSn·θf(ξn)] =

κ(θ)Mξ(θ)

1 − κ(θ)
+Rξ(θ), (23)

where we put Rξ(θ) =
∑∞

n=0 rn
θ f(ξ) (with r0

θf = f) and

Mξ(θ) = eθ(ξ)µθ(f). (24)

These are valid only for |θ| ≤ δ◦. We may extend Mξ and κ to arbitrary functions that are
sufficiently smooth and |κ| < 1 for |θ| > δ◦ and define Rξ(θ) as the remainder. Set ∆ = [−π, π)d
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and choose these extensions of Mξ and κ so that they vanish in a neighborhood of the boundary
∂∆. It holds that

∫

T
G((ξ, 0), (dη, x))f(η) =

1

(2π)d

∫

∆

κ(θ)Mξ(θ)

1 − κ(θ)
e−iθ·xdθ +

1

(2π)d

∫

∆
Rξ(θ)e

−iθ·xdθ. (25)

In the rest of this section we suppose that the process (ξn, Sn) satisfies (AP). (The general case
will be treated in Section 5.) In this proof we further suppose that supξ Eξ[|Y1|m] <∞ for every

m = 0, 1, 2, . . .. (See Appendix A for the case when it is only supposed that supξ Eξ[|Y1|k+δ] <
∞.) Then for each m both κ(θ) and Mξ(θ) are m-times differentiable functions of θ and there
exists a positive constant r = rm < 1 such that

sup
θ∈∆, |θ|>δ◦

|∇mEµ[eiSn·θf(ξn)]| = O(rn) (n→ ∞).

Here (and later on without exception) the gradient operator ∇ acts on a function of θ. The proof
of this estimate is postponed to Section 7 (Lemma 20). From it together with (21) it follows
that the second term on the right side of (25) approaches zero as |x| → ∞ faster than |x|−m for
every m.

We shall derive in Section 6 the following identities

∇κ(0) = 0; (θ · ∇)2κ(0) = −Q(θ); (26)

∇eθ
∣

∣

∣

θ=0
= ic; ∇µθ(f)

∣

∣

∣

θ=0
= −iµ(c∗f) (27)

(Proposition 18 and Lemma 20). Here the somewhat abusing notation (θ · ∇)2κ(0) stands
for

∑

k,j θkθj∇k∇jκ(0), which may be expressed by another one Tr(θ2∇2κ(0)), where θ2 is

understood to be a d× d-matrix whose (k, j) entry is θkθj and similarly for ∇2. We infer from
(26) that

κ(θ)

1 − κ(θ)
=

2

Q(θ)

(

1 +
(θ · ∇)3κ(0)

3Q(θ)
+

{θ6}
Q2(θ)

+ · · ·
)

,

where {θk} denotes a homogeneous polynomial of θ ∈ Rd of degree k. On the other hand by
(27) we find that ∇Mξ(0) = i[c(ξ)µ(f) − µ(c∗f)]. It therefore follows that

κ(θ)Mξ(θ)

1 − κ(θ)
=

2µ(f)

Q(θ)
+
iBf (θ)

Q(θ)
+

{θ6}
Q3(θ)

+ · · · , (28)

where Bf (θ) is a real function given by

Bf (θ) =
2(θ · ∇)3κ(0)

i3Q(θ)
µ(f) + 2[c(ξ)µ(f) − µ(c∗f)] · θ. (29)

Let d ≥ 3. Then, following the usual manner of evaluation of Fourier integrals (cf. Appendix
B), we deduce from (25) together with what is remarked right after it that for ξ, η ∈ T ,

G((ξ, 0), (dη, x)) − κd

σ2‖x‖d−2
µ(dη)

=
U(x) + (d− 2)κd‖x‖2(Q−1x) ·

(

c(ξ) − c∗(η)
)

‖x‖d+2
µ(dη) +

{x6}µ(dη)

‖x‖d+6
+ · · ·
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where U(x) is a homogeneous polynomial of degree 3 and given by

U(x) =
‖x‖d+2

(2π)d

∫

Rd

2(θ · ∇)3κ(0)

3Q2(θ)
e−ix·θdθ. (30)

In the case when the process (ξn, Yn) is symmetric, it is clear that c∗ = c; the equality U = 0
follows from Proposition 18 (iii) of Section 6.

Let d = 2. The proof may proceed as in (25) or (5). We outline it in below to identify the
second order term. The proof is based on the Fourier inversion formula

Gf
ξ (x) :=

∫

T
G((ξ, 0), (dη, x))f(η) =

∫

∆

∞
∑

n=0

Eξ[e
iSn·θf(ξn)](e−ix·θ − 1)

dθ

(2π)2
.

Set

ψf
ξ (θ) =

∞
∑

n=0

Eξ[e
iSn·θf(ξn)] − 2µ(f)

Q(θ)

and make the decomposition

Gf
ξ (x) = µ(f)

∫

∆

2

Q(θ)
(cos x · θ − 1)

dθ

4π2
+

∫

∆
ψf

ξ (θ)(e−ix·θ − 1)
dθ

4π2
.

Then one deduces that the first integral on the right side equals

− 1

σ2π
log ‖x‖ +

1

σ2π
(log 2 − γ) − 1

4π2

∫

∆\B

2dθ

Q(θ)
−
∫

R2\∆

2e−ix·θ

Q(θ)

dθ

4π2
,

where B = {θ : Q(θ) ≤ σ2} (⊂ ∆) and γ is Euler’s constant (cf. (22),(5)). (Here the last integral
is not absolutely convergent and needs to be defined as a principal value in a suitable sense (cf.
Lemma 2 of (5) ).) If we define

Cξ(f) =
µ(f)

σ2π
(log 2 − γ) − µ(f)

4π2

∫

∆\B

2dθ

Q(θ)
−
∫

∆
ψf

ξ (θ)
dθ

4π2
, (31)

then

Gf
ξ (x) = −µ(f)

σ2π
log ‖x‖ + Cξ(f)

+

∫

∆
ψf

ξ (θ)e−ix·θ dθ
4π2

−
∫

R2\∆

2e−ix·θdθ
Q(θ)

· µ(f)

4π2
. (32)

By (28) and (23) we have

ψf
ξ (θ) = Rξ(θ) +

iBf (θ)

Q(θ)
+

{θ6}
Q3(θ)

+ · · ·

in a neighborhood of the origin. With this we estimate the sum of the last two integrals in (32)
as in the case d ≥ 3.

Proof of Corollary 3. This proof amounts to computing the sum SA
ξ :=

∑∞
n=1[p

n((ξ, 0), (A, 0))−
(2πσ2n)−1µ(A)] in a roundabout way, which is to result in CA

ξ + SA
ξ + Eξ[ξ ∈ A] = [(−γ +
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log σ
√

2 )/πσ2]µ(A). In view of Theorem 4 (see (14)) and Theorem 2 it suffices to show that as
|x| → ∞,

∞
∑

n=1

1

2πσ2n

(

e−‖x‖2/2σ2n − 1
)

=
− log ‖x‖ − γ + log σ

√
2

πσ2
+O(‖x‖−4) (33)

as well as, for dealing with the case when ξn is cyclic of period τ (≥ 2), that

∞
∑

k=1

τ−1
∑

j=0

[

e−‖x‖2/2σ2(kτ+ℓ)

2πσ2(kτ + ℓ)
− e−‖x‖2/2σ2(kτ+j)

2πσ2(kτ + j)

]

= O(‖x‖−4). (34)

These estimates will be shown in Section 8 (Appendix C).

Remark 6 Consider the case when ξn makes a cyclic transition and/or Sn does not satisfy
(AP). As in (22) (p.310) we modify the process (ξn, Sn) by adding δ ∈ (0, 1) of the probability
that it does not move at each step and multiplying by 1 − δ the original probabilities: for the
new law P ′

ξ

P ′
ξ [ξ1 = ξ, S1 = 0] = δ + (1 − δ)Pξ [ξ1 = ξ, S1 = 0].

This transforms the cyclically moving ξn into noncyclic one and many processes that do not
satisfy (AP) into those satisfying (AP), but not all as it always does in the case of random walks
on Zd (see Section 5 for a counter example as well as relevant matters). Denoting by p′, κ′ etc.
the corresponding objects for the modified process, we have p′ = δ1 + (1 − δ)p, h′ = (1 − δ)h
and c′ = c. Thus

p′
θ = δ1 + (1 − δ)pθ = κ′(θ)eθ ⊗ µθ + r′θ

with κ′(θ) = δ+(1−δ)κ(θ) and r′θ = δ(1−eθ⊗µθ)+(1−δ)rθ . In particular, ∇κ′(θ) = (1−δ)∇κ(θ)
(implying Q′ = (1 − δ)Q etc.) and both µθ and eθ remain the same. If d ≥ 3, we have

G′ = (1 − δ)−1G;

hence the required estimate of G follows from that of G′ straightforwardly, provided that the
modified process satisfies (AP) for all sufficiently small δ > 0.

3 Proof of Local Central Limit Theorem.

By means of the expression (23) together with (28) one can derive an asymptotic expansion of
the transition probability pn(α, dβ) in a usual manner. Here we first review the derivation of
the expansion in the case when |x|/√n is bounded above mainly for identification of the second
order term and then discuss it in the case when |x|/√n is bounded off zero. It is supposed that
τ = 1, namely there are no cyclically moving sets for ξn process (see section 4 in the case τ ≥ 2).

The case |x|/√n < C. We consider mostly the case k = 5, namely Eξ|Y1|5+δ < ∞. Owing to
(26) and (27) we see

Mξ(θ) = µ(f) + i
(

c(ξ)µ(f) − µ(c∗f)
)

· θ + {θ2} + · · · ; (35)
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κ(θ) = 1 − 1

2
Q(θ) +

1

6
(θ · ∇)3κ(0) + {θ4} + · · · . (36)

(Remember that Mξ(θ) = eθ(ξ)µθ(f).) By the second relation we have

n log[κ(θ/
√
n)] = −1

2
Q(θ) +

1

6
√
n

(θ · ∇)3κ(0) +
1

n
{θ4} +

1

n3/2
{θ5} + · · · . (37)

Therefore on using (22)

Eξ[e
iSn·θ/

√
nf(ξn)]

= e−
1

2
Q(θ)

(

1 +
(θ · ∇)3κ(0)

6
√
n

+
{θ4} + {θ6}

n
+

{θ5} + {θ7} + {θ9}
n3/2

+ · · ·
)

×

×
(

µ(f) +
i√
n

(

c(ξ)µ(f) − µ(c∗f)
)

· θ +
{θ2}
n

+
{θ3}
n3/2

+ · · ·
)

= e−
1

2
Q(θ)

{

µ(f) +
1√
n

[

i
(

c(ξ)µ(f) − µ(c∗f)
)

· θ +
1

6
(θ · ∇)3κ(0)µ(f)

]}

+ e−
1

2
Q(θ)[P (θ, n) +R(θ, n)] (38)

with P (θ, n) = n−1({θ2} + {θ4} + {θ6}) + n−3/2({θ3} + {θ5} + {θ7} + {θ9}) and

|R(θ, n)| = o

(

µ(|f |)(1 + |θ|5+δ)
√
n

3+δ

)

for |θ| < n1/6,

provided that Eµ|Y1|5+δ <∞. Now

(2πσ2n)d/2

∫

T
pn((ξ, 0), (dη, x))f(η)

=
σd

(2π)d/2

∫

√
n∆

Eξ[e
iSn·θ/

√
nf(ξn)]e−ix·θ/

√
n dθ

= exp

(

−‖x‖2

2σ2n

)[

µ(f) +H◦

(

x√
n

)

µ(f)√
n

+
1

n
Q−1x ·

(

c(ξ)µ(f) − µ(c∗f)
)

]

+
σd

(2π)d/2

∫

Rd

P (θ, n)e−
1

2
Q(θ)e−ix·θ/

√
n dθ + o

(

µ(|f |)
√
n

3+δ

)

, (39)

where H◦(y) is an odd polynomial of degree three defined by

H◦(y) =
σde‖y‖

2/2σ2

6(2π)d/2

∫

Rd

e−
1

2
Q(θ)(θ · ∇)3κ(0)e−iy·θ dθ, (40)

so that H(x) := H◦(
√
Qx) is a linear combination of Hermite polynomials of degree three.

For the verification one divides the range of integration
√
n∆ into three parts according as

|θ| ≤ n1/6; n1/6 < |θ| ≤ λ◦
√
n; |θ| > λ◦

√
n where λ◦ is a positive constant small enough

that κ(θ)| < 1 if 0 < |θ| ≤ λ◦; use Condition (AP) to estimate the last part with the help of
Proposition 20 of Section 7.

Since the Fourier transform of a function of the form {θj}e− 1

2
Q(θ) is a Gaussian density times

a polynomial of degree j (hence odd or even according as j is odd or even), the formula (39) is
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nothing but the formula stated in the theorem in the case when |x|/√n is bounded above. The
constant term of the transform being equal to the integral over Rd of the function, the constant
aA(ξ) in the formula (15) is given by

af (ξ) =
−σd

(2π)d/2

∫

Rd

e−
1

2
Q(θ)

[

(θ · ∇)2Mξ(0) + 1
3(θ · ∇)Mξ(0)(θ · ∇)3κ(0)

−
(

[

1
2Q(θ)

]2
− 1

12(θ · ∇)4κ(0) −
[

1
6(θ · ∇)3κ(0)

]2
)

µ(f)

]

dθ. (41)

The contribution of P (θ, n) with the term −af (ξ)/2n subtracted is bounded by

n−1[(|x|/
√
n)2 + · · · ] + n−3/2[(|x|/

√
n) + · · · ] ≤ C1|x|2/n2

for |x| < C
√
n; and if supξ Eξ[|Y1|6] <∞, then that of R(θ, n) is bounded by C2/n

2. This verifies
Corollary 5.

The case |x|/√n > C. Put

Ψn(θ) = Eξ[e
iSn·θf(ξn)];

and ω = x/|x|, ∇ω = ω · ∇. The proof is based on the following identities:

ik|x|k
nk/2

(2πσ2n)d/2

∫

T
pn((ξ, 0), (dη, x))f(η) =

∫

√
n ∆

e−ix·θ/
√

n (∇k
ωΨn)

(

θ√
n

)

dθ

nk/2
; (42)

ik|x|k
nk/2

exp

(

−‖x‖2

2nσ2

)

=

∫

Rd

e−ix·θ/
√

n ∇k
ω(e−

1

2
Q(θ))dθ (43)

(where ∇k
ω = (∇ω)k) as well as the relation (22): Ψn(θ) = [κ(θ)]nMξ(θ)+rn

θ f(ξ) (where Mξ(θ) =
eic(ξ)·θeθ(ξ)µθ(f)). The method of using these identities is an extension of that found in Spitzer
(22) in which k = 2. The arguments given below are mostly the same as for the classical random
walk on Zd, but for the case k ≥ 3 they seem not be in existing literatures.

We are to analyze the difference

Dn(θ) := ((∇ω)kΨn)

(

θ√
n

)

1

nk/2
− (∇ω)k(e−

1

2
Q(θ)).

Lemma 7. If supξ Eξ[|Y1|k+δ] <∞, then

Dn(θ) = e−
1

2
Q(θ)

[

Pn,k(θ ) + nRn,k(θ)
]

(|θ| ≤ n1/6) (44)

with Rn,k(θ) = o
([

(1 + |θ|)/√n
]k+δ)

. Here Pn,2(θ) = 0 and for k ≥ 3,

Pn,k(θ) =

k−2
∑

j=1

Pj(θ)/
√
n

j
(45)
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where Pj(θ) is a polynomial of θ of degree at most k+3j. Moreover the function Rn,k(y) satisfies

Rn,k(θ) −Rn,k(θ + η) = o





[

1 + |θ|√
n

]k
( |η|√

n

)δ


 (46)

uniformly in ω, θ and η, provided that |η|, |θ| ≤ n1/6.

Proof of Lemma 7. We can expand ∇m
ω κ(θ) for m < k into a Taylor series up to the order k−m

with the error estimate of o(|θ|k−m+δ) to see that

(∇m
ω κ)

(

θ√
n

)

= (∇m
ω )κ(0) + · · · + (θ · ∇)k−m(∇m

ω κ)(0)

(k −m)!
√
n

k−m
+ o

(

|θ|k−m+δ

√
n

k−m+δ

)

and for each ν = 0, 1, 2, . . .,

κn−ν

(

θ√
n

)

= e−
1

2
Q(θ)



1 +

k−2
∑

j=1

{θj+2} + · · · + {θ3j}√
n

+ o

(

1 + |θ|k+δ

√
n

k−2+δ

)



×

×
(

1 +
ν

2n
Q(θ) + · · · + {θk}

nk/2
+ o

(

( |θ|√
n

)k+δ
))

, (47)

as n→ ∞ uniformly for |θ| ≤ n1/6.

The function n−k/2(∇k
ωκ

n) (θ/
√
n) is expanded in the form

In(θ) :=
1

nk/2

∑

α

Cα (n)ν κ
n−ν

(

θ√
n

) ν
∏

j=1

((∇ω)αjκ)

(

θ√
n

)

(48)

where (n)ν = n(n − 1) · · · (n − ν + 1); the summation extends over all the multi-indices α =
(α1, ..., αν) such that

1 ≤ α1 ≤ α2 ≤ · · · ≤ αν ; α1 + · · · + αν = k;

ν = νa ∈ {1, 2, ..., k}; and Cα is a certain constant associated with α. Let ℓ = ℓ(α) denote the
number of 1 in the sequence α1, ..., αν . Then we have the dichotomy

(1) ℓ+ k = 2ν if αi ≤ 2 for every i,

(2) ℓ+ k > 2ν if αi ≥ 3 for some i.

We accordingly decompose In = I
(1)
n + I

(2)
n .

The corresponding expansion of (∇ω)k(e−
1

2
Q(θ)) is given by

IIn(θ) :=
∑

α

Cα(−ω ·Qθ)ℓ[−Q(ω)]ν−ℓe−
1

2
Q(θ)

where the sum is restricted to those α for which αi ≤ 2 for every i.
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For the rest of the proof we suppose that k ≥ 3 (the argument is easily adapted to the case

k = 2). Noticing that n−k/2(n)ν =
√
n

ℓ
(1 +O(1/n)) if ℓ+ k = ν, and

√
n∇ωκ(θ/

√
n) = −ω ·Qθ +

(

{θ2}/
√
n
)

(1 + o(1)),

(∇ω)2κ(θ/
√
n) = −Q(ω) +

(

{θ}/
√
n
)

(1 + o(1)),

we observe that I
(1)
n − IIn is of the form

e−
1

2
Q(θ)

[

k−2
∑

j=1

P 1
j (θ)/

√
n

j
+ o

(

n

( |θ|√
n

)k+δ
)]

like that required for Dn. As for the terms of I
(2)
n , since |∇jκ| ≤ Cj (j = 1, 2, ..., k), from each

factor (∇m
ω )κ(θ/

√
n) with m > 2 there arises a factor 1/

√
n

m−2
, so that I

(2)
n is also of the same

form as above (but without the term of order 1/
√
n ). These together with the smoothness of

M concludes that Dn is given as in (44) with Pn,k(θ) of the form
∑k−2

j=1 Pj(θ)/
√
n

j
. (A little

reflection shows that the highest degree term of Pj(θ) equals (−ω · Qθ)k × {θ3j} (notice that
(∇ωκ)(θ/

√
n) = −ω ·Qθ/√n+ · · · ), so that its degree is k+ 3j. ) It remains to show (46). But

this follows from the the facts that among the factors in (48) κ and (∇ω)αjκ with αj < k are
differentiable and

∇k
ωκ(y) −∇k

ωκ(y
′) = o(|y − y′|δ) (y − y′ → 0).

This completes the proof of the lemma.

We resume the proof of Theorem 4. First we prove it in the case δ = 0. Recalling the basic
relations (42), (43), and (22) it is routine (as indicated in the case |x|/√n < C) to deduce from
Lemma 7 that uniformly for |x|/√n > C,

(2πσ2n)d/2

∫

T
pn((ξ, 0), (dη, x))f(η)

= exp

(

−‖x‖2

2σ2n

)

[

µ(f) +
nk/2

ik|x|k P̃k,n(x/
√
n)

]

+

(√
n

|x|

)k
[

o

(

1
√
n

k−2

)

+O
(

e−εn1/3
)

]

,

where P̃k,n(y) is the polynomial appearing in the Fourier transform of e−
1

2
Q(θ)Pk,n(θ). Since both

the formula (15) of Theorem 4 and the above one are valid uniformly for C < |x|/√n < C−1

with arbitrary 0 < C < 1, the polynomial following e−‖x‖2/2nσ2

(as its multiple ) on the right
side of the latter must agree with that of the former within the indicated error estimate. This
yields the required formula in the case δ = 0.

In the case δ > 0. Let Rn,k be the function introduced in Lemma 7. It suffices to prove that for
r := |x| > C

√
n,

J (1)
n =

√
n d

∫

n1/6∆
e−

1

2
Q(θ)Rn,k(θ)e

−ix·θ/
√

ndθ = o

(

1
√
n

k
rδ

)

,

and

J (2)
n =

√
n d

∫

√
n∆ \n1/6∆

(∇k
ωΨn)

(

θ√
n

)

e−ix·θ/
√

ndθ = o

(

1
√
n

k
rδ

)

. (49)
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For the first estimate we are to apply (46). To this end we set ηn,r = (π
√
n/r)ω, where ω = x/r,

Then, by virtue of the factor e−
1

2
Q(θ) in the integrand, the relation ηn,r ·x/

√
n = π, and the fact

that the volume of the symmetric difference of n1/6∆ and n1/6∆ − ηn,r is O(r−1√n · n(d−1)/6),
we see that

J (1)
n = −

√
n d

∫

n1/6∆
e−

1

2
Q(θ+ηn,r)Rn,k(θ + ηn,r)e

−ix·θ/
√

ndθ +O(r−1e−εn1/3

)

=

√
n d

2

∫

n1/6∆

[

e−
1

2
Q(θ) − e−

1

2
Q(θ+ηn,r)

]

Rn,k(θ + ηn,r)e
−ix·θ/

√
ndθ

+

√
n d

2

∫

n1/6∆
e−

1

2
Q(θ
[

Rn,k(θ) −Rn,k(θ + ηn,r)
]

e−ix·θ/
√

ndθ

+O(r−1e−εn1/3

).

Since Rn,k(θ + ηn,r) = o
(

(1 + |θ|)k+δ/
√
n

k+δ
)

provided that r > C
√
n, the first term on the

right side is o(|ηn,r|/
√
n

k+δ
) = o(1/

√
n

k
rδ). On using (46) the second term also is o(1/

√
n

k
rδ).

Thus the required estimate for J
(1)
n is established.

For the verification of (49) we set ϕn(θ) = (∇k
ωΨn)(θ/

√
n). Since Ψn is periodic, we have in the

same way as above

√
n d

∫

√
n∆ \n1/6∆

ϕn(θ)e−ix·θ/
√

ndθ

=
1

2
(
√
n )d

∫

√
n∆ \n1/6∆

[ϕn(θ) − ϕn(θ + ηn,r)]e
−ix·θ/

√
ndθ +O(r−1e−εn1/3

).

For every ε > 0, if |θ| < ε
√
n, then |ϕn(θ) − ϕn(θ + ηn,r)| ≤ C3e

−ε1|θ|2r−δ, which shows that

the last integral restricted to ε
√
n∆ \ n1/6∆ is dominated by C3r

−δe−ε′n1/3

. By Lemma 23 the
same integral but restricted to

√
n∆\ε√n∆ is estimated as O(r−δe−εn). These verify (49). The

proof of Theorem 4 is now complete.

4 Cyclic Transitions of ξn

We here advance formal analytical procedures for dealing with the case when the process ξn
cyclically moves, although what modification is to be done is intuitively clear.

In a such case as describes in Remark 1 (namely pT (ξ, Tj) = 1(ξ ∈ Tj−1) for j = 1, . . . , τ (mod
τ) with τ ≥ 2), we have

∫

χj−1(ξ)µ(dξ)pT (ξ, dη) = χj(η)µ(dη) where χj(ξ) = 1(ξ ∈ Tj). (50)

Any powers of ω = ei2π/τ are eigenvalues, and

ej(ξ) =
τ−1
∑

k=0

ωkjχk(ξ)
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is the eigenfunction of eigenvalue ωj; these are orthonormal in L2(µ), so that Πj = ej ⊗ (ējµ)
(namely Πjf = (

∫

f ējdµ)ej ), j = 0, . . . , τ − 1, are projection operators that are orthogonal to
one another. By (50) these also commute with p. The remainder r which is defined by

p = Π0 + ωΠ1 + · · · + ωτ−1Πτ−1 + r

commutes with p and its spectral radius (in L∞(µ)) is less than 1 by virtue of (H.1′′) (see (88)).
Since Π0h = µ(h) = 0 and the divergent series 1 + ωj + ω2j + · · · is summable to (1 − ωj)−1

(j 6= 0( mod τ)) in the Abel summation method, the function c is given by

c = (1 − ω)−1Π1h+ · · · + (1 − ωτ−1)−1Πτ−1h+

∞
∑

n=1

rnh.

On estimation of the Green function. In the proof of Theorems 1 and 2 given in Section 2 we
supposed that τ = 1. In the general case we have only to slightly modify it (also cf. Remark 6).
Indeed, instead of (21) we have

pθ = κ(θ)eθ ⊗ µθ + κ1(θ)Π
θ
1 + · · · + κτ−1(θ)Π

θ
τ−1 + rθ, (51)

where Πθ
j are the projection operators that commutes with one another and also with pθ as well

as eθ⊗µθ, and converges to Πj as |θ| → 0 and also κj(θ) → ωj as |θ| → 0. For simplicity consider
the case τ = 2. Then this merely gives rise to the additional term [κ1(θ)]

nΠθ
1f(ξ) on the right

side of (22). Owing to (AP), if θ ∈ ∆ \{0}, then lim sup ‖pn
θ ‖

1/n
L∞(µ) < 1 (cf. Proposition 20) and

in particular |κ1(θ)| < 1. Hence, making summation over n, we have on the right side of (23)
the additional term κ1(θ)[1− κ1(θ)]

−1Πθ
1f(ξ), which is sufficiently smooth in a neighborhood of

the origin of θ space so that its contribution is negligible.

On proof of local central limit theorem. The local central limit theorem is sensitive to the cyclic
motion of ξn. For its proof we look at the process in intervals of τ . To be precise consider

the MA process (ξnτ , Snτ ), n = 0, 1, . . . as well as the operator pτ , and denote by h(τ), c(τ),p
(τ)
θ

the corresponding functions and operator. Then h(τ) = h + ph + · · ·pτ−1h, and c(τ) = (1 −
pτ )−1h(τ) = h+ ph+ p2h+ · · · . Hence

c(τ) = c, p
(τ)
θ = (pθ)

τ . (52)

By the second identity we have the decomposition

pτ
θ = λ1(θ)e

1
θ ⊗ µ1

θ + · · · + λτ−1(θ)e
τ−1
θ ⊗ µτ−1

θ + r
(τ)
θ . (53)

where ejθ and µj
θ are the eigenfunction and eigen-complex-measure of p

(τ)
θ , respectively, such that

χke
j
θ = δk,je

j
θ and χkµ

j
θ = δk,jµ

j
θ (j, k = 0, . . . , τ − 1; χk(ξ) = 1(ξ ∈ Tk)). On the other hand

from (51) we also have

pτ
θ = [κ(θ)]τeθ ⊗ µθ + [κ1(θ)]

τΠθ
1 + · · · + [κτ−1(θ)]

τΠθ
τ−1 + rτ

θ .

Comparing these two decompositions we first infer that r
(τ)
θ = rτ

θ and then, recalling that
Πθ

j → Πj as |θ| → 0 and using the uniqueness theorem for spectral representation of finite
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dimensional linear operator, that all the coefficients λj(θ) and [κ(θ)]τ must coincide with one
another:

κ(τ)(θ) := λ1(θ) = · · · = λτ−1(θ) = [κ(θ)]τ .

Since ∇κ(0) = 0, it follows that ∇2κ(τ)(0) = τ∇2κ(0), ∇3κ(τ)(0) = τ∇3κ(0); in particular (or
directly from Eξ[Ỹ ] = 0)

Q(τ)(θ) := Eµ

(

(Sτ − c(ξ0) + c(ξτ )) · θ
)2

= τQ(θ). (54)

We apply (38) to (ξmτ , Smτ ) with θ and f replaced by θ/
√
τ and

f θ
ℓ (η) = Eη[e

iSℓ·θ/
√

mτ+ℓf(ξℓ)],

respectively. Let µj = τχjµ. Then for ξ ∈ Tj and n = mτ + ℓ,

Eξ[e
iSn·θ/

√
nf(ξn)] = Eξ[e

iSmτ ·(θ/
√

τ )/
√

n/τf θ
ℓ (ξmτ )]

= e−
1

2
Q(θ)

{

µj(f
θ
ℓ ) +

1√
m

[

i
(

c(ξ)µj(f
θ
ℓ ) − µj(c

∗f θ
ℓ )
)

· (θ/
√
τ )

+ 1
6((θ/

√
τ ) · ∇)3κ(τ)(0)µj(f

θ
ℓ )

]

+ · · ·
}

.

Observe that c∗pℓ = c∗ − h∗(1 + p + · · · + pℓ−1) and

µj(f
θ
ℓ ) = µj+ℓ(f) +

i√
mτ

τµ
(

(h∗ · θ)(1 + p + · · · + pℓ−1)(fχj+ℓ)
)

+O(1/m)

(notice the identity τµ(gpk(fχj+ℓ)) = µj+ℓ−k(gp
kf) (for any g)). We then deduce from these

equalities that for ξ ∈ Tj ,

Eξ[e
iSn·θ/

√
nf(ξn)] (55)

= e−
1

2
Q(θ)

{

µj+ℓ(f) +
1√
mτ

[

i
(

c(ξ)µj+ℓ(f) − µj+ℓ(c
∗f)
)

· θ + 1
6(θ · ∇)3κ(0)µj+ℓ(f)

]

+ · · ·
}

.

By inverting the Fourier transform as carried out in Section 3 we find the formula of Theorem 4
under the condition (AP). It is noticed that the expansion (55) itself is true whether (AP) holds
or not.

5 The Case When (AP) Is Violated.

In this section we consider the case when Condition (AP) is violated, in other words, there exists
a proper subgroup H for which the condition (7) holds. Throughout this section we denote by
H the minimum of such subgroups. (The minimum exists since the class of H satisfying (7) is
closed under intersection.) The arguments in this section are mostly algebraic and apply without
the condition (H.1) except for the matters that obviously require (H.1) in this paper.

We divide this section into four parts. In the first one we introduce a new MA process, denoted by
(ξ̂n, Ŝn), which is obtained from (ξn, Sn) by a simple transformation and prove that Condition
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(AP) is satisfied for it. In the next part we present several examples, which exhibit certain
possibilities about ergodicity of the process (ξ̂n). In the third we see that the degenerate case
where the dimension of H is less than d may be reduced to a non-degenerate case. In the last
part the non-degenerate case is considered. It is shown that if (ξ̂n) is ergodic then the expansions
of the Green function in Section 1 are valid without any modification (this will complete the
proof of the results of Section 1); if it is non-ergodic, the expansions are still valid except for a
constant factor and for a suitable restriction on the combination of initial and terminal points
(depending on an ergodic component). Also as an asymptotic form of transition probability we
present a fairly clear picture in the case when T is countable.

5.1. Pick up a representative, a ∈ Zd say, of each coset in the quotient group Zd/H and let K
be the set of such a’s, so that each x ∈ Zd is uniquely represented as x = y + a with y ∈ H,
a ∈ K. According to this representation of x we define πK by πK(x) = a. If T̂ = T × K,
this gives rise to the mapping T × Zd 7→ T̂ × H which maps (ξ, x) ∈ T × Zd to (ξ̂, ŷ) where
ξ̂ = (ξ, πK(x)) and x̂ = x− πK(x); and accordingly the new process, (ξ̂n, Ŝn), taking on values
in T̂ ×H, is induced from (ξn, Sn):

Ŝn = Sn − an and ξ̂n = (ξn, an) where an = πK(Sn). (56)

Clearly (ξ̂n, Ŝn) is a MA process on T̂ ×H.

We denote by p̂T̂ the transition probability for ξ̂n, by P̂ξ,a the law of (ξ̂n, Ŝn) starting at ((ξ, a), 0))

∈ T̂ ×H and by Q̂ the covariance matrix of Ŝ1 − Ŝ0 + ĉ(ξ̂1) − ĉ(ξ̂0) with obvious notation of ĉ.
Clearly

p̂T̂ ((ξ, a), dη ×K) = pT (ξ, dη);

from this it follows that if µ̂ is an invariant measure for the ·̂ process, then

µ̂(dξ ×K) = µ(dξ), (57)

which in turn shows Êµ̂[Ŝ1 − Ŝ0] = 0.

Proposition 8. For every invariant measure µ̂, Condition (AP) holds for the process (ξ̂n, Ŝn)
that is regarded as a MA process on T̂ ×H.

Proof. We first notice that owing to (7), there exists a measurable function a : T ×T 7→ K such
that

Pµ[πK(Y1) = a(ξ0, ξ1)] = 1. (58)

Since Ŝ1 − Ŝ0 = Y1 − a1 + a0, we have a1 = πK(a0 + a(ξ0, ξ1)) a.s. Let H ′ be a subgroup of H
for which ∃a′ ∈ H, P̂ξ,a[ Ŝ1 − Ŝ0 ∈ H ′ + a′ |σ{ξ1, a1}] = 1 (dµ̂(dξ, a)P̂ξ,a-a.s.). Then, owing to
(57) as well as independence of Y1 from a0,

∃a′ ∈ H, Pµ[Y1 ∈ H ′ + a′ + a(ξ0, ξ1) |σ{ξ0, ξ1}] = 1 (Pµ − a.s.),

so that H = H ′ by the minimality of H. Hence (AP) holds for (ξ̂n, Ŝn).

5.2. Even when Sn is aperiodic in the sense that for every proper subgroup H ′ of Zd, µ({ξ ∈
T : ∃a ∈ Zd, Pξ[Y1 ∈ H ′ + a] = 1}) < 1, there are various cases of the process ξ̂n: it can be
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cyclic, non-ergodic, or non-cyclic and ergodic as exhibited in the examples given below. If ξ̂n is
not ergodic or τ̂ > τ , the formulas of Theorems 1, 2 and 4 must be suitably modified.

Examples. In these examples T is a quotient group Z/kZ ∼= {0, . . . , k − 1} with k = 2 or 3;
(ξn) is noncyclic and Sn is aperiodic in the sense stated above except for the example (5); but
Condition (AP) is not satisfied.

(1) Let T = {0, 1}, d = 1; pT > 0 for every entry;

qξ,ξ(±1) > 0, qξ,ξ+1(x) > 0 for x = 0,±2 and qξ,η(x) = 0 otherwise.

Then Sn = ξn − ξ0 + n (mod 2) a.s.(Pµ); H = 2Z, K = {0, 1}; ξ̂n is ergodic with two cyclically
moving subsets

T̂0 = {(0, 0), (1, 1)} and T̂1 = {(0, 1), (1, 0)}.

(2) Let T = {0, 1, 2}, d = 1; pT (ξ, η) > 0 if and only if ξ 6= η;

qξ,ξ+1(0) > 0, qξ,ξ+2(±1) > 0 and qξ,η(x) = 0 otherwise.

Then Sn = ξn − ξ0 − n (mod 2) a.s.(Pµ); H = 2Z; ξ̂n is ergodic and noncyclic.

(3) (This example is a skeleton of the one treated in (26) where T is a continuum.)
Let T = {0, 1}, d = 2; pT > 0 for every entry;

qξ,η(x) > 0 if ξ 6= η and x ∈ {±1,±i},

q0,0(±(1 + i)) > 0, q1,1(±(1 + i)) > 0 and qξ,η(x) = 0 otherwise.

Here complex notation is used so that the lattice points are denoted by x1 + ix2. Then H =
{x1 + ix2 : x1 + x2 = 0 (mod 2)}, K = {0, 1} (or alternatively K = {0, i}); ξ̂n is non-ergodic
with two ergodic components:

T̂ (1) = {(0, 0), (1, 1)} and T̂ (2) = {(0, 1), (1, 0)}.

Condition (AP) remains violated even after we make the δ modification described in Remark 6.

(4) Let T = {0, 1, 2}, d = 2; pT > 0 for every entry;

qξ,ξ((k, 0)) = 0, qξ,ξ+1((k, 1)) > 0, qξ,ξ−1((k,−1)) > 0 for k = 0,±1;

and qξ,η(x) = 0 otherwise. Then H = Z × 3Z. Observe that the second component of Sn − S0

is congruent to ξn − ξ0 (mod 3) (in other words a(ξ, η) = (0, η − ξ) in the proof of Proposition
8), so that (ξ̂n) has three ergodic components. We need to take n◦ = 2 for finding H.

(5) Let T = {0, 1}, d = 1; pT (0, 1) = pT (1, 0) = 1; q0,1(±1) > 0, q1,0(±2) >
0 and qξ,η(x) = 0 otherwise. Then ξn is cyclic with τ = 2; H = 2Z; and

Sn = ⌊n/2⌋ + 1(ξ0 = 0, ξn = 1) (mod 2) a.s.(Pµ),

where ⌊a⌋ denotes the largest integer that does not exceeds a; ξ̂n is ergodic and cyclic. (See
Lemma 14 of 5.4.3 for general setting to this example.)

It may well be pointed out that c is related to ĉ in a simple formula (see (70)) and the matrix
Q is often easier to compute by means of the original process (ξn, Sn) than the ·̂ process.
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5.3. In all the examples above we have ♯K < ∞, which, however, is not generally true. Given
a Markov process ξn on T satisfying (H.1), we take a measurable function ϕ : T 7→ Zd and an
initial random variable S0 and define Sn by

Sn = ϕ(ξn) − ϕ(ξ0) + S0, (59)

which is clearly MA and satisfies (7) with H = {0} (moreover for a suitable ϕ the walk Sn may
be irreducible in usual sense if T is large enough). Clearly ♯K = ∞ and Q = 0. The converse is
also true.

Proposition 9. Suppose that {(ξ, ξ) : ξ ∈ T} is T ×T -measurable. If H = {0} (namely (7) is
satisfied with H = {0}), then Sn is given in the form (59) with Pµ-probability one.

Proof. Let H = {0}. Then there exist Zd-valued measurable functions ϕn(ξ, η) (for n ≥ 1) such
that with Pµ-probability one,

Yn = ϕ1(ξn−1, ξn) and ϕ1(ξ0, ξ1) + · · · + ϕ1(ξn−1, ξn) = ϕn(ξ0, ξn). (60)

We divide the rest of proof into two steps.

Step 1. By the ergodicity of ξn we have n−1ϕn(ξ0, ξn) → 0 (Pµ-a.s.) since Eµ[ϕ1(ξn−1, ξn)] = 0.
In this step we deduce from it that

ϕ1(ξ0, ξ1)1(ξ1 = ξ0) = 0 (Pµ-a.s.), (61)

where 1(S) denotes the indicator function of the statement S. Set A = {ξ ∈ T : pT (ξ, {ξ}) >
0}. Then by virtue of (60) ϕn(ξ, ξ) = nϕ1(ξ, ξ) for ξ ∈ A (µ-a.s.). On the other hand for
all k ≥ 1 and for almost all two points ξ and η from A relative to µ(dξ)pk

T (ξ, dη), we have
the equality ϕk+1(ξ, η) = ϕ1(ξ, ξ) + ϕk(ξ, η) = ϕk(ξ, η) + ϕ1(η, η), showing that ϕ1(ξ, ξ) for
ξ ∈ A equals a constant element, x◦ say, except a µ-null set of A. It therefor follows that
ϕn+k(ξ, η) = nx◦ + ϕk(ξ, η) on A×A (µ(dξ)pk

T (ξ, dη)-a.s.). This is consistent to what is stated
at the beginning of this step only if x◦ = 0. Thus we have (61).

Step 2. We may suppose pT (ξ, {ξ}) > 0 for every ξ ∈ T since otherwise we have only to consider
the δ-transformation in Remark 6, which owing to (61) does not change the function ϕ1 with
the understanding that ϕ1(ξ, ξ) = 0 for all ξ. It follows that ϕk(ξ, ξ) = 0 for every ξ and every
integer k ≥ 1. Let ξ◦ ∈ T be such that (60) holds for all n with Pξ◦ -probability one. Then for
any n and k and for pn

T (ξ◦, ·)-almost every ξ,

∫

pk
T (ξ, dη)1

(

ϕn(ξ◦, ξ) + ϕk(ξ, η) = ϕn+k(ξ
◦, η)

)

= 1.

By applying the relations ϕk(ξ, ξ) = 0 and pk
T (ξ, {ξ}) > 0, we see that for all n and k,

ϕn(ξ◦, ξ) = ϕn+k(ξ
◦, ξ) for pn

T (ξ◦, ·)-almost every ξ,

and infer from this that there exists a function ϕ such that for all n,

ϕ(ξ) = ϕn(ξ◦, ξ) for pn
T (ξ◦, ·)-almost every ξ .
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Applying Fubini’s theorem we deduce from the equation ϕn(ξ◦, ξ) + ϕ1(ξ, η) = ϕn+1(ξ
◦, η) that

ϕ1(ξ, η) = ϕ(η)−ϕ(ξ) for pn
T (ξ◦, dξ)pT (ξ, dη)-almost all (ξ, η) for all n, hence for µ(dξ)pT (ξ, dη)-

almost all (ξ, η). The proof of the proposition is complete.

In general H may be isomorphic to Zm:

H ∼= Zm with 0 < m < d,

so that ♯K = ∞ and Q 6= 0 whereas Q is not positive definite. In such a case, letting H̄ be the
largest subgroup of Zd such that H ⊂ H̄ ∼= Zm, we can find another subgroup H◦ ∼= Zd−m so
that Zd = H̄ +H◦ and K = K ′ +H◦ (direct sum) where K ′ = H̄/H (the quotient group); this
induces the decomposition

Sn := Ŝn + a′n + ϕ(ξn) − ϕ(ξ0) + (S0 − Ŝ0 − a′0) (62)

with ϕ a function on T taking on values in the lattice H◦ and a′n a K ′-valued process, such that
if ξ̂n = (ξn, a

′
n), then (ξ̂n, Ŝn) is a MA process on (T × K ′) × H which satisfies (AP); clearly

♯K ′ <∞. The proof is immediate from Proposition 9.

Example. Let d = 2 and H = {(5k, 3k) : k ∈ Z}. Then K = H◦ = {(2k, k) : k ∈ Z} ∼= Z (hence
K ′ = {0}).

Lemma 10. If (ξn, Sn) is irreducible (cf. (6)), then ♯K <∞ and ξ̂n is ergodic, and vice versa.

Proof. If ♯K = ∞, (ξn, Sn) cannot be irreducible owing to the decomposition (62). If ξ̂n is not
ergodic, (ξn, Sn) cannot be irreducible; thus the first half of the lemma. The converse follows
from Proposition 8.

5.4. In what follows we suppose that
♯K <∞,

which is satisfied under the irreducibility. By virtue of (56) limn−1Eµ|Sn − Ŝn|2 = 0; hence
Q = Q̂, in particular Q is positive definite according to Proposition 8. Applications of Theorems

proven under (AP) to the process (Ŝn, ξ̂n) yield the expansions of Green functions and transition
probabilities of it, from which we can derive those for (Sn, ξn). In this subsection we obtain such
results in a rather direct way.

Without essential loss of generality we also suppose that Sn is irreducible in the sense that for
every proper sub-group H ′ of Zd, Pµ[Y1 ∈ H ′] < 1.

5.4.1. The Green function in the case when ξ̂n is ergodic.

In view of Lemma 10 the following lemma completes the proof of the results of Section 1.

Lemma 11. Suppose that ξ̂n is ergodic. Then the expansions of the Green functions in
Theorems 1 and 2 and Corollary 3 hold true.

The expansions in Theorems 1 and 2 and Corollary 3 are derived from the estimates of
Eξ[e

iSn·θf(ξn)] in a neighborhood |θ| < ε. In the proof of Theorem 11 we shall see that even in
the case when (AP) is violated for the walk Sn the computation based only on such estimates
leads to correct results, provided that ξ̂n is ergodic.
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Proof of Lemma 11. We first notice that by (58)

p̂T̂ ((ξ, a), dη × {b}) = 1
(

b = πK(a+ a(ξ, η))
)

pT (ξ, dη),

and then that if ξ̂n is ergodic, the unique invariant measure is given by

µ̂(dξ × {a}) = (♯K)−1µ(dξ) (63)

since the right side is always an invariant measure for ξ̂n.

In view of Proposition 8 we can apply the results of Sections 2 through 4 to the ·̂ process with
a Fourier domain ∆̂ in place of ∆. If a ∈ K, b = πK(x) and x = x̂+ b,

Pn((ξ, a), (A,x)) = P̂n((ξ, a), 0), (A × {b}, x̂))

=
♯K

(2π)d

∫

∆̂
Êξ,a[e

iŜn·θ; ξn ∈ A, an = b]e−iθ·x̂dθ (64)

since |∆̂| = (2π)d/♯K. (For the present purpose we may put a = 0 but this proof will apply
to the nonergodic case.) Owing to the relation Ŝn + b = Sn = Sn − S0 + a (Pξ-a.s.) and the
additivity property of the walk Sn, we can rewrite the right side above as

♯K

(2π)d

∫

∆̂
Eξ[e

iSn·θ; ξn ∈ A, an = b− a (mod K)]e−iθ·(x−a)dθ. (65)

Clearly p̂T̂ satisfies Doeblin’s condition, so that the distribution of (ξn, an) converges to µ̂ geo-
metrically fast. Suppose τ̂ = 1. Then, we can discard the event an = b − a (mod K) and the
factor ♯K simultaneously up to an error of order o(ρn

1 ) (with 0 < ρ1 < 1), which results in

Pn((ξ, a), (A,x)) =
1

(2π)d

∫

∆̂
Eξ[e

iSn·θ; ξn ∈ A]e−iθ·(x−a)dθ + o(ρn
1 ). (66)

In carrying out the Fourier integration we use this expression on the ε-neighborhood of θ = 0
and (64) on the rest to follow the computation of Section 2. The case τ̂ > 1 can be dealt with
as before (see Section 4). This proves Lemma 11.

The next lemma, though not used in this paper, is sometimes useful to translate results for
(ξn, Sn) to those for (ξ̂n, Ŝn) and vice versa.

Lemma 12. If ξ̂n is ergodic, then Û = U and for ξ ∈ T and a ∈ K,

ĉ(ξ, a) = c(ξ) + a− g and ĉ∗(ξ, a) = c∗(ξ) + a− g. (67)

where g := [♯K]−1
∑

a∈K a (namely g =
∫

adµ̂(ξ, a) owing to (63)).

Proof. Define a function ϕ on T̂ by ϕ(ξ, a) = a. Then, since Ŝ1 − Ŝ0 = Y1 − a1 + a0,

ĥ(ξ, a) = h(ξ) − p̂ϕ+ a = (1 − p̂)(c+ ϕ),

showing the first relation of (67). (Recall µ̂(ĉ) = 0.) For any bounded function f(ξ, a),

µ̂(ϕp̂f) = Êµ̂[a0f(ξ1, a1)].
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Noticing p̂f(ξ, a) =
∫

pT (ξ, dη)f(η, πK(a(ξ, η) + a)) and employing (63), we also have that if
f̄(ξ) = (♯K)−1

∑

a f(ξ, a),

µ̂(c∗(1 − p̂)f) = µ(c∗(1 − p)f̄) = −Êµ̂[Y1f(ξ1, a1)].

Therefore
µ̂((c∗ + ϕ)(1 − p̂)f) = −Êµ̂[(Y1 − a1 + a0)f(ξ1, a1)],

which shows the second relation of (67). Taking f = 1 in (28), making use of (67) and looking
at (30) we see Û = U .

5.4.2. The Green function in the case when ξ̂n is non-ergodic.

Let ξ̂n be not ergodic. Then T̂ is decomposed into more than one ergodic components. We
regard K as the quotient group Zd/H.

Lemma 13. Let m be the number of ergodic components of ξ̂n. Then m ≤ ♯K and there exist
a subgroup K ′ of K and a decomposition T =

∑

〈a〉∈K/K ′ T (〈a〉) such that m = ♯(K/K ′) and the
class of sets

T̂ (〈a〉) :=
∑

b∈K

T (〈b− a〉) × {b} =
∑

〈b〉∈K/K ′

T (〈b− a〉) × 〈b〉, 〈a〉 ∈ K/K ′

makes the ergodic decomposition of T̂ = T ×K, where 〈a〉 ∈ K/K ′ (a ∈ K) is identified with a
coset a+K ′ (⊂ K); the corresponding invariant measures are given by

µ̂(〈a〉)(A× {b}) =
1

♯K ′µ(A ∩ T (〈b− a〉)), A ∈ T , b ∈ K, (68)

respectively.

Proof. Pick up an ergodic component E ⊂ T̂ and set

T (a) = {ξ ∈ T : (ξ, a) ∈ E} (a ∈ K),

so that E =
∑

a T (a)×{a}. Since (ξn, an) is a MA process on T̂ , namely the distribution of the
increment an − an−1 is determined by the value of ξn−1 independently of an−1, for every a ∈ T

T̂ (a) :=
∑

b

T (b) × {a+ b}

must be an ergodic component. If T̂ (a) are distinct from one another, then m = ♯K and the sets
T̂ (a) (a ∈ K) constitute the ergodic decomposition of T̂ ; if this is the case T (a) must be disjoint
since T̂ (a) are disjoint. (68) is a consequence of the fact that the measure given by (63) and hence
its restriction to any ergodic component is an invariant measure of ξ̂n. In general, if T̂ (c) = T̂ (a),
then T (a+ b− c) = T (b) for every b, so that T̂ (a−c) = T̂ (0). Hence K ′ := {b ∈ K : T̂ (b) = T̂ (0)}
is a subgroup of K and we have only to regard T̂ (a) as being labeled by a representative of the
class a+K ′ ∈ K/K ′.

According to Lemma 13 the formulas in Section 1 is modified as follows.
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Let G(〈a◦〉) denote the Green function for the process restricted on an irreducible component
{(ξ, x) : (ξ, πK(x)) ∈ T̂ (〈a◦〉)}, where T̂ (〈a◦〉) is an ergodic component for (ξ̂n) described in Lemma
13. Then a version of the formula corresponding to (8) is stated as follows: if

πK(x) = a, ξ ∈ T (〈a− a◦〉), πK(y) = b, A ⊂ T (〈b− a◦〉) (69)

and w = y − x, then

G(〈a◦〉)((ξ, x), (A, y)) − ♯(K/K ′)κd

σ2‖w‖d−2
µ(A)

=
♯(K/K ′)
‖w‖d+2

∫

A

[

U(w) + (d− 2)κd‖w‖2(Q−1w) ·
(

c(ξ) − c∗(η)
)]

µ(dη) + · · ·

(no change except for the factor ♯(K/K ′) and for the restriction on the combinations of the
initial point (ξ, a) and the terminal set A× {b}) .

The modification for two dimensional case is similar.

For the proof we may proceed as for Theorem 11 except that we divide by ♯K ′ instead of ♯K
when we discard the event an = b−a (mod H) in the formula (65), which gives rise to the factor
♯(K/K ′) to the right side of (66).

We have an analogue of Lemma 12 also in the case when ξ̂n is nonergodic: it may read that
Û = U and

ĉ(ξ) = c(ξ) + a− g, ĉ(ξ) = c∗(ξ) + a− g if ξ ∈ T (〈a− a◦〉). (70)

5.4.3. Local central limit theorems.

Under our assumption that ♯K <∞ we have the following result in place of the decompositions
(59) and (62).

Lemma 14. Suppose that T is countable. There then exist an element e◦ of K and a mapping
ϕ of T into K such that if τ = 1 (namely ξn is not cyclic), then

an = ϕ(ξn) − ϕ(ξ0) + ne◦ (mod H) Pµ-a.s.; (71)

if τ > 1, then either (71) or the following relation holds

an = ϕ(ξn) − ϕ(ξ0) + (m+ 1(ℓ+ j ≥ τ))e◦ (mod H) Pξ-a.s.

if n = mτ + ℓ, ξ ∈ Tj (0 ≤ j, ℓ < τ,m ≥ 0). (72)

Proof. Let t be the smallest positive integer such that pt
T (ξ, {ξ}) > 0 for some ξ ∈ T and choose

ξ◦ so that pt
T (ξ◦, {ξ◦}) > 0. Foe each n there exists a K-valued function, say ϕn(ξ, η), such that

an − a0 = ϕn(ξ0, ξn) a.s. (ϕ1 is the same as a(ξ, η) in (58)). We set ē = ϕt(ξ
◦, ξ◦). Then as in

the step 1 of Proposition 9 we find that ϕt(ξ, ξ) = ē if pt
T (ξ, {ξ}) > 0. The rest of the proof is

done in several steps.

Step 1. Let t = 1. Then necessarily τ = 1 and (71) holds with e◦ = ē. In fact by the irreducibility
of ξn we have ϕn+k(ξ

◦, ξ) = kē + ϕn(ξ◦, ξ) (mod H) for all positive k and all sufficiently large
n, showing that ϕ(ξ) := ϕn(ξ◦, ξ) − nē (mod H) is independent of n for all sufficiently large n.
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The required relation now follows from this together with the equation ϕn+1(ξ
◦, η) = ϕn(ξ◦, ξ)+

ϕ1(ξ, η) (mod H).

Step 2. Let t > 1 (thus ξ1 6= ξ0 a.s.) and set e′ = t−1ē. The set K ′ := {ke′ + a : a ∈ K,k =
1, . . . , t− 1} (⊂ t−1Zd) may be naturally considered as a finite additive group in which ke′ + a
and ℓe′ + b are identified if (k− ℓ)e′ + a− b = 0 (mod H). We show that there exists a mapping
ϕ′ of T into K ′ such that

ϕ1(ξ0, ξ1) = ϕ′(ξ1) − ϕ′(ξ0) + e′ a.s. (73)

For the proof we consider a δ-transform of ξn introduced in Remark 6. Let U be a random
variable taking on values 0 or 1 with probabilities δ and 1 − δ, respectively. Suppose U is
independent of (ξn, Sn). Let ξ′0 = ξ0 and define ξ′1 by ξ′1 = ξ1 if U = 1 and ξ′1 = ξ0 if U = 0.
Given a′0 ∈ K ′ arbitrarily, define a′1 by a′1 − a′0 = a1 − a0 if U = 1 and a′1 − a′0 = e′ if U = 0.
Since the distribution of a′1−a′0 does not depend on a′0, this determines a MA process on T ×K ′

such that ξ′1 = ξ′0 with a positive probability. Therefore, by Step 1 there exists a mapping ϕ′ of
T into K ′ such that a′1 − a′0 = ϕ′(ξ′1) − ϕ′(ξ′0) + e′ a.s. But we have a′1 − a′0 = ϕ1(ξ0, ξ1) a.s. on
the event ξ′1 = ξ1 6= ξ0, whence (73) must hold.

Step 3. Let t > 1 and τ = 1. Taking n = kt + 1 with k large enough we infer from (73) that
ϕn(ξ◦, ξ◦) = kē + e′. Since both ϕn(ξ◦, ξ◦) and ē are in K, we have e′ ∈ K, hence (71) with
e◦ = ē and ϕ = ϕ′.

Step 4. Let τ > 1. Then as in Step 3 we see τe′ ∈ K. Owing to the identity ϕ′(ξτ ) = ϕ′(ξ0)+τe◦

together with the irreducibility of ξnτ this allows us to choose ϕ′ so that ϕ′(ξ) ∈ K for ξ ∈ T0.
Define e◦ = τe′. Noticing ϕ′(η)−ϕ′(ξ)+ke′ ∈ K if η ∈ Tk and ξ ∈ T0, we define ϕ(η) := ϕ′(η)+ke′

if η ∈ Tk (0 ≤ k < τ), so that ϕ is K-valued. It is now immediate to see (72).

Remark 7. (i) In the case τ > 1 the two conditions (71) and (72) are not exclusive of each
other: if τ−1e◦ ∈ Zd, then on suitably modifying ϕ and regarding τ−1e◦ as an element of K,
which we rewrite as e◦, the latter is reduced to the former. On recalling that Pµ[a0 = 0] = 1
these formulas actually give expressions for the increments an − a0 when S0 is not necessarily 0.

(ii) The condition (72) is equivalently expressed as

ak − ak−1 = ϕ(ξk) − ϕ(ξk−1) + 1(ξk ∈ T0)e
◦. (74)

A recipe for finding e◦ may be found from (71) and (74) as well as in the proof of Lemma 14. In
the case when pτ

T (ξ, ξ) > 0 for some ξ = ξ◦ in particular, it is given by e◦ = aτ a.s.(Pξ◦) where
aτ is necessarily nonrandom under the premise.

(iii) A simplest example of (72) is provided by (5) of 5.2 for which τ = 2. Therein we have
taken T0 = {1}, T1 = {0} and ϕ(0) = ϕ(1) = 0, whereas for the alternative choice T0 =
{0}, T1 = {1} we may set ϕ(j) = ξj, so that ϕ(1) − ϕ(0) = 1 (mod 2), and (72) is written as
an = 1 + ⌊n/2⌋ + 1(ξ0 = 1, ξn = 0) (mod 2) a.s.(Pµ).

In the rest of this section we suppose that T is countable. This supposition is used only through
Lemma 14. It is recalled that our only hypothesis here is ♯K <∞; the irreducibility may fail to
hold.

Theorem 15. Let ϕ and e◦ be as in Lemma 14. Suppose that T is countable. Then, without
assuming Condition (AP) the local central limit theorems in Section 1 remain true if the right
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sides of the formulas (13) and (15) are multiplied by the function

(♯K)1(x = ϕ(η) − ϕ(ξ) + ne◦ (mod H))

or
(♯K)1

(

x = ϕ(η) − ϕ(ξ) + (m+ 1(ℓ+ j ≥ τ))e◦ (mod H)
)

according as (71) or (72) holds.

Proof. Suppose that (71) holds for simplicity. Owing to it the transition probability and the
indicator function above vanish simultaneously. To identify the asymptotic form of the former
we set K♭ = {u ∈ [−π, π)d : u · x ∈ (2π)Z for all x ∈ H}. From the relation Sn − an ∈ H and
an − (ϕ(ξn) − ϕ(ξ0) + ne◦) ∈ H (Pµ-a.s.) it then follows that if u ∈ K♭,

eiSn·(θ+u) = ei(ϕ(ξn)−ϕ(ξ0)+ne◦)·ueiSn·θ Pµ-a.s.

or on multiplying f(ξn) and taking expectation,

(pn
θ+uf)(ξ) = pn

θ

(

ei(ϕ(·)−ϕ(ξ)+ne◦)·uf
)

(ξ) µ-a.s.. (75)

Recalling what is noticed at the beginning of this proof we apply this identity with f such that
f(η) = 0 whenever x 6= ϕ(η) − ϕ(ξ) + ne◦ (mod H), so that it reduces to pn

θ+uf = eix·upn
θ f .

Hence we have only to sum up the contributions of the integrals on neighborhoods of u ∈ K♭ to
see that the same computation as in Section 3 leads to the desired result owing to the identity
♯K♭ = ♯K.

From the relation (75) and Proposition 20 we obtain the following corollary.

Corollary 16. For Condition (AP) to be true it is necessary and sufficient that the operator
norm of pθ is less than one for each θ ∈ ∆ \ {0}.

Proof. If the condition (AP) is violated, then we have (75) with u ∈ ∆ \ {0} and, taking
f(η) = e−iϕ(η)·u and θ = 0 therein, pn

uf(ξ) = ei(−ϕ(ξ)+ne◦)·u, showing that the operator norm of
pu equals 1. The converse assertion follows from Proposition 20 (with m = 0).

It is interesting to describe the ergodic decomposition given in Lemma 13 by means of ϕ and
e◦ of Lemma 14. Let s be the order of e◦ and K◦ the cyclic subgroup of K generated by
e◦: K◦ = {0, e◦, . . . , (s − 1)e◦}. The following proposition shows that this K◦ agrees with the
subgroup K ′ of K appearing in Lemma 13 if (s, τ) = 1 (namely s and τ are relatively prime)
and (71) holds. We denote by 〈a〉 the coset a+K◦.

Proposition 17. Let s, 〈a〉 and K◦ be as above. If the process (ξ̂n) is ergodic, then K = K◦.
Conversely if K◦ = K, (s, τ) = 1 and (71) holds, then the process (ξ̂n) is ergodic. Generally,
if (s, τ) = 1 and (71) holds, then the set T (〈a〉) introduced in Lemma 13 is given by T (〈a〉) =
ϕ−1(〈a − a◦〉) for some a◦ ∈ K. In particular, if s = 1, namely e◦ = 0, then

∑

a∈K ϕ−1({a −
a◦}) × {a} is an ergodic component for (ξ̂n) for each a◦ ∈ K.
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Proof. We consider only the case a◦ = 0. It is ready to see that
∑

〈a〉 ϕ
−1(〈a〉) × 〈a〉 is an

invariant set for (ξ̂n); hence the first assertion of the theorem. Suppose that (71) holds. Then
for (ξ̂n) to be ergodic on this set it is sufficient that for each a ∈ K and a′ ∈ 〈0〉,

Pξ[∃n ≥ 0, ϕ(ξn) − ϕ(ξ) + ne◦ + a′ = a, ξn ∈ A] > 0 for µ-almost all ξ ∈ ϕ−1(〈0〉)

whenever A ⊂ T (〈a〉) and µ(A) > 0. For n = ms+ k the equation ϕ(ξn) − ϕ(ξ) + ne◦ + a′ = a
is reduced to ϕ(ξms+k) = a1 − ke◦ with a1 := ϕ(ξ) − a′ + a ∈ 〈a〉; hence by choosing k so that
µ(A∩ϕ−1({a1−ke◦})) > 0, we infer from the assumption (s, τ) = 1 that Pξ[∃m ≥ 1, ϕ(ξms+k) =
a1 − ke◦, ξms+k ∈ A] > 0 for µ-almost all ξ ∈ ϕ−1(〈0〉). Thus the sufficient condition mentioned
above is fulfilled.

If (s, τ) 6= 1, the ergodic decomposition may be finer than that given in Proposition 17 depending
on how the cyclically moving sets Tj is related to ϕ. For instance, if K ′′ is a subgroup of K
such that K = K ′ + K ′′ (direct sum) and the cyclically moving subsets Tj are of the form
Tj = ϕ−1(−je◦ +K ′′), then

∑

a∈K ′′ ϕ−1(〈a − b〉) × {je◦ + a} is an ergodic component for each
pair (j, b) (j = 0, . . . , s, b ∈ K ′′). In particular, there can be s distinct ergodic components even
in the case K ′ = K.

Remark 8. In the case ♯T < ∞ a local central limit theorem for MA processes as given
in Theorem 15 (but up to the principal order term) is obtained by Krámli and D. Szász (18)
under the condition that the covariance matrix Q is positive definite and (ξn) makes no cyclic
transition. Their approach is somewhat different from ours. Keilson and Wishart (17), studying
a central limit theorem for MA processes on T ×R with ♯T <∞, show among others that Q = 0
if and only if it is degenerate in the sense that the walk is represented as in (59). Our proof is
applicable to MA processes on T ×Rd.

6 Derivatives of κ(θ) and Mξ(θ) at 0

In this section we compute the derivatives of the principal eigenvalue κ(θ) based on the pertur-
bation method of which we shall review in Appendix D. Let pT and p be a probability kernel on
T and the bounded operator on L∞(µ) associated with it as defined in Section 1. We suppose
that the basic assumptions mentioned in Introduction ( i.e., (H.1) and (1)) hold.

Let pθ be the operator with the kernel defined by (20): pθf(ξ) = Eξ[e
iY1·θf(ξ1)]. Denote its

principal eigenvalue by κ(θ) (for |θ| small enough); let eθ and µθ be the corresponding eigen-
function and its dual object which are normalized so that µ(eθ) = µθ(eθ) = 1 as in Section
2.

If Eµ|Y1|k+δ <∞, then the function κ(θ) = µ(pθeθ) = µθ(pθ1) is k-times continuously differen-
tiable and the k-th derivative satisfies that

∇kκ(θ) −∇kκ(θ′) = o(|θ − θ′|δ) (76)

as |θ − θ′| → 0 and similarly for eθ and µθ. (See (89) through (91) in Appendix D.)

From µ(eθ) = 1 it follows that µ(∇keθ) = 0 (k = 1, 2, . . .). By differentiating both sides of
κ(θ) = µ(pθeθ), we have

∇κ(θ) = µ((∇pθ)eθ) + µ(pθ∇eθ), (77)
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so that ∇κ(0) = µ
(

∇pθ1
∣

∣

∣

θ=0

)

= iEµ[Y1]. Thus ∇κ(0) = 0.

Differentiating the relation pθeθ = κ(θ)eθ at 0 with the help of ∇pθ

∣

∣

∣

θ=0
1 = ih we obtain the

identity ih+p∇eθ
∣

∣

∣

θ=0
= ∇eθ

∣

∣

∣

θ=0
and rewrite it as ih = (1−p)∇eθ

∣

∣

∣

θ=0
to see that ∇eθ

∣

∣

∣

θ=0
= ic

(owing to µ(∇eθ) = 0). Taking this into account, we once more perform differentiation to find
that

∇2pθ

∣

∣

∣

θ=0
1 + i2∇pθ

∣

∣

∣

θ=0
c = ∇2κ(0) + (1 − p)∇2eθ

∣

∣

∣

θ=0
. (78)

(Recall the convention that θ2 stands for the matrix (θkθj)1≤j,k≤d.) Integrating both sides by µ,
we conclude that ∇2κ(0) = −Eµ[Y 2

1 ] − 2Eµ[Y1c(ξ1)] = −Q (see (18)).

Proposition 18. Suppose that Eµ|Y1|j < ∞ for j = 1, 2 or 3 in (i), (ii) or (iii) below ,
respectively. Then

(i) ∇κ(0) = 0; ∇eθ
∣

∣

∣

θ=0
= ic.

(ii) (θ · ∇)2κ(0) = −Q(θ).

(iii) (θ · ∇)3κ(0) = −iEµ(θ · Ỹ1)
3 + 3iµ

(

(c∗ − c) · θm(2)
θ

)

where m
(2)
θ = Eξ(θ · Ỹ1)

2. (Recall Ỹ1 = Y1 − c(ξ0) + c(ξ1).)

If the process (ξn, Sn) is symmetric, then (θ · ∇)3κ(0) = 0.

Proof. The assertions (i) and (ii) have already been proved. For the computation of (θ ·∇)3κ(0)
it is more transparent to do it by means of the operator p̃θ that is defined by the kernel
e−ic(ξ)·θpθ(ξ, dη)e

ic(η)·θ , in other words

p̃θf(ξ) = Eµ[eiỸ1·θf(ξ1) | ξ0 = ξ] (79)

for bounded f . The corresponding eigenvectors, which are normalized in the same way as eθ and
µθ, are given by ẽθ = e−ic·θeθ/µ(e−ic·θeθ) and µ̃θ(f) = µ(e−ic·θeθ)µθ(e

ic·θf) with the eigenvalue
κ(θ) being the same. We use analogues of the equalities (77) and (78) for the ·̃ system. By
the identity ∇eθ|θ=0 = ic, we see that ∇ẽθ|θ=0 = 0. Twice differentiating the analogue of (77),
integrating by µ and making use of the identity µ(∇kẽθ) = 0 we obtain

∇3κ(0) = µ∇3p̃θ

∣

∣

∣

θ=0
1 + 3µ∇p̃θ

∣

∣

∣

θ=0

(

∇2ẽθ

∣

∣

∣

θ=0

)

;

also, by the analogue of (78), (θ · ∇)2ẽ0(ξ) = (1 − p)−1(Q(θ) −mθ)(ξ). These combined yield

(θ · ∇)3κ(0) = −iEµ(θ · Ỹ1)
3 + 3iEµ

[

(Ỹ1 · θ)(1 − p)−1 (Q(θ) −m
(2)
θ )
]

.

Now (iii) follows from the formula

µ∇p̃θ

∣

∣

∣

θ=0
(1 − p)−1f = iEµ

[

Ỹ1(1 − p)−1f(ξ1)
]

= iµ((c− c∗)f),

which is easily verified on recalling the definitions of c and c∗. If (ξn, Sn) is symmetric, then for
w := Eµ(θ · Ỹ1)

3 we have w = −w, showing w = 0, thus (θ · ∇)3κ(0) = 0.
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Lemma 19. Let c∗ be the function defined by (5). Then

∇µθ(f)
∣

∣

∣

θ=0
= −iµ(c∗f). (80)

Proof. On differentiating µθpθ = κ(θ)µθ it follows that
[

∇µθp+µ∇pθ

]

θ=0
= ∇µθ

∣

∣

∣

θ=0
. Noticing

µ∇pθ

∣

∣

∣

θ=0
1 = 0, we may rewrite it in the form

∇µθ

∣

∣

∣

θ=0
= µ∇pθ

∣

∣

∣

θ=0
(1 − p)−1.

Substituting the identity µ(∇pθ

∣

∣

∣

θ=0
f) = iEµ[Y1f(ξ1)], we see that ∇µθ

∣

∣

∣

θ=0
f = iEµ

[

Y1(1 −

p)−1f(ξ1)
]

= −iµ(c∗f). Consequently (80) follows.

Remark 9 Introducing the matrix function Qξ, ξ ∈ T defined by

Qξ := −∇2pθ1
∣

∣

∣

θ=0
(ξ) − 2i∇pθc

∣

∣

∣

θ=0
= Eξ[Y

2
1 + 2Y1c(ξ1)],

we obtain from (78) the identity ∇2eθ

∣

∣

∣

θ=0
(ξ) = (1−p)−1(Q−Q·)(ξ). In a similar way we deduce

from µθpθ = κ(θ)µθ

∇2µθ

(

(1 − p)f
)∣

∣

∣

θ=0
= Eµ

[

(−Y 2
1 + 2c∗(ξ0)Y1 +Q)f(ξ1)

]

,

(f is a R-valued function on T ) or; rewriting it,

∇2µθ(f)
∣

∣

∣

θ=0
= µ

(

f · (1 − p∗)−1(Q−Q∗
· )
)

, where Q∗
ξ = Eµ

[

Y 2
1 − 2c∗(ξ0)Y1

∣

∣

∣ ξ1 = ξ
]

.

These together with (80) and the identity ∇eθ
∣

∣

∣

θ=0
= ic yield

(θ · ∇)2Mξ(0) = θ ·
[

µ(f)(1 − p)−1(Q−Q·)(ξ) + µ
(

f · (1 − p∗)−1(Q−Q∗
· )
)

+ 2c(ξ)µ(c∗f)
]

θ.

(See (24) for Mξ.) It follows (see (28)) that the third order term in the expansion of G is of the
form

{x4}µ(f)

‖x‖d+4
+

∫

∆

[

2i
3 θ · [c(ξ)µ(f) − µ(c∗f)](θ · ∇)3κ(0)

(2π)dQ2(θ)
+

(θ · ∇)2Mξ(0)

(2π)dQ(θ)

]

e−ix·θdθ,

where {x4} is independent of (ξ, η). There is an occasion where this expression is useful (cf.
(16)).

7 Estimation of
∫

|θ|>ε |E[eiSn·θf(ξn)]|dθ

In this section we prove the following proposition. Recall that ∆ = [−π, π)d.
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Proposition 20. Let m be a non-negative integer. Suppose that supξ Eξ[|Y1|m] < ∞ and Con-
dition (AP) holds for Sn. Then, for each ε > 0 there exists a positive constant r < 1 such that
if f(ξ) is bounded,

sup
θ∈∆, |θ|>ε

sup
ξ∈T

∣

∣

∣∇mEξ[e
iSn·θf(ξn)]

∣

∣

∣ = O(rn) (n→ ∞).

In the proof of Proposition 20 given below we need to express Condition (AP) of the walk Sn in
terms of the characteristic functions

ψξ,η(θ) = Eξ

[

eiY1·θ
∣

∣

∣
ξ1 = η

]

. (81)

To this end we first prove a preliminary result that we formulate in a general setting.

Lemma 21. Let Xλ, λ ∈ Λ be a family of random variables taking on values in Zd and ν(dλ) a
probability measure on Λ and suppose that P [Xλ = x] is λ-measurable. Denote by Fλ the support
of the law of Xλ: Fλ = {x ∈ Zd : P [Xλ = x] > 0}. The following two conditions are equivalent.

(i)
∫

Λ

∣

∣

∣
E
[

eiXλ·θ
]∣

∣

∣
ν(dλ) = 1 for some θ ∈ ∆ \ {0}.

(ii) There is a proper subgroup H of Zd such that ν({λ : ∃a ∈ Zd, Fλ − a ⊂ H}) = 1.

Proof. For a nonempty set F ⊂ Zd, taking any x ∈ F , we denote by [F ] the smallest subgroup
including F − x. Clearly [F ] does not depend on x. Now suppose that the equality in (i) of the
lemma holds true for a θ ∈ ∆ \ {0} and let H be the set of all x such that x · θ ∈ 2πZ. Then for

ν-almost all λ,
∣

∣

∣E
[

eiXλ·θ
]∣

∣

∣ = 1, or equivalently, x · θ ∈ 2πZ for all x ∈ [Fλ], so that for ν-almost

all λ, [Fλ] ⊂ H. Since H is a proper subgroup we have (ii). The converse is obvious.

Corollary 22. Condition (AP) holds if and only if there exists a positive integer n◦ such that
for each proper subgroup H of Zd,

Pµ

[

∃a ∈ Zd, Pµ[Sn◦ ∈ H + a |σ{ξ0, ξn◦}] = 1
]

< 1. (82)

Proof. It suffices to show that Condition (AP) is violated if for every n◦ ≥ 1 there exists a proper
subgroup H for which the probability in (82) equals unity. In view of the preceding lemma this
follows from the inequality

|Eξ[e
iSm·θ | ξm = η] | ≤

∫

T

∣

∣

∣Eξ[e
iSk ·θ | ξk = ξ′]

∣

∣

∣

∣

∣

∣Eξ′ [e
iSm−k ·θ | ξm−k = η]

∣

∣

∣Pξ[ξk ∈ dξ′ | ξm = η]

(1 ≤ k < m) since it shows that if the probability in (82) equals unity for n◦ = m, then it does
for every n◦ ≤ m and since if this condition (with the same m) is satisfied by two subgroups, so
is by the intersection of them.

Studying a Markov chain on Zd with a transition law having a certain periodicity structure
Takenami (24) introduces a condition analogous to that in the corollary 22 and proves it to be
satisfied by the Markov chain under a certain circumstance. Babillot (1) and Givarc’h (6) call
a MA process aperiodic if the condition (82) holds with n◦ = 1 for each proper subgroup H.

Proof of Proposition 20. We suppose that the condition of Corollary 22 holds with n◦ = 1
for simplicity. Let ψξ,η(θ) be defined by (81). From the preceding lemma it then follows that
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Pµ[ |ψξ0,ξ1(θ)| < 1] > 0 for every θ ∈ ∆ \ {0}. Since (−1) ∨ log |ψξ0,ξ1(θ)| is uniformly bounded
and continuous with respect to θ, this yields the inequality

sup
θ∈∆, |θ|>ε

Eµ

[

(−1) ∨ log |ψξ0,ξ1(θ)|
]

< 0 (83)

for every ε > 0.

Define pλ,θ for λ ≥ 0 by

pλ,θf(ξ) = Eξ

[

exp
{

λ
(

(−1) ∨ log |ψξ0,ξ1(θ)|
)}

f(ξ1)
]

.

From the relation (89) (in Appendix D) applied with pλ,θ in place of pθ we see that there exists
a constant λ0 ∈ (0, 1] such that the circle Cρ = {|1 − z| = (1 − ρ)/2} encloses an eigenvalue of
pλ,θ, κ(λ, θ) say, and the rest of the spectrum is inside the circle |z| = (1 + ρ)/2 for all λ ≤ λ0

and θ ∈ Rd and the projection operator Πλ,θ onto the eigenspace of eigenvalue κ(λ, θ) is given
by the integral of the resolvent along the circle Cρ as in (90). Hence as before we see that κ(λ, θ)
is jointly continuous in (λ, θ) ∈ [0, λ0] ×Rd and

∂κ

∂λ
(0, θ) = Eµ

[

(−1) ∨ log |ψξ0,ξ1(θ)|
]

.

From the decomposition (pλ,θ)
n = [κ(λ, θ)]nΠλ,θ + (rλ,θ)

n where the spectral radius of rλ,θ is
less than (1 + ρ)/2, we see that (uniformly in ξ)

lim
n→∞

1

n
log(pλ,θ)

n1(ξ) = log κ(λ, θ),

which in particular implies that κ(λ, θ) is real and non-increasing in λ. These combined with
(83) show that

sup
θ∈∆, |θ|>ε

κ(λ0, θ) < 1.

Now, taking a function f(ξ) such that ‖f‖∞ ≤ 1 we have

|Eξ[e
iSn·θf(ξn)]| ≤ Eξ

[ n−1
∏

j=0

|ψξj ,ξj+1
(θ)|
]

and also

Eξ

[ n−1
∏

j=0

|ψξj ,ξj+1
(θ)|
]

≤ Eξ

[

exp

{ n−1
∑

j=0

λ0[(−1) ∨ log |ψξj ,ξj+1
(θ)|]

}]

= (pλ0,θ)
n1(ξ)

≤ [(1 + o(1))κ(λ0, θ)]
n,

where o(1) is uniform both in θ and in ξ. Consequently

lim sup
n→∞

1

n
sup

θ∈∆, |θ|>ε
sup
ξ∈T

log |Eξ[e
iSn·θf(ξn)]| ≤ sup

θ∈∆, |θ|>ε
κ(λ0, θ) < 1.
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Thus the assertion of the proposition has been proved in the case m = 0. For m = 1 we see

|∇Eξ[e
iSn·θf(ξn)]| ≤

∑

k

Eξ

[ k−1
∏

j=0

|ψξj ,ξj+1
| × |∇ψξk,ξk+1

| ×
n−1
∏

j=k+1

|ψξj ,ξj+1
|
]

and we may proceed as above. The cases m > 1 are similarly dealt with.

By the same argument we verify the following

Lemma 23. Let m be a non-negative integer and δ ∈ [0, 1). Suppose that supξ Eξ[|Y1|m+δ] <∞
and Sn satisfies (AP). Then, for each ε > 0 there exists a positive constant r < 1 such that if
f(ξ) is bounded,

sup
θ∈∆, |θ|>ε

sup
ξ∈T

∣

∣

∣∇mEξ[e
iSn·θf(ξn)] −∇mEξ[e

iSn·(θ+η)f(ξn)]
∣

∣

∣ = o(|η|δrn)

as n → ∞. Here o(|η|δrn) is uniform for |η| < 1, so that the infinite sum over n ≥ 0 of the
supremums on the left side is o(|η|δ).

8 Appendices

A. In this appendix we suppose that Eµ|Y1|k+δ < ∞ for an integer k ≥ 2 and δ ∈ (0, 1) and

indicate a method for computing the Fourier transform
[(

(1 − κ)−1 − 2/Q)
)

Mξ

]∧
(y) (y ∈ Rd)

under this moment condition (cf. (25) in the case δ = 0, where it is somewhat involved if d = 3).
Under this moment condition Mξ and κ can be expanded in Taylor polynomial of degree k with
the error term o(|θ|k+δ). We then observe that

[

1

1 − κ(θ)
− 2

Q(θ)

]

Mξ(θ) =
{θ3}
Q2(θ)

+ · · · + {θ3(k−1)}
Qk(θ)

+
εk(θ)

Q2(θ)
. (84)

Here εk is a Ck -class function such that εk(θ) = o(|θ|k+δ) and every k-th derivative of it, ∇αεk
say, satisfies

|∇αεk(θ) −∇αεk(θ
′)| ≤ o(|θ − θ′|δ) (α = (α1, . . . , αd),

∑

αj = k).

For estimation of Fourier integral of the error term εk(θ)/Q
2(θ) we repeat integration by parts

k − 2, k − 1 or k times according as d = 2, d = 3 or d ≥ 4. To complete the proof of Theorems
1 and 2 it now is sufficient to prove the next lemma.

Lemma 24. Let a(θ), |θ| < 3/2, be a function such that a(0) = 0 and for some positive
constants δ < 1 and Ka

|a(θ) − a(θ′)| ≤ Ka|θ − θ′|δ,
and h(θ) a bounded, Borel measurable function such that it is differentiable for θ 6= 0 and
|∇h(θ)| ≤ Kh/|θ|. Let 0 ≤ ν ≤ d. Then

∫

|θ|≤1
a(θ)

h(θ)

|θ|ν e
−ix·θdθ ≤ C|x|−δ log |x| (|x| > 2π),

where the constant C may be taken as λν,d(Kh + ‖h‖∞)Ka[(1 − δ)δ]−1 with a constant λν,d

depending only on ν and d. If either ν < d or a is differentiable for θ 6= 0 with |∇a(θ)| =
O(|θ|−1+δ), then the right hand side may be replaced by C ′|x|−δ.

175



Proof. First we compute the integral restricted on {θ : |x · θ| < π}. Put

f(θ) = a(θ)h(θ)/|θ|ν .

Then, on using |a(θ)| ≤ Ka|θ|δ and ν ≤ d,

∣

∣

∣

∣

∣

∫

|x·θ|<π,|θ|≤1
f(θ)e−ix·θdθ

∣

∣

∣

∣

∣

≤ Ka‖h‖∞
∫

|x·θ|≤π, |θ|≤1

dθ

|θ|d−δ
≤ C1Ka

δ

(

π

|x|

)δ

, (85)

where C1 = 2‖h‖∞
∫

Rd−1 dθ
′/
√

1 + |θ′|2 d−δ ≤ λd‖h‖∞/(1− δ). For the remainder of the integral
we may restrict it to {θ : x · θ > π} since the other half is similar. Thus we consider the integral

J =

∫

x·θ>π, |θ|≤1
f(θ)e−ix·θdθ.

Let r = |x| and ω = x/r and shift the variable θ by ωπ/r so that x · θ is transformed to x · θ+ π
and the integral is to

J = −
∫

x·θ>0, |θ+ωπ/r|≤1
f(θ + ωπ/r)e−ix·θdθ,

which differs from −
∫

x·θ>π, |θ|≤1 f(θ + ωπ/r)e−ix·θdθ, at most by

∫

|θ|≤1
[I(π < x · θ ≤ 2π) + I(1 < |θ| < 1 + π/r)]|f(θ)|dθ ≤ C1Ka(2π)δ

δrδ
+
λd‖ah‖∞

r
.

Accordingly

J =
1

2

∫

x·θ>π, |θ|≤1
[f(θ) − f(θ + ωπ/r)]e−ix·θdθ +O(r−δ).

Now we apply the assumptions on h and a to have

|f(θ) − f(θ + ωπ/r)| ≤ (ν‖h‖∞ +Kh)Ka

|θ|ν+1−δr
+

‖h‖∞Ka

|θ|νrδ

valid for θ satisfying x · θ > π. The estimate of the lemma is immediately inferred from the
following ones:

∫

|θ|≤1 |θ|−νdθ <∞ if ν < d;

∫

x·θ>π, |θ|≤1
|θ|−(d+1−δ)dθ = O(r1−δ);

∫

x·θ>π, |θ|≤1
|θ|−ddθ = O(log(1/r)).

If a is differentiable for θ 6= 0 with |∇a(θ)| = O(|θ|−1+δ), then the integration by parts directly
gives the required estimate of J . This completes the proof of the lemma.

B. Our evaluation of Fourier integrals on the torus ∆ made in Section 3 is based on the following
two formulae (i) and (ii) as well as the results of the preceding section: the former two are used
to dispose of the integral on a neighborhood of origin and the latter ones are on the rest.
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(i) LetD be a d-dimensional bounded domain containing the origin and having piece-wise smooth
boundary ∂D. Let g be a function on Rd of the form {θk}/|θ|s+k with k a non-negative integer
and s a real number such that s < d. Then for every integer n satisfying n ≥ d− s,

∫

D
g(θ)eix·θdθ = g∧(x) +

n
∑

l=1

BD,l(x)

(i|x|)l − 1

(i|x|)n
∫

Dc

(−ω · ∇)ng(θ)eix·θdθ (x ∈ Rd).

Here ω = x/|x| and BD,l denotes the boundary integral
∫

∂D(−ω ·∇)ng(θ)eix·θω ·dS; if n = d− s
the last integral is not absolutely convergent and must be understood to be the principal value;
g∧ denotes the Fourier transform

∫

Rd g(θ)e
ix·θdθ in the sense of Schwartz distribution on the

punctured space R\{0}, namely g∧(x) (x 6= 0) is identified by the relation
∫

gϕ∧ dx =
∫

g∧ ϕdx
to hold for every smooth function ϕ that vanishes outside a compact set of Rd \ {0}. Proof is
standard (see eg. Lemma 2.1 of (25)).

(ii) If ϕk is a homogeneous harmonic polynomial of degree k, then for s ∈ R,

1

(2π)d

∫

Rd

ϕk(θ)e−ix·θ

|θ|2s
dθ =

ikλk(s)ϕk(−x)
|x|d+2(k−s)

(k = 0, 1, 2, . . . ; s < 1
2(k + d)),

where

λk(s) =
Γ(1

2d+ k − s)

πd/222s−kΓ(s)
if s /∈ {0,−1,−2, . . .}

and λk(s) = 0 otherwise; the Fourier transform is in the sense of distribution on Rd \ {0} as in
(i). (Cf. (23) in the case k < 2s; for the other case make analytic continuation as a function of
s.) It is recalled that any homogeneous polynomial {θn} is expressed in a finite sum of the form
ϕn(θ) + |θ|2ϕn−2 + · · · .

C. Here is given proofs of (33) and (34). For the first one it suffices to prove that

∞
∑

n=1

(

e−r2/n

n
− 1

n

)

= −2 log r − 2γ +O(r−4) (86)

as r → ∞. For the proof we make the decomposition

∞
∑

n=1

(

e−r2/n

n
− 1

n

)

=
∑

1≤n≤r2

e−r2/n

n
−

∑

1≤n≤r2

1

n
+

∞
∑

n>r2

(

e−r2/n

n
− 1

n

)

.

When r is large, the first term on the right side may be written as

∑

1≤n≤r2

e−r2/n

n
=

∑

1≤n≤k

e−r2/n

n/r2
1

r2
=

∫ (k+ 1

2
)/r2

1

2
/r2

1

u
e−1/udu+O(r−4), (87)

where k = ⌊r2⌋ ( the largest integer that does not exceed r2) and similarly for the last term. By
elementary computation we see that for a > 0

∫ a

0

1

u
e−1/udu+

∫ ∞

a

1

u

[

e−1/u − 1
]

du =

∫ ∞

0
(log t)e−tdt + log a,
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where the first term on the right side equals −γ. Taking a = (k+ 1
2)/r2 in the last formula and

combining it with observations preceding it we conclude that

∞
∑

n=1

(

e−r2/n

n
− 1

n

)

= −γ + log
k + 1

2

r2
−

k
∑

n=1

1

n
+O(r−4) (k = ⌊r2⌋).

The required relation (86) now follows from this by substituting
∑k

n=1
1
n = γ + log(k + 1/2) +

1
24k2 + · · · .
For the proof of (34) set f(u) = 1

ue
−r2/τu and F (t) =

∑∞
m=1[f(m + t) − f(m)]. Then by the

same argument as made in (87), F ′(t) =
∑∞

m=1 f
′(m+ t) =

∫∞
1

2
/r2 f

′(u+ t)du+O(r−4) = O(r−4)

as r → ∞ uniformly for 0 ≤ t ≤ 1. Hence F (ℓ/τ) − F (j/τ) = O(r−4), showing (34) .

D. In this appendix we briefly review a standard perturbation method. Let pT and p be a
probability kernel on T and the bounded operator on L∞(µ) associated with it as defined in
Section 1. From the supposition that pT has a unique invariant probability measure, it follows
that the eigenfunction of p with eigenvalue 1 is constant. Suppose (H.1′′) to be true (cf. Remark
1) and define the operator Π by Π = Π0 + ωΠ1 + · · · + ωτ−1Πτ−1 if there is τ (≥ 2) cyclically
moving classes for the process ξn (see Section 4 for Πj and ω) and Π = 1 ⊗ µ otherwise. Since
pΠj = Πjp = ωjΠj, we have Πp = pΠ = Π2. By a simple computation we see

Πℓ =
τ−1
∑

k=0

ωℓkΠk =
τ−1
∑

k=0

χk−ℓ ⊗ µk (ℓ = 0, 1, . . . , τ − 1);

in particular Πτ = Π0+Π1+· · ·+Πτ−1 =
∑τ−1

k=0 χk⊗µk is the projection to the finite dimensional
space spanned by eigenfunctions of eigenvalues 1, ω, . . . , ωτ−1. Since (p − Π)n = pn − Πn =
pmτ+ℓ − Πℓ for n = mτ + ℓ (ℓ = 0, . . . , τ − 1), it follows from (H.1′′) that

lim sup ‖(p − Π)n‖1/n
L∞(µ) ≤ ρ (< 1) (88)

(‖·‖L∞(µ) denotes the operator norm in L∞(µ)). Thus the spectrum other than 1, ω, . . . , ωτ−1 is
enclosed by the circle |z| = ρ. If z /∈ {1, ω, . . . , ωτ−1} with |z| > ρ, the resolvent R(z) = (p−z)−1

can be represented by a complex measure kernel. Indeed, this is certainly true if |z| > 1, and for
all the other values of z to be considered the resolvents are analytic continuations of one another
by means of finite applications of the formula R(z2) =

∑∞
n=0(z2 − z1)

nRn+1(z1) (valid at least
for z2 such that (|z1 − z2|‖R(z1)‖L∞(µ) < 1).

Let pθ be the operator with the kernel defined by (20): pθf(ξ) = Eξ[e
iY1·θf(ξ1)]. Let Σθ denote

the spectrum of pθ and Rθ(z) the resolvent operator of pθ at z /∈ Σθ, namely Rθ(z) = (pθ−z)−1.
Then by the identity pθ − z = (p − z)[I −R(z)(p − pθ)], we see

Rθ(z) = R(z) +

∞
∑

n=1

[R(z)(p − pθ)]
nR(z), (89)

provided |θ| is small enough and z is in a compact set of C \ Σ0. Since pθ is continuous (or
smooth under existence of moments) with respect to θ, Rθ(z) is also continuous (resp. smooth)
in a neighborhood of the origin. Since ρ < 1, we can find a positive number δ◦ so that if |θ| < δ◦
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and r = 1
2 min{1 − ρ, |ω − 1|}, then the spectrum Σθ is divided by the circle Cr = {|1 − z| = r}

into two parts in such a manner that the part outside Cr is contained in one of the open disks
|z| < (1 + ρ)/2, |z − ωj| < r, j = 1, . . . , τ − 1, and the part inside continuously moves to 1 as
θ approaches the origin; and that the latter consists of a single eigenvalue, κ(θ) say, which is
simple (cf. (12): either p.34 or p.212). Let Πθ

0 denote the projection operator corresponding to
this eigenspace. Then ‖(pθ − Πθ

0)
n‖L∞(µ) ≤ C[(1 + ρ)/2]n and

Πθ
0 = eθ ⊗ µθ =

1

2πi

∫

|z−1|=r
Rθ(z)dz. (90)

Here eθ is an eigenfunction for the eigenvalue κ(θ) and µθ is a dual object: these may be defined
(if δ◦ is small enough) by

eθ =
1

Ξ(θ)
Πθ

01, µθ = µΠθ
0, (91)

with Ξ(θ) = µΠθ
01, and the product eθ⊗µθ stands for the operator given by the complex measure

kernel eθ(ξ)µθ(dη). They are normalized so that µ(eθ) = µθ(eθ) = 1.
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