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1 Introduction

After a first breakthrough of Kalikow (3), giving a transience criterion for non-reversible multidi-
mensional Random Walks in Random Environment, Sznitman and Zerner proved, several years
later, a law of large numbers in (12), followed by a central limit theorem proved by Sznitman in
(10). A generalization to the case of mixing environments was proved afterwards by Comets and
Zeitouni in (1) and also Rassoul-Agha (6) who used the point of view of the environment viewed
from the particle (we refer to (13) for an overview of the subject). Despite these progresses,
many important questions, concerning recurrence or explicit criteria for a ballistic behavior,
remain largely open.

Among random walks in random environment, random walks in an iid Dirichlet environment
take a special place, since their annealed law coincides with the law of some transition reinforced
random walk having an affine reinforcement (see (2)). These reinforced walks are defined as
follows. At time 0, we attribute, in a translation invariant way, a weight to each oriented edge
of Zd, and each time the walk crosses an edge, the weight of this edge is increased by one.
Finally, the walk is a nearest neighbour walk, which chooses, at each time, an outgoing edge
with a probability which is proportionnal to its weight. Let us also mention that our interest
in Dirichlet environments is reinforced by their link with the beautiful theory of hypergeometric
integrals, as it is shown in (8).

The question of transience and recurrence for such walks, was answered by Keane and Rolles,
in (4), in the case where the walk evolves on a graph which is a product of the integer line with
a finite graph. In the context of trees, a correspondance between reinforced random walks and
random walks in random environment was used before, by Pemantle, in (5). Our purpose is to
give some first results in the case of Zd.

In this paper, we state a law of large numbers for such random walks, under a simple and
explicit condition on the weights. Moreover, we give explicit bounds for the asymptotic velocity
of these walks and also an asymptotic expansion of this velocity at low disorder. Low disorder
corresponds, in the random environment model, to the case where the law of the transition
probabilities is concentrated around its mean value, and, in its reinforcement interpretation,
to the case where the initial weights of the transitions are large, so that these weights are not
significantly affected during the life of the walk (at least, if the walk is transient).

Let us precise that these walks do not enter the class of walks considered in (3), (7) and in
several other works, asking the law of the environment to satisfy a uniform ellipticity condition.

This ellipticity hypothesis is usually used in two ways :

in the definition of Kalikow’s auxiliary Markov chain which involves the expection of the Green
function of the walk killed when exiting a given set. The uniform ellipticity is then a comfortable
assumption for checking the integrability of this Green function.

in the estimates of the drift of Kalikow’s auxiliary Markov chain, the ellipticity condition often
plays a key role. We overcome this difficulty by using an integration by part formula.

In section 2, we give the definition of random walks in Dirichlet environment, remind their
connection with transition reinforced random walks and we present our main results. In section
3, we present an integration by part formula that will be the key analytic tool in the proof of
our results. Indeed, in section 4, it is shown how one can take advantage of the special form of
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the law of the environment, in order to estimate, using the formula of Section 3, the drift of the
killed Kalikow’s auxiliary walk.
It turns out that this ”integration by part technic” is specially well adapted to the check of
Kalikow’s criterion. Note that Sznitman introduced finer criteria, the so called T and T ′ (see
(11)), which ensure ballisticity, but we don’t think we could easily verify these criteria by our
”integration by part technic”.
In section 5, we study the integrability of the Green function of the walk which ensures the
existence of the original (non killed) Kalikow’s auxiliary walk and finish the proof of our first
result by applying the law of large numbers of Sznitman and Zerner (12). In section 6, we prove
precise estimates for the transition probabilities of Kalikow’s auxiliary random walk in order to
get an expansion of the asymptotic velocity at low disorder.

2 Definitions and statement of the results

We denote by T2d := {(x1, ..., x2d) ∈]0, 1]2d, s.t.,
∑2d

i=1 xi = 1}, and by (ei)1≤i≤2d the family
of unitary vectors of Zd, defined as follows: (ei)1≤i≤d is the canonical basis of Rd, and for all
j ∈ {d + 1, ..., 2d} ej = −ej−d.
For all ~α := (α1, ..., α2d) ∈]0,+∞[2d, we denote by λ~α the Dirichlet probability measure on T2d

with parameters (α1, ..., α2d) i.e. the measure on T2d:

Γ(α1 + ... + α2d)
Γ(α1)...Γ(α2d)

xα1−1
1 ...xα2d−1

2d dx1...dx2d−1.

For a unit vector e of Zd, we will sometimes write, for reading conveniences, αe for the weight
αi where i is such that ei = e.
Let us now introduce random walks in an iid Dirichlet environment on Zd.
We define an environment as an element ω = (ω(x))x∈Zd where at any vertex x, ω(x) :=
(ω(x, x + e1), ..., ω(x, x + e2d)) belongs to T2d. We set µ := ⊗

x∈Zd
λ~α, so that µ is a probability

measure on the environments such that (ω(x))x∈Zd are independent random variables of law λ~α.
We denote by Pω the law of the Markov chain in the environment ω starting at 0 defined by:

∀x ∈ Zd, ∀k ∈ N, ∀i = 1, ..., 2d, Pω(Xk+1 = x + ei|Xk = x) = ω(x, x + ei).

The law of the random walk in random environment (or the so-called annealed measure) is the
probability measure Pµ =

∫
Pωdµ(ω).

In (2), we show that random walks in iid environment have the law of some reinforced random
walk. The following proposition states that the case of a Dirichlet environment corresponds to
a quite natural law of reinforcement:

Proposition 1. The measure Pµ satisfies that Pµ-almost everywhere,

Pµ(Xn+1 = x + ei|σ(Xk, k ≤ n)) =
αi + Ni(n, Xn)∑2d

k=1 αk + Nk(n, Xn)

where ~N(n, x) = (Ni(n, x))1≤i≤2d and Ni(n, x) =
∑n−1

l=0 1{Xl+1−Xl=ei,Xl=x}.

We refer the reader to (2) for the proof.
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2.1 Bounds of the asymptotic velocity

We can now state our first result:

Theorem 1. Let ~α := (α1, ..., α2d) ∈]0,+∞[2d, and µ = ⊗
x∈Zd

λ~α a probability measure on the

environment. Let us assume that there exists i ∈ {1, ..., 2d} such that αei > 1 + α−ei.

The process Xn is transient under Pµ, and

∃v ∈ Rd \ {0}, such thatPµ(
Xn

n
→n→∞ v) = 1.

Moreover, for all i ∈ {1, ..., d},

αei − α−ei − 1

(
∑2d

k=1 αk)− 1
≤ v.ei ≤

αei − α−ei + 1

(
∑2d

k=1 αk)− 1

Remark 1: The assumption on αi ensures that the set

d∏
i=1

[αei − α−ei − 1, αei − α−ei + 1]

does not contain 0. It is a key ingredient in the check of Kalikow’s transience condition.

Remark 2: When the αi’s are large, v becomes close to the vector
1∑2d

k=1 αk

d∑
i=1

(αei − α−ei)ei.

This is not surprising if one thinks at the corresponding reinforced walk: the initial weights of
the transitions are large enough so that they are not significantly affected during the life of the
walk, and the law of the walk becomes close to the law of the Markov chain with probability
transition

αi∑2d
k=1 αk

in the direction ei.

Remark 3: In dimension 1, the condition of theorem 1 is actually optimal. Indeed from (9),
we know that the asymptotic velocity is not null if and only if either Eµ[ ω(0,e1)

ω(0,−e1) ] > 1 or

Eµ[ω(0,−e1)
ω(0,e1) ] > 1, which corresponds exactly to αe1 > 1 + α−e1 or α−e1 > 1 + αe1 . Moreover, the

asymptotic velocity of the walk is equal to αe1−α−e1−1

αe1+α−e1−1 . This shows the optimality of the lower
bound in Theorem 1.

2.2 Expansion of the velocity in the limit of large parameters

We turn now to the second result of the paper, which gives the asymptotic velocity of the walk
in the limit of large parameters αk. Let us remind that, in the limit of large parameters αk, the
environment is concentrated around its mean value.

Let us fix some notations. We consider some fixed transition probabilities

(mi) ∈ T2d,

and a parameter γ > 0 (aimed to tend to ∞). We consider the weights

αk = γmk,
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so that the expectation of the transition probability, Eµ(ω(x, x + ei)), is independent of γ and
equal to mi.

The mean environment (mi) defines the transition probabilities of an homogeneous walk on Zd,
which is ballistic with asymptotic velocity

dm =
2d∑

k=1

mkek,

when the mean drift dm is not null. We denote by Gm its Green function.

The following result gives an estimate in O( 1
γ2 ) of the asymptotic velocity (in section 6 we give

explicit bounds for this estimate).

Theorem 2. Assume dm 6= 0.

For γ large enough, Theorem 1 applies, i.e. there exists v 6= 0 such that limn→∞
Xn
n = v, Pµ a.s..

Moreover, when γ is large, we have the following expansion for v:

v = dm − dm

γ
(Gm(0, 0)− 1) + O(

1
γ2

).

Remark 1: Surprisingly, the second order of the expansion is colinear to the mean drift dm. We
see that (Gm(0, 0)− 1) > 0, which means that there is a slowdown effect, since the second order
term is directed in the opposite direction to the mean drift.

Remark 2: In (7), the second author gave an expansion of the asymptotic velocity in the case
of a uniformly elliptic environment. In this work, several of the estimates relied strongly on the
ellipticity condition, so that the proofs of (7) have here to be modified. Nevertheless, if we apply
the formula of (7) to this case, we get the same expansion (many simplifications occur due to
the particular expression of the covariance matrix). It is not surprising that the speed-up effect
obtained in some cases of (7) is not observed in the case of a Dirichlet environment. The example
of (7), section 2, was based, indeed, on some correlation between the transition probabilities in
orthogonal directions. Here, there is a kind of independence of the transition probabilities in
each direction, in the following sense: under µ = ⊗

x∈Zd
λ~α, the law of ω(z, z + ei) is independent

of the law of ( ω(z,z+ek)
1−ω(z,z+ei)

)k 6=i.

Remark 3: The Green function Gm(0, 0) has the following explicit Fourier expression

Gm(0, 0) =
1

(2π)d

∫
[0,2π]d

1

1− 2
∑d

i=1
√

meim−ei cos(θi)
dθ1 · · · dθd.

(we refer to Step 2 of the proof of Proposition 3).

3 An integration by part formula

In this section, we present an integration by part formula on T2d that will appear to be the key
analytic tool in the estimation of the drift of Kalikow’s auxiliary walk.
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Lemma 1. For all ~α ∈]0,+∞[2d, and all differentiable function f on R2d,∫
T2d

fdλ~α =
α1 + ... + αd

α1

∫
T2d

x1.fdλ~α +
1
α1

∫
T2d

x1.((
2d∑

k=1

xk
∂f

∂xk
)− ∂f

∂x1
)dλ~α.

Proof: We use the well known identity between the Dirichlet law λ~α and the law of the vec-
tor ( Z1P2d

i=1 Zi
, ..., Z2dP2d

i=1 Zi
) where the random variables Zi are independent variables following the

gamma distribution Γ(αi, 1) of density 1
Γ(αi)

zαi−1e−z on R+.

This identity implies ∫
T2d

fdλ~α =

1
Γ(α1)...Γ(α2d)

∫
R2d

+

f(
z1∑2d
i=1 zi

, ...,
z2d∑2d
i=1 zi

)e−
P2d

i=1 zizα1−1
1 ...zα2d−1

2d dz1...dz2d.

Integrating by part with respect to z1, we get∫
T2d

fdλ~α =
1

Γ(α1 + 1)...Γ(α2d)

∫
R2d

+

(f̃ − ∂f̃

∂z1
)e−

P2d
i=1 zizα1

1 ...zα2d−1
2d dz1...dz2d

where f̃(z1, ..., z2d) := f( z1P2d
i=1 zi

, ..., z2dP2d
i=1 zi

).

Now, we decompose this last integral into the f̃ -part and the ∂f̃
∂z1

-part.

Using, in the reverse sense, the “Gamma” interpretation of the Dirichlet law λ(α1+1,α2,...,α2d), the
f̃ -part becomes

Γ(α1 + ... + α2d + 1)
Γ(α1 + 1)...Γ(α2d)

∫
T2d

f.xα1
1 ...xα2d−1

2d dx1...dx2d−1 =
α1 + ... + α2d

α1

∫
T2d

x1.fdλ~α.

Now, the ∂f̃
∂z1

-part writes

− 1
α1Γ(α1)...Γ(α2d)

∫
Rd

+

(z1.
∂f̃

∂z1
)e−

P2d
i=1 zizα1−1

1 ...zα2d−1
2d dz1...dz2d

and

z1.
∂f̃

∂z1
= (

z1∑2d
i=1 zi

− z2
1

(
∑2d

i=1 zi)2
)f̃1 −

z1z2

(
∑2d

i=1 zi)2
f̃2 − ...− z1z2d

(
∑2d

i=1 zi)2
f̃d

= (
z1∑2d
i=1 zi

)(f̃1 −
2d∑

k=1

(
zk∑2d
i=1 zi

)f̃k)

where f̃k(z1, .., z2d) =
∂f

∂xk
(

z1∑2d
i=1 zi

, ...,
z2d∑2d
i=1 zi

).

The “Gamma” interpretation of the Dirichlet law λ(α1,...,α2d) (used for the third time) allows to
conclude.

807



4 Kalikow’s auxiliary walk

We remind here the generalization of Kalikow’s auxiliary walk (see (3)) which was already
presented in (7).

Let U be a connected subset of Zd, and δ ∈]0, 1]. We denote by ∂U the boundary set of U , i.e.
∂U := {z ∈ Zd \ U,∃x ∈ U, |z − x| = 1}.
For all z ∈ U and z′ ∈ U ∪ ∂U , and for all environment ω, we introduce the Green function of
the random walk under the environment ω killed at rate δ and at the boundary of U :

Gω
U,δ(z, z′) = Eω

z

(
TU∑
k=0

δk1Xk=z′

)

where TU = inf{k, Xk ∈ Zd \ U}.
In the sequel, we will drop the subscript δ when δ = 1, and we will write Gω

U (z, z′) instead of
Gω

U,1(z, z′).

We introduce now the generalized Kalikow’s transition probabilities (originally, Kalikow’s tran-
sition probabilities were introduced in the case δ = 1):

ω̂U,δ,z0(z, z + ei) =
Eµ[Gω

U,δ(z0, z)ω(z, z + ei)]
Eµ[Gω

U,δ(z0, z)]
.

In order to give bounds for these transition probabilities, we will be led to apply the integration
by part formula of the previous section to the functions Gω

U,δ(x, y), viewed as functions of the
environment ω.

For this purpose, we need the following lemma which gives the expression of the derivatives of
these functions. Before stating this lemma, we introduce the transition matrix ΩU defined by
ΩU (x, y) = ω(x, y) if x ∈ U , and ΩU (x, y) = 0 if x ∈ ∂U . Obviously,

Gω
U,δ(x, y) = (I − δΩU )−1(x, y) =

∑
n≥0

δn(ΩU )n
(x,y)

When δ < 1, we notice that the two last expressions of Gω
U,δ(x, y) make it possible to extend

its definition to more general ω’s for which ΩU is not necessarily stochastic (at least in the
neighbourhood of a stochastic matrix). The following lemma is concerned with the partial
derivative of this extension of Gω

U,δ(x, y).

Lemma 2. For all connected subset U of Zd, for all x1, x2, x4 ∈ U , x3 ∈ U ∪ ∂U , |x3 − x2| = 1,
and for all δ ∈]0, 1[,

∂Gω
U,δ(x1, x4)

∂(ω(x2, x3))
= δGω

U,δ(x1, x2)Gω
U,δ(x3, x4)

Remark: When x3 ∈ ∂U , the right-hand term vanishes since Gω
U,δ(x3, x4) = 0.

Proof: This is a direct consequence of

Gω
U,δ(x1, x4) =

∑
n≥0

δn(ΩU )n
(x1,x4)
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and
∂(ΩU )n

(x1,x4)

∂(ω(x2, x3))
=

∑
k1+k2=n−1

(ΩU )k1

(x1,x2)(ΩU )k2

(x3,x4)

so that, taking the derivatives term by term in the sum defining Gω
U,δ(x1, x4), we obtain the

result.

We turn now to the estimation of the transition probabilities:

Proposition 2. For all connected subset U of Zd, for all z0, z ∈ U , for all δ ∈]0, 1[ and all
i = 1, ..., 2d,

• if (
2d∑

k=1

αk) > 1, then
αi − 1

(
∑2d

k=1 αk)− 1
≤ ω̂U,δ,z0(z, z + ei) ≤

αi

(
∑2d

k=1 αk)− 1

• if (
2d∑

k=1

αk) < 1, then 0 ≤ ω̂U,δ,z0(z, z + ei) ≤
αi − 1

(
∑2d

k=1 αk)− 1

Proof: For the clarity of notations we give the proof for i = 1.

Lemma 2 yields
∂Gω

U,δ(z0, z)
∂(ω(z, z + ei))

= δGω
U,δ(z0, z)Gω

U,δ(z + ei, z).

We now apply Lemma 1 with f = Gω
U,δ(z0, z), viewed as a function of the only variables xi :=

ω(z, z + ei) for i = 1, ..., 2d, and we get

Eµ[Gω
U,δ(z0, z)] =

α1 + ... + α2d

α1
Eµ[Gω

U,δ(z0, z)ω(z, z + e1)]

+
1
α1

Eµ

[
ω(z, z + e1).Gω

U,δ(z0, z)

(
δ

2d∑
k=1

ω(z, z + ek)Gω
U,δ(z + ek, z)− δGω

U,δ(z + e1, z)

)]
(1)

We recall that

δ

2d∑
k=1

ω(z, z + ek)Gω
U,δ(z + ek, z) = Gω

U,δ(z, z)− 1

so that the second term in the right side of (1) writes

1
α1

Eµ

[
ω(z, z + e1).Gω

U,δ(z0, z)
(
Gω

U,δ(z, z)− 1− δGω
U,δ(z + e1, z)

)]
so that we get

Eµ[Gω
U,δ(z0, z)] =

α1 + ... + α2d

α1
Eµ[Gω

U,δ(z0, z)ω(z, z + e1)]

+
1
α1

Eµ

[
ω(z, z + e1).Gω

U,δ(z0, z)
(
Gω

U,δ(z, z)− 1− δGω
U,δ(z + e1, z)

)]
and for the ratio ω̂U,δ,z0(z, z + e1) =

Eµ[ω(z, z + e1)Gω
U,δ(z0, z)]

Eµ[Gω
U,δ(z0, z)]

,

ω̂U,δ,z0(z, z + e1) =
α1

(
∑2d

k=1 αk)− 1
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+
1

(
∑2d

k=1 αk)− 1

Eµ

[
ω(z, z + e1).Gω

U,δ(z0, z)
(
Gω

U,δ(z, z)− δGω
U,δ(z + e1, z)

)]
Eµ[Gω

U,δ(z0, z)]
(2)

But,
2d∑

k=1

ω(z, z + ek)(Gω
U,δ(z, z)− δGω

U,δ(z + ek, z)) = 1

and therefore, for all k = 1, ..., 2d,

0 ≤ Gω
U,δ(z, z)− δGω

U,δ(z + ek, z) ≤ 1
ω(z, z + ek)

.

These inequalities allow to bound the ratio in the second term of the right side of (2), between
0 and 1, and this finishes the proof.

5 Proof of Theorem 1

We gather now all the ingredients of the proof of Theorem 1. We want to apply Sznitman and
Zerner’s law of large numbers (12). From a careful reading of the proof of this law of large
numbers, we can see that the only conditions that need to be fullfilled, are the integrability of
the Green function Gω

U (z, z) for all bounded U , and Kalikow’s condition.

The integrability of the Green function is proved in the following lemma:

Lemma 3. If there exists i ∈ {1, ..., 2d}, such that αi > 1, then for all connected subset U of
Zd and all z ∈ U , Eµ[Gω

U (z, z)] is finite.

Proof: For the clarity of notations, we suppose that α1 > 1.

Define now by N the least integer such that z + Ne1 belongs to ∂U .

We have the following lower bound for the probability P (ω, z, U) to reach ∂U from z without
returning to z0 :

P (ω, z, U) ≥
N−1∏
k=0

ω(z + ke1, z + (k + 1)e1).

The number of returns to z before hitting ∂U , being a geometric variable whose parameter is

precisely P (ω, z, U), its expectation Gω
U (z, z) is equal to

1
P (ω, z, U)

.

We are now led to examine the integrability of Eµ

[(∏N−1
k=0 ω(z + ke1, z + (k + 1)e1)

)−1
]

which

is equal to (
∫
T2d

1
x1

dλ~α)N which is finite since α1 > 1.

We now have to check Kalikow’s condition.

We notice first that, under the assumption of Theorem 1, Lemma 3 applies and Kalikow’s
auxiliary walk is well defined. Then, the monotone convergence theorem allows to make δ
converge to 1 in the inequalities of Proposition 2.
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We then deduce that the drift of Kalikow’s walk belongs to

1

(
∑2d

k=1 αk)− 1

d∏
i=1

[αei − α−ei − 1, αei − α−ei + 1]

which does not contain 0, under the assumption of Theorem 1. This proves Kalikow’s transience
condition.
In order to estimate the asymptotic velocity of the process, we apply directly Proposition 3.2 of
(7) which makes the link between v and the drift of Kalikow’s walk.
Remark: in Lemma 3, we only got a sufficient condition for the integrability of the Green
function to hold. A better result about this question would not have ameliorated the statement
of Theorem 1 as far as our check of Kalikow’s condition requires a stronger assumption.

6 Proof of Theorem 2

Theorem 2 of section 2 is actually a consequence of a more precise result, where the “O” in the
expansion is replaced by an explicit upper bound.
Let us fix some notations: we set

γ =
2d∑
i=1

αi,

and
mi = mei =

αi

γ
= Eλ(α)

(ω(ei)).

When γ is large, the environment (ω(x, ei)) tends to concentrate around its mean (mi), what
can be seen from the expression of the correlations

Covµ(ω(x, x + ei), ω(x, x + ej)) =

{
−mimj

γ+1 , if i 6= j
mi(1−

P
k 6=i mk)

γ+1 , if i = j,

The mean environment (mi) defines the transition probabilities of an homogeneous walk on Zd,
and we define

km = 2
d∑

i=1

√
meim−ei ,

so that

1− km =
d∑

i=1

(
√

mei −
√

m−ei)
2,

measures the non-symmetry of the walk. When km < 1, this walk is ballistic with asymptotic
velocity

dm =
2d∑
i=1

miei,

and we denote by Gm(·, ·) its Green function. Let us define

ηm =
maxi

√
mei

m−ei

1− km
.
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Proposition 3. Assume we are in the condition of application of Theorem 1, and that

2d

γ
ηm ≤ 1,

then we have the following estimate∣∣∣∣v − dm(1− 1
γ − 1

(Gm(0, 0)− 1))
∣∣∣∣ ≤ 16

(
d

γ

)2 η2
m

1− 2d
γ ηm

.

Proof: Considering the domain U = Zd, a killing parameter δ < 1 and z0 = 0, we get from
formula (2)

ω̂δ(z, z + ei) = mi +
mi

γ − 1
− 1

γ − 1
Eµ[Gω

δ (0, z)ω(z, z + ei)(Gω
δ (z, z)− δGω

δ (z + ei, z))]
Eµ[Gδ(0, z)]

.

In the sequel, we will sometimes forget the superscript ω in Gω
δ , when there will be no ambiguity.

Let us introduce a new probability on the environments µ̃(dω) given by

µ̃(dω) =
Gω

δ (0, z)
Eµ(Gω

δ (0, z))
µ(dω).

We see that

Eµ[Gδ(0, z)ω(z, z + ei)(Gδ(z, z)− δGδ(z + ei, z))]
Eµ[Gδ(0, z)]

= Eµ̃[(Gδ(z, z)− δGδ(z + ei, z))ω(z, z + ei)].

We proceed as in (7), and apply Kalikow’s formula (cf. the generalized version in (7), Proposition
3.1) to the measure µ̃.

It means that we have

Eµ̃[Gω
δ (z, z)ω(z, z + ei)] = Gω̃z

δ (z, z)ω̃z(z, z + ei),

where ω̃z is the auxiliary transition probability given by

ω̃z(y, y + ej) =
Eµ̃[Gω

δ (z, y)ω(y, y + ej)]
Eµ̃[Gω

δ (z, y)]
.

Similarly,
Eµ̃[Gω

δ (z + ei, z)ω(z, z + ei)] = Gω̃z+ei

δ (z + ei, z)ω̃z+ei(z, z + ei),

where ω̃z+ei is the auxiliary transition probability given by

ω̃z+ei(y, y + ej) =
Eµ̃[Gω

δ (z + ei, y)ω(y, y + ej)]
Eµ̃[Gω

δ (z + ei, y)]
.

Step 1: We want to estimate the transition probabilities ω̃z and ω̃z+ei .
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Lemma 2 yields

(
∂

∂ω(y, y + ek)
− ∂

∂ω(y, y + ej)
)Gω

δ (·, z) = δGω
δ (·, y)(Gω

δ (y + ek, z)−Gω
δ (y + ej , z)),

moreover
2d∑

k=1

ω(y, y + ek)(Gω
δ (y, z)− δGω

δ (y + ek, z)) = 1y=z.

Using the integration by part formula given in Lemma 1, we get

mejEµ[Gδ(0, z)Gδ(z, y)] = Eµ[Gδ(0, z)Gδ(z, y)ω(y, y + ej)]

+
1
γ

Eµ [Gδ(0, y) (Gδ(y, z)− δGδ(y + ej , z)− 1y=z) Gδ(z, y)ω(y, y + ej)]

+
1
γ

Eµ [Gδ(0, z)Gδ(z, y) (Gδ(y, y)− δGδ(y + ej , y)− 1) ω(y, y + ej)]

But we have
0 ≤ ω(y, y + ej)(Gδ(y, y)− δGδ(y + ej , y)) ≤ 1, (3)

and if y 6= z

|Gδ(0, y)ω(y, y + ej)(Gδ(y, z)− δGδ(y + ej , z))| ≤ (2d− 1)Gδ(0, z). (4)

Indeed, for all k = 1, · · · , 2d, we have

Gω
δ (y + ek, z) ≥ Eω

y+ek
[δTy ]Gω

δ (y, z),

where Ty is the hitting time of y (equal to infinity if the random walk never hits y).

Since
1

1− δ
∑

k ω(y, y + ek)Eω
y+ek

[δTy ]
= Gω

δ (y, y),

we get

ω(y, y + ek)(Gω
δ (y, z)− δGω

δ (y + ek, z)) ≤
Gω

δ (y, z)
Gω

δ (y, y)
.

But, we also have

2d∑
k=1

ω(y, y + ek)(Gω
δ (y, z)− δGω

δ (y + ek, z)) = 0, if y 6= z,

so that we have

|ω(y, y + ej)(Gω
δ (y, z)− δGω

δ (y + ej , z))| ≤ (2d− 1)
Gω

δ (y, z)
Gω

δ (y, y)
,

which immediately implies the estimate (4).
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The inequalities (3) and (4) imply that

∣∣mejEµ[Gδ(0, z)Gδ(z, y)]− Eµ[Gδ(0, z)Gδ(z, y)ω(y, y + ej)]
∣∣ ≤ 2d

γ
Eµ[Gδ(0, z)Gδ(z, y)].

This gives the following estimate for ω̃z

|mej − ω̃z(y, y + ej)| ≤
2d

γ
.

The same procedure gives the same estimate for ω̃z+ei .

Hence, we see that

Eµ̃[Gω
δ (z, z)ω(z, z + ei)] = Gm+∆m

δ (z, z)(mi + ∆m(z, z + ei)),

where ∆m(z, z + ei) is a correction to the homogeneous transition probability (mi) uniformly
bounded by

|∆m| ≤ 2d

γ
.

The same reasoning holds for

Eµ̃[Gω
δ (z + ei, z)ω(z, z + ei)] = Gm+∆m

δ (z + ei, z)(mi + ∆m(z, z + ei)),

even if the correction term ∆m is not the same.

Step 2: We compare now the Green function Gm+∆m
δ with Gm

δ .

This is done in (7), but we reproduce the main lines of the proof, since we want to obtain explicit
bounds. We first introduce the symmetrizing function

φm(z) =
d∏

i=1

√
mei

m−ei

zi

.

The Green function Gm
δ is transformed into

Gm
δ = M−1

φmGs
δkm

Mφm , (5)

where Mφ is the operator of multiplication by φ, and Gs
δkm

is the Green function of the symmetric
random walk with transition probability

sei = s−ei =
√

meim−ei

2
∑2d

k=1
√

mek
m−ek

, i = 1, . . . , d,

with killing rates δkm where

km = 2
2d∑

k=1

√
mek

m−ek
.

We refer to Step 2 of the proof of Lemma 4.3 in (7) for precisions about this fact.
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Hence, we see that ∑
y

Gs
δkm

(0, y) ≤ 1
1− δkm

,

which means that
‖Gs

δkm
‖∞ ≤ 1

1− δkm
.

We also have
Gm+∆m

δ −Gm
δ = −Gm

δ

(
I − (I − δ∆PmGm

δ )−1
)
,

where ∆Pm is the matrix (∆Pm)x,x+ei = ∆m(x, x + ei) (and null anywhere else).

(Indeed, this is an application of the perturbation formula

(I − δ(A + B))−1 = (I − δA)−1(I − δB(I − δA)−1)−1

where A(x, x + ei) = mi and B = ∆Pm.)

Thus, we get

Gm+∆m
δ −Gm

δ = δM−1
φ Gs

δkm
Mφm∆PmM−1

φmGs
δkm

(
I − δMφm∆PmM−1

φmGs
δkm

)−1
Mφm ,

but
‖Mφm∆PmM−1

φm‖∞ ≤ (max
i

φm(ei))
2d

γ

so that we get

(Gm+∆m
δ −Gm

δ )(x, y) ≤ φm(y − x)
2d

γ

1
1− km

ηm
1

1− 2d
γ ηm

,

and
Gm+∆m

δ (x, y) ≤ φm(y − x)
1

1− km

1
1− 2d

γ ηm

.

This implies that, for all i ∈ {1, ..., 2d},∣∣∣∣ω̂δ(z, z + ei)−mi +
mi

γ − 1
(Gm

δ (0, 0)− δGm
δ (ei, 0)− 1)

∣∣∣∣
≤ 1

γ − 1

(
2
2d

γ
η2

m

1
1− 2d

γ ηm

+ 2
2d

γ
ηm

1
1− 2d

γ ηm

)
≤ 8

d

γ2

η2
m

1− 2d
γ ηm

(6)

(we used here ηm ≥ 1).

The sum
2d∑
i=1

(
mi −

mi

γ − 1
(Gm

δ (0, 0)− δGm
δ (ei, 0)− 1)

)
.ei

tends to dm(1 − 1
γ − 1

(Gm(0, 0) − 1)) when δ tends to 1. Indeed, the sum
2d∑
i=1

miG
m(ei, 0).ei

cancels, due to the fact that for each i ∈ {1, ..., d} meiG
m(ei, 0) and m−eiG

m(−ei, 0) are both
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equal to the common value √meim−eiG
s
k(ei, 0) (cf formula (5) which implies that Gm

δ (ei, 0) =
φ−1(ei)Gs

δkm
(ei, 0)).

The triangular inequality combined with the 2d inequalities (6) gives that, for all z,

lim sup
δ→1

‖dω̂δ
(z)− dm(1− 1

γ − 1
(Gm(0, 0)− 1))‖ ≤ 16

(
d

γ

)2 η2
m

1− 2d
γ ηm

,

where dω̂δ
(z) =

∑2d
k=1 ω̂δ(z, z+ek)ek is the local drift of the transition probability ω̂δ. Proposition

3.2 of (7) allows to conclude.
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