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Given (Mt)t∈R+ and (M∗
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function, provided the local characteristics of (Mt)t∈R+ and (M∗
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c) Département de Mathématiques, Université de La Rochelle, 17042 La Rochelle, France.
nicolas.privault@univ-lr.fr

486

DOI: 10.1214/EJP.v11-332

1

http://dx.doi.org/10.1214/EJP.v11-332


1 Introduction

Two random variables F and G satisfy a convex concentration inequality if

E[φ(F )] ≤ E[φ(G)] (1.1)

for all convex functions φ : R → R. By a classical argument, the application of (1.1) to
φ(x) = exp(λx), λ > 0, entails the deviation bound

P (F ≥ x) ≤ inf
λ>0

E[eλ(F−x)1{F≥x}] ≤ inf
λ>0

E[eλ(F−x)] ≤ inf
λ>0

E[eλ(G−x)], (1.2)

x > 0, hence the deviation probabilities for F can be estimated via the Laplace transform of G,
see [2], [3], [15] for more results on this topic. In particular, if G is Gaussian then Theorem 3.11
of [15] shows moreover that

P (F ≥ x) ≤ e2

2
P (G ≥ x), x > 0.

On the other hand, if F is more convex concentrated than G then E[F ] = E[G] as follows from
taking successively φ(x) = x and φ(x) = −x, and applying the convex concentration inequality
to φ(x) = x log x we get

Ent[F ] = E[F log F ]− E[F ] log E[F ]
= E[F log F ]− E[G] log E[G]
≤ E[G log G]− E[G] log E[G]
= Ent[G],

hence a logarithmic Sobolev inequality of the form Ent[G] ≤ E(G, G) implies

Ent[F ] ≤ E(G, G).

In this paper we obtain convex concentration inequalities for the sum Mt + M∗
t , t ∈ R+, of a

forward and a backward martingale with jumps and continuous parts. Namely we prove that
Mt + M∗

t is more concentrated than Ms + M∗
s if t ≥ s ≥ 0, i.e.

E[φ(Mt + M∗
t )] ≤ E[φ(Ms + M∗

s )], 0 ≤ s ≤ t,

for all convex functions φ : R → R, provided the local characteristics of (Mt)t∈R+ and (M∗
t )t∈R+

satisfy the comparison inequalities assumed in Theorem 3.2 below. If further E[M∗
t |FM

t ] = 0,
t ∈ R+, where (FM

t )t∈R+ denotes the filtration generated by (Mt)t∈R+ , then Jensen’s inequality
yields

E[φ(Mt)] ≤ E[φ(Ms + M∗
s )], 0 ≤ s ≤ t,

and if in addition we have M0 = 0, then

E[φ(MT )] ≤ E[φ(M∗
0 )], T ≥ 0. (1.3)

In other terms, we will show that a random variable F is more concentrated than M∗
0 :

E[φ(F − E[F ])] ≤ E[φ(M∗
0 )],
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provided certain assumptions are made on the processes appearing in the predictable represen-
tation of F − E[F ] = MT in terms of a point process and a Brownian motion.

Consider for example a random variable F represented as

F = E[F ] +
∫ +∞

0
HtdWt +

∫ +∞

0
Jt(dZt − λtdt),

where (Zt)t∈R+ is a point process with compensator (λt)t∈R+ , (Wt)t∈R+ is a standard Brownian
motion, and (Ht)t∈R+ , (Jt)t∈R+ are predictable square-integrable processes satisfying Jt ≤ k,
dPdt-a.e., and ∫ +∞

0
|Ht|2dt ≤ β2, and

∫ +∞

0
|Jt|2λtdt ≤ α2, P − a.s.

By applying (1.3) or Theorem 4.1−ii) below to forward and backward martingales of the form

Mt = E[F ] +
∫ t

0
HudWu +

∫ t

0
Ju(dZu − λudu), t ∈ R+,

and
M∗

t = Ŵβ2 − ŴV 2(t) + k(N̂α2/k2 − N̂U2(t)/k2)− (α2 − U2(t))/k, t ∈ R+,

where (Ŵt)t∈R+ , (N̂t)t∈R+ , are a Brownian motion and a left-continuous standard Poisson pro-
cess, β ≥ 0, α ≥ 0, k > 0, and (V (t))t∈R+ , (U(t))t∈R+ are suitable random time changes, it will
follow in particular that F is more concentrated than

M∗
0 = Ŵβ2 + kN̂α2/k2 − α2/k,

i.e.
E[φ(F − E[F ])] ≤ E

[
φ(Ŵβ2 + kN̂α2/k2 − α2/k)

]
(1.4)

for all convex functions φ such that φ′ is convex.

From (1.2) and (1.4) we get

P (F − E[F ] ≥ x) ≤ inf
λ>0

exp
(

α2

k2
(eλk − λk − 1) +

β2λ2

2
− λx

)
,

i.e.

P (F − E[F ] ≥ x) ≤ exp
(

x

k
− β2λ0(x)

2k
(2− kλ0(x))− (x + α2/k)λ0(x)

)
,

where λ0(x) > 0 is the unique solution of

ekλ0(x) +
kλ0(x)β2

α2
− 1 =

kx

α2
.

When Ht = 0, t ∈ R+, we can take β = 0, then λ0(x) = k−1 log(1 + xk/α2) and this implies the
Poisson tail estimate

P (F − E[F ] ≥ y) ≤ exp
(

y

k
−
(

y

k
+

α2

k2

)
log
(

1 +
ky

α2

))
, y > 0. (1.5)
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Such an inequality has been proved in [1], [19], using (modified) logarithmic Sobolev inequalities
and the Herbst method when Zt = Nt, t ∈ R+, is a Poisson process, under different hypotheses
on the predictable representation of F via the Clark formula, cf. Section (6). When Jt = λt = 0,
t ∈ R+, we recover classical Gaussian estimates which can be independently obtained from the
expression of continuous martingales as time-changed Brownian motions.

We proceed as follows. In Section 3 we present convex concentration inequalities for martingales.
In Sections 4 and 5 these results are applied to derive convex concentration inequalities with
respect to Gaussian and Poisson distributions. In Section 6 we consider the case of predictable
representations obtained from the Clark formula. The proofs of the main results are formulated
using forward/backward stochastic calculus and arguments of [10]. Section 7 deals with an ap-
plication to normal martingales, and in the appendix (Section 8) we prove the forward-backward
Itô type change of variable formula which is used in the proof of our convex concentration in-
equalities. See [4] for a reference where forward Itô calculus with respect to Brownian motion
has been used for the proof of logarithmic Sobolev inequalities on path spaces.

2 Notation

Let (Ω,F , P ) be a probability space equipped with an increasing filtration (Ft)t∈R+ and a de-
creasing filtration (F∗

t )t∈R+ . Consider (Mt)t∈R+ an Ft-forward martingale and (M∗
t )t∈R+ an

F∗
t -backward martingale. We assume that (Mt)t∈R+ has right-continuous paths with left limits,

and that (M∗
t )t∈R+ has left-continuous paths with right limits. Denote respectively by (M c

t )t∈R+

and (M∗c
t )t∈R+ the continuous parts of (Mt)t∈R+ and (M∗

t )t∈R+ , and by

∆Mt = Mt −Mt− , ∆∗M∗
t = M∗

t −M∗
t+ ,

their forward and backward jumps. The processes (Mt)t∈R+ and (M∗
t )t∈R+ have jump measures

µ(dt, dx) =
∑
s>0

1{∆Ms 6=0}δ(s,∆Ms)(dt, dx),

and
µ∗(dt, dx) =

∑
s>0

1{∆∗M∗
s 6=0}δ(s,∆∗M∗

s )(dt, dx),

where δ(s,x) denotes the Dirac measure at (s, x) ∈ R+ × R. Denote by ν(dt, dx) and ν∗(dt, dx)
the (Ft)t∈R+ and (F∗

t )t∈R+-dual predictable projections of µ(dt, dx) and µ∗(dt, dx), i.e.∫ t

0

∫ ∞

−∞
f(s, x)(µ(ds, dx)− ν(ds, dx)) and

∫ ∞

t

∫ ∞

−∞
g(s, x)(µ∗(ds, dx)− ν∗(ds, dx))

are respectively Ft-forward and F∗
t -backward local martingales for all sufficiently integrable Ft-

predictable, resp. F∗
t -predictable, process f , resp. g. The quadratic variations ([M,M ])t∈R+ ,

([M∗,M∗])t∈R+ are defined as the limits in uniform convergence in probability

[M,M ]t = lim
n→∞

n∑
i=1

|Mtni
−Mtni−1

|2,
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and

[M∗,M∗]t = lim
n→∞

n−1∑
i=0

|M∗
tni
−M∗

tni+1
|2,

for all refining sequences {0 = tn0 ≤ tn1 ≤ · · · ≤ tnkn
= t}, n ≥ 1, of partitions of [0, t] tending to

the identity. We then let Md
t = Mt −M c

t , M∗d
t = M∗

t −M∗c
t ,

[Md,Md]t =
∑

0<s≤t

|∆Ms|2, [M∗d,M∗d]t =
∑

0≤s<t

|∆∗M∗
s |2,

and

〈M c,M c〉t = [M,M ]t − [Md,Md]t, 〈M∗c,M∗c〉t = [M∗,M∗]t − [M∗d,M∗d]t,

t ∈ R+. Note that ([M,M ]t)t∈R+ , (〈M,M〉t)t∈R+ , ([M∗,M∗]t)t∈R+ and (〈M∗,M∗〉t)t∈R+ are
Ft-adapted, but ([M∗,M∗]t)t∈R+ and (〈M∗,M∗〉t)t∈R+ are not F∗

t -adapted. The pairs

(ν(dt, dx), 〈M c,M c〉) and (ν∗(dt, dx), 〈M∗c,M∗c〉)

are called the local characteristics of (Mt)t∈R+ , cf. [8] in the forward case. Denote
by (〈Md,Md〉t)t∈R+ , (〈M∗d,M∗d〉t)t∈R+ the conditional quadratic variations of (Md

t )t∈R+ ,
(M∗d

t )t∈R+ , with

d〈Md,Md〉t =
∫

R
|x|2ν(dt, dx) and d〈M∗d,M∗d〉t =

∫
R
|x|2ν∗(dt, dx).

The conditional quadratic variations (〈M,M〉t)t∈R+ , (〈M∗,M∗〉t)t∈R+ of (Mt)t∈R+ and (M∗
t )t∈R+

satisfy

〈M,M〉t = 〈M c,M c〉t + 〈Md,Md〉t, and 〈M∗,M∗〉t = 〈M∗c,M∗c〉t + 〈M∗d,Md∗〉t,

t ∈ R+. In the sequel, given η, resp. η∗, a forward, resp. backward, adapted and sufficiently
integrable process, the notation

∫ t
0 ηudMu, resp.

∫∞
t η∗udMu, will respectively denote the right,

resp. left, continuous version of the indefinite stochastic integral, i.e. we have∫ t

0
ηudMu =

∫ t+

0
ηudMu and

∫ ∞

t
η∗udMu =

∫ ∞

t−
η∗udMu, t ∈ R+, dP − a.e.

3 Convex concentration inequalities for martingales

In the sequel we assume that

(Mt)t∈R+ is an F∗
t -adapted, Ft-forward martingale, (3.1)

and
(M∗

t )t∈R+ is an Ft-adapted, F∗
t -backward martingale, (3.2)

whose characteristics have the form

ν(du, dx) = νu(dx)du and ν∗(du, dx) = ν∗u(dx)du, (3.3)

490



and
d〈M c,M c〉t = |Ht|2dt, and d〈M∗c,M∗c〉t = |H∗

t |2dt, (3.4)

where (Ht)t∈R+ , (H∗
t )t∈R+ , are respectively predictable with respect to (Ft)t∈R+ and (F∗

t )t∈R+ .

Hypotheses (3.1) and (3.2) may seem artificial but they are actually crucial to the proofs of our
main results. Indeed, Theorem 3.2 and Theorem 3.3 are based on a forward/backward Itô type
change of variable formula (Theorem 8.1 below) for (Mt,M

∗
t )t∈R+ , in which (3.1) and (3.2) are

needed in order to make sense of the integrals∫ t

s+

φ′(Mu− + M∗
u)dMu

and ∫ t−

s
φ′(Mu + M∗

u+)d∗M∗
u .

Note that in our main applications (see Sections 4, 5, 6 and 7), these hypotheses are fulfilled by
construction of Ft and F∗

t .

Recall the following Lemma.

Lemma 3.1. Let m1, m2 be two measures on R such that m1([x,∞)) ≤ m2([x,∞)) < ∞,
x ∈ R. Then for all non-decreasing and m1, m2-integrable function f on R we have∫ ∞

−∞
f(x)m1(dx) ≤

∫ ∞

−∞
f(x)m2(dx).

If m1, m2 are probability measures then the above property corresponds to stochastic domination
for random variables of respective laws m1, m2.

Theorem 3.2. Let

ν̄u(dx) = xνu(dx), ν̄∗u(dx) = xν∗u(dx), u ∈ R+,

and assume that:

i) ν̄u([x,∞)) ≤ ν̄∗u([x,∞)) < ∞, x, u ∈ R, and

ii) |Hu| ≤ |H∗
u|, dPdu− a.e.

Then we have:
E[φ(Mt + M∗

t )] ≤ E[φ(Ms + M∗
s )], 0 ≤ s ≤ t, (3.5)

for all convex functions φ : R → R.

Next is a different version of the same result, under L2 hypotheses.
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Theorem 3.3. Let

ν̃u(dx) = |x|2νu(dx) + |Hu|2δ0(dx), ν̃∗u(dx) = |x|2ν∗u(dx) + |H∗
u|2δ0(dx),

u ∈ R+, and assume that:

ν̃u([x,∞)) ≤ ν̃∗u([x,∞)) < ∞, x ∈ R, u ∈ R+. (3.6)

Then we have:
E[φ(Mt + M∗

t )] ≤ E[φ(Ms + M∗
s )], 0 ≤ s ≤ t, (3.7)

for all convex functions φ : R → R such that φ′ is convex.

Remark 3.4. Note that in both theorems, (Mt)t≥0 and (M∗
t )t≥0 do not have to be independent.

In the proof we may assume that φ is C2 since a convex φ can be approximated by an increasing
sequence of C2 convex Lipschitz functions, and the results can then be extended to the general
case by an application of the monotone convergence theorem. In order to prove Theorem 3.2
and Theorem 3.3, we apply Itô′s formula for forward/backward martingales (Theorem 8.1 in the
Appendix Section 8), to f(x1, x2) = φ(x1 + x2):

φ(Mt + M∗
t ) = φ(Ms + M∗

s )

+
∫ t

s+

φ′(Mu− + M∗
u)dMu +

1
2

∫ t

s
φ′′(Mu + M∗

u)d〈M c,M c〉u

+
∑

s<u≤t

(
φ(Mu− + M∗

u + ∆Mu)− φ(Mu− + M∗
u)−∆Muφ′(Mu− + M∗

u)
)

−
∫ t−

s
φ′(Mu + M∗

u+)d∗M∗
u −

1
2

∫ t

s
φ′′(Mu + M∗

u)d〈M∗c,M∗c〉u

−
∑

s≤u<t

(
φ(Mu + M∗

u+ + ∆∗M∗
u)− φ(Mu + M∗

u+)−∆∗M∗
uφ′(Mu + M∗

u+)
)
,

0 ≤ s ≤ t, where d and d∗ denote the forward and backward Itô differential, respectively defined
as the limits of the Riemann sums

n∑
i=1

(Mtni
−Mtni−1

)φ′(Mtni−1
+ M∗

tni−1
)

and
n−1∑
i=0

(M∗
tni
−M∗

tni+1
)φ′(Mtni+1

+ M∗
tni+1

)

for all refining sequences {s = tn0 ≤ tn1 ≤ · · · ≤ tnkn
= t}, n ≥ 1, of partitions of [s, t] tending to

the identity.

Proof of Theorem 3.2. Taking expectations on both sides of the above Itô formula we get

E[φ(Mt + M∗
t )] = E[φ(Ms + M∗

s )] +
1
2

E
[∫ t

s
φ′′(Mu + M∗

u)d(〈M c,M c〉u − 〈M∗c,M∗c〉u)
]
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+E
[∫ t

s

∫ +∞

−∞
(φ(Mu + M∗

u + x)− φ(Mu + M∗
u)− xφ′(Mu + M∗

u))νu(dx)du

]
−E

[∫ t

s

∫ +∞

−∞
(φ(Mu + M∗

u + x)− φ(Mu + M∗
u)− xφ′(Mu + M∗

u))ν∗u(dx)du

]
= E[φ(Ms + M∗

s )] +
1
2

E
[∫ t

s
φ′′(Mu + M∗

u)(|Hu|2 − |H∗
u|2)du

]
+E

[∫ t

s

∫ +∞

−∞
ϕ(x,Mu + M∗

u)(ν̄u(dx)− ν̄∗u(dx))du

]
,

where

ϕ(x, y) =
φ(x + y)− φ(y)− xφ′(y)

x
, x, y ∈ R.

The conclusion follows from the hypotheses and the fact that since φ is convex, the function
x 7→ ϕ(x, y) is increasing in x ∈ R for all y ∈ R. �

Proof of Theorem 3.3. Using the following version of Taylor’s formula

φ(y + x) = φ(y) + xφ′(y) + |x|2
∫ 1

0
(1− τ)φ′′(y + τx)dτ, x, y ∈ R,

which is valid for all C2 functions φ, we get

E[φ(Mt + M∗
t )] = E[φ(Ms + M∗

s )]

+
1
2

E
[∫ t

s
φ′′(Mu + M∗

u)(|Hu|2 − |H∗
u|2)du

]
+E

[∫ t

s

∫ +∞

−∞
|x|2

∫ 1

0
(1− τ)φ′′(Mu + M∗

u + τx)dτνu(dx)du

]
−E

[∫ t

s

∫ +∞

−∞
|x|2

∫ 1

0
(1− τ)φ′′(Mu + M∗

u + τx)dτν∗u(dx)du

]
= E[φ(Ms + M∗

s )]

+E
[∫ 1

0
(1− τ)

∫ t

s

∫ +∞

−∞
φ′′(Mu + M∗

u + τx)(ν̃u(dx)− ν̃∗u(dx))dudτ

]
,

and the conclusion follows from the hypothesis and the fact that φ is convex implies that φ′′ is
non-decreasing. �

Note that if φ is C2 and φ′′ is also convex, then it suffices to assume that ν̃u is more convex
concentrated than ν̃∗u instead of hypothesis (3.6) in Theorem 3.3.

Remark 3.5. In case |Ht| = |H∗
t | and νt = ν∗t , dPdt-a.e., from the proof of Theorem 3.2 and

Theorem 3.3 we get the identity

E[φ(Mt + M∗
t )] = E[φ(Ms + M∗

s )], 0 ≤ s ≤ t, (3.8)

for all sufficiently integrable functions φ : R → R.

493



In particular, Relation (3.8) extends its natural counterpart in the independent increment case:
given (Zs)s∈[0,t], (Z̃s)s∈[0,t] two independent copies of a Lévy process without drift, define the
backward martingale (Z∗

s )s∈[0,t] as Z∗
s = Z̃t−s, s ∈ [0, t], then by convolution E[φ(Zs + Z∗

s )] =
E[φ(Zt)] does clearly not depend on s ∈ [0, t].

Remark 3.6. If φ is non-decreasing, the proofs and statements of Theorem 3.2, Theorem 3.3,
Corollary 3.9 and Corollary 3.8 extend to semi-martingales (M̂t)t∈R+, (M̂∗

t )t∈R+ represented as

M̂t = Mt +
∫ t

0
αsds and M̂∗

t = M∗
t +

∫ +∞

t
βsds, (3.9)

provided (αt)t∈R+, (βt)t∈R+, are respectively Ft and F∗
t -adapted with αt ≤ βt, dPdt-a.e.

Let now (FM
t )t∈R+ , resp. (FM∗

t )t∈R+ , denote the forward, resp. backward, filtration generated
by (Mt)t∈R+ , resp. (M∗

t )t∈R+ .

Corollary 3.7. Under the hypothesis of Theorem 3.2, if further E[M∗
t |FM

t ] = 0, t ∈ R+, then

E[φ(Mt)] ≤ E[φ(Ms + M∗
s )], 0 ≤ s ≤ t. (3.10)

Proof. From (3.19) we get

E [φ (Ms + M∗
s )] ≥ E [φ(Mt + M∗

t )]
= E

[
E
[
φ(Mt + M∗

t )|FM
t

]]
≥ E

[
φ
(
Mt + E[M∗

t |FM
t ]
)]

= E [φ(Mt)] ,

0 ≤ s ≤ t, where we used Jensen’s inequality. �

In particular, if M0 = E[Mt] is deterministic (or FM
0 is the trivial σ-field), Corollary 3.7 shows

that Mt − E[Mt] is more concentrated than M∗
0 :

E[φ(Mt − E[Mt])] ≤ E[φ(M∗
0 )], t ≥ 0.

The filtrations (Ft)t∈R+ and (F∗
t )t∈R+ considered in Theorem 3.2 can be taken as

Ft = FM∗
0 ∨FM

t , F∗
t = FM

∞ ∨FM∗
t , t ∈ R+, provided (Mt)t∈R+ and (M∗

t )t∈R+ are independent.
In this case, if additionally we have M∗

T = 0, then E[M∗
t |FM

t ] = E[M∗
t ] = E[M∗

T ] = 0,
0 ≤ t ≤ T , hence the hypothesis of Corollary 3.7 is also satisfied. However the independence of
〈M,M〉t with 〈M∗,M∗〉t, t ∈ R+, is not compatible (except in particular situations) with the
assumptions imposed in Theorem 3.2.

In applications to convex concentration inequalities between random variables (admitting a
predictable representation) and Poisson or Gaussian random variables, the independence of
(Mt)t∈R+ with (M∗

t )t∈R+ will not be required, see Sections 4 and 5.
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The case of bounded jumps

Assume now that ν∗(dt, dx) has the form

ν∗(dt, dx) = λ∗t δkdt, (3.11)

where k ∈ R+ and (λ∗t )t∈R+ is a positive F∗
t -predictable process. Let

λ1,t =
∫ +∞

−∞
xνt(dx), λ2

2,t =
∫ +∞

−∞
|x|2νt(dx), t ∈ R+,

denote respectively the compensator and quadratic variation of the jump part of (Mt)t∈R+ , under
the respective assumptions∫ +∞

−∞
|x|νt(dx) < ∞, and

∫ +∞

−∞
|x|2νt(dx) < ∞, (3.12)

t ∈ R+, P -a.s.

Corollary 3.8. Assume that (Mt)t∈R+ and (M∗
t )t∈R+ have jump characteristics satisfying (3.11)

and (3.12), that (Mt)t∈R+ is F∗
t -adapted, and that (M∗

t )t∈R+ is Ft-adapted. Then we have:

E[φ(Mt + M∗
t )] ≤ E[φ(Ms + M∗

s )], 0 ≤ s ≤ t, (3.13)

for all convex functions φ : R → R, provided any of the three following conditions is satisfied:

i) 0 ≤ ∆Mt ≤ k, dPdt− a.e., and

|Ht| ≤ |H∗
t |, λ1,t ≤ kλ∗t , dPdt− a.e.,

ii) ∆Mt ≤ k, dPdt− a.e., and

|Ht| ≤ |H∗
t |, λ2

2,t ≤ k2λ∗t , dPdt− a.e.,

iii) ∆Mt ≤ 0, dPdt− a.e., and

|Ht|2 + λ2
2,t ≤ |H∗

t |2 + k2λ∗t , dPdt− a.e.,

with moreover φ′ convex in cases ii) and iii).

Proof. The conditions 0 ≤ ∆Mt ≤ k, ∆Mt ≤ k, ∆Mt ≤ 0, are respectively equivalent to
νt([0, k]c) = 0, νt((k,∞)) = 0, νt((0,∞)) = 0, hence under condition (i), the result follows from
Theorem 3.2-i), and under conditions (ii)− (iii) it is an application of Theorem 3.2-ii). �

For example we may take (Mt)t∈R+ and (M∗
t )t∈R+ of the form

Mt = M0 +
∫ t

0
HsdWs +

∫ t

0

∫ +∞

−∞
x(µ(ds, dx)− νs(dx)ds), t ≥ 0, (3.14)

where (Wt)t∈R+ is a standard Brownian motion, and

M∗
t =

∫ +∞

t
H∗

s d∗W ∗
s + k

(
Z∗

t −
∫ +∞

t
λ∗sds

)
, (3.15)

where (W ∗
t )t∈R+ is a backward Brownian motion and (Z∗

t )t∈R+ is a backward point process with
intensity (λ∗t )t∈R+ . However in Section 5 we will consider an example for which the decomposition
(3.15) does not hold.
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The case of point processes

In particular, (Mt)t∈R+ and (M∗
t )t∈R+ can be taken as

Mt = M0 +
∫ t

0
HsdWs +

∫ t

0
Js(dZs − λsds), t ∈ R+, (3.16)

and

M∗
t =

∫ +∞

t
H∗

s d∗W ∗
s +

∫ +∞

t
J∗s (d∗Z∗

s − λ∗sds), t ∈ R+, (3.17)

where (Wt)t∈R+ is a standard Brownian motion, (Zt)t∈R+ is a point process with intensity
(λt)t∈R+ , (W ∗

t )t∈R+ is a backward standard Brownian motion, and (Z∗
t )t∈R+ is a backward

point process with intensity (λ∗t )t∈R+ , and (Ht)t∈R+ , (Jt)t∈R+ , resp. (H∗
t )t∈R+ , (J∗t )t∈R+ are

predictable with respect to (Ft)t∈R+ , resp. (F∗
t )t∈R+ .

In this case, taking

ν(dt, dx) = νt(dx) = λtδJt(dx)dt and ν∗(dt, dx) = ν∗t (dx) = λ∗t δJ∗t
(dx)dt (3.18)

in Theorem 3.3 yields the following corollary.

Corollary 3.9. Let (Mt)t∈R+, (M∗
t )t∈R+ have the jump characteristics (3.18) and assume that

(Mt)t∈R+ is F∗
t -adapted and (M∗

t )t∈R+ is Ft-adapted. Then we have:

E[φ(Mt + M∗
t )] ≤ E[φ(Ms + M∗

s )], 0 ≤ s ≤ t, (3.19)

for all convex functions φ : R → R, provided any of the three following conditions are satisfied:

i) 0 ≤ Jt ≤ J∗t , λtdPdt− a.e. and

|Ht| ≤ |H∗
t |, λtJt ≤ λ∗t J

∗
t , dPdt− a.e.,

ii) Jt ≤ J∗t , λtdPdt− a.e., and

|Ht| ≤ |H∗
t |, λt|Jt|2 ≤ λ∗t |J∗t |2, dPdt− a.e..

iii) Jt ≤ 0 ≤ J∗t , λtdPdt− a.e., and

|Ht|2 + λt|Jt|2 ≤ |H∗
t |2 + λ∗t |J∗t |2, dPdt− a.e..

with moreover φ′ convex in cases ii) and iii).

Note that condition i) in Corollary 3.9 can be replaced with the stronger condition:

i’) 0 ≤ Jt ≤ J∗t , λtdPdt− a.e. and

|Ht| ≤ |H∗
t |, λt ≤ λ∗t , dPdt− a.e.
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4 Application to point processes

Let (Wt)t∈R+ and (Zt)t∈R+ be a standard Brownian motion and a point process, generating
a filtration (FM

t )t∈R+ . We will assume that (Wt)t∈R+ is also an FM
t -Brownian motion and

that (Zt)t∈R+ has compensator (λt)t∈R+ with respect to (FM
t )t∈R+ , which does not in general

require the independence of (Wt)t∈R+ from (Zt)t∈R+ . Consider F a random variable with the
representation

F = E[F ] +
∫ +∞

0
HtdWt +

∫ +∞

0
Jt(dZt − λtdt), (4.1)

where (Hu)u∈R+ is a square-integrable FM
t -predictable process and (Jt)t∈R+ is an FM

t -
predictable process which is either square-integrable or positive and integrable. Theorem 4.1 is
a consequence of Corollary 3.9 above, and shows that the possible dependence of (Wt)t∈R+ from
(Zt)t∈R+ can be decoupled in terms of independent Gaussian and Poisson random variables.
Note that inequality (4.2) below is weaker than (4.3) but it holds for a wider class of functions,
i.e. for all convex functions instead of all convex functions having a convex derivative.

Theorem 4.1. Let F have the representation (4.1):

F = E[F ] +
∫ +∞

0
HtdWt +

∫ +∞

0
Jt(dZt − λtdt),

and let Ñ(c), W (β2) be independent random variables with compensated Poisson law of intensity
c > 0 and centered Gaussian law with variance β2 ≥ 0, respectively.

i) Assume that 0 ≤ Jt ≤ k, dPdt-a.e., for some k > 0, and let

β2
1 =

∥∥∥∥∫ +∞

0
|Ht|2dt

∥∥∥∥
∞

and α1 =
∥∥∥∥∫ +∞

0
Jtλtdt

∥∥∥∥
∞

.

Then we have
E[φ(F − E[F ])] ≤ E

[
φ
(
W (β2

1) + kÑ(α1/k)
)]

, (4.2)

for all convex functions φ : R → R.

ii) Assume that Jt ≤ k, dPdt-a.e., for some k > 0, and let

β2
2 =

∥∥∥∥∫ +∞

0
|Ht|2dt

∥∥∥∥
∞

and α2
2 =

∥∥∥∥∫ +∞

0
|Jt|2λtdt

∥∥∥∥
∞

.

Then we have
E[φ(F − E[F ])] ≤ E

[
φ
(
W (β2

2) + kÑ(α2
2/k2)

)]
, (4.3)

for all convex functions φ : R → R such that φ′ is convex.

iii) Assume that Jt ≤ 0, dPdt-a.e., and let

β2
3 =

∥∥∥∥∫ +∞

0
|Ht|2dt +

∫ +∞

0
|Jt|2λtdt

∥∥∥∥
∞

.

Then we have
E[φ(F − E[F ])] ≤ E

[
φ(W (β2

3))
]
, (4.4)

for all convex functions φ : R → R such that φ′ is convex.
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Proof. Consider the FM
t -martingale

Mt = E[F |FM
t ]− E[F ] =

∫ t

0
HsdWs +

∫ t

0
Js(dZs − λsds), t ≥ 0,

and let (N̂s)s∈R+ , (Ŵs)s∈R+ respectively denote a left-continuous standard Poisson process
and a standard Brownian motion which are assumed to be mutually independent, and also
independent of (FM

s )s∈R+ .

i)− ii) For p = 1, 2, let the filtrations (Ft)t∈R+ and (F∗
t )t∈R+ be defined by

F∗
t = FM

∞ ∨ σ(Ŵβ2
p
− ŴV 2

p (s), N̂αp
p/kp − N̂Up

p (s)/kp : s ≥ t},

and Ft = σ(Ŵs, N̂s : s ≥ 0) ∨ FM
t , t ∈ R+, and let

M∗
t = Ŵβ2

p
− ŴV 2

p (t) + k(N̂αp
p/kp − N̂Up

p (t)/kp)− (αp
p − Up

p (t))/kp−1, (4.5)

where

V 2
p (t) =

∫ t

0
|Hs|2ds and Up

p (t) =
∫ t

0
Jp

s λsds, P − a.s., s ≥ 0.

Then (M∗
t )t∈R+ satisfies the hypothesis of Corollary 3.9−i) − ii), as well as the condition

E[M∗
t |FM

t ] = 0, t ∈ R+, with H∗
s = Hs, J∗s = k, λ∗s = Jp

s λs/kp, dPds-a.e., hence

E[φ(Mt)] ≤ E[φ(M∗
0 )],

and letting t go to infinity we obtain (4.2) and (4.3), respectively for p = 1 and p = 2.

iii) Let
M∗

s = Wβ2
3
−WU2

3 (s), (4.6)

where
U2

3 (s) =
∫ s

0
|Hu|2du +

∫ s

0
|Ju|2λudu, P − a.s.

Then (M∗
t )t∈R+ satisfies the hypothesis of Corollary 3.9−iii) with |H∗

s |2 = |Hs|2 + |Js|2λs and
λ∗s = J∗s = 0, dPds-a.e., hence

E[φ(Mt)] ≤ E[φ(M∗
0 )],

and letting t go to infinity we obtain (4.4). �

Remark 4.2. The proof of Theorem 4.1 can also be obtained from Corollary 3.8.

Proof. Let
µ(dt, dx) =

∑
∆Zs 6=0

δ(s,Js)(dt, dx), νt(dx) = λtδJt(dx).

i) − ii) In both cases p = 1, 2, let (Ft)t∈R+ , (F∗
t )t∈R+ and (M∗

t )t∈R+ be defined in (4.5), with
V 2

p (t) =
∫ t
0 |Hs|2ds and Up

p (t) =
∫ t
0 |Js|pds, P -a.s., t ≥ 0. Then (M∗

t )t∈R+ satisfies the hypothesis
of Corollary 3.8−i)− ii), with H∗

s = Hs, ν∗s = |Js|p/kp, dPds-a.e.

iii) Let (M∗
s )s∈R+ be defined as in (4.6), and let U2

3 (s) =
∫ s
0 |Hu|2du +

∫ s
0 |Ju|2du, |H∗

s |2 =
|Hs|2 + |Js|2 and ν∗s = 0, dPds-a.e. �
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In the pure jump case, Theorem 4.1-ii) yields

P (MT ≥ x) ≤ exp
(

y

k
−
(

y

k
+

α2
2

k2

)
log
(

1 +
ky

α2
2

))
≤ exp

(
− y

2k
log
(

1 +
ky

α2
2

))
,

y > 0, with α2
2 = ‖〈M,M〉T ‖∞, cf. Theorem 23.17 of [9], although some differences in the

hypotheses make the results not directly comparable: here no lower bound is assumed on jump
sizes, and the presence of a continuous component is treated in a different way.

The results of this section and the next one apply directly to solutions of stochastic differential
equations such as

dXt = a(t, Xt)dWt + b(t, Xt)(dZt − λtdt),

with Ht = a(t, Xt), Jt = b(t, Xt), t ∈ R+, for which the hypotheses can be formulated directly
on the coefficients a(·, ·), b(·, ·) without explicit knowledge of the solution.

5 Application to Poisson random measures

Since a large family of point processes can be represented as stochastic integrals with respect
to Poisson random measures (see e.g. [7], Section 4, Ch. XIV), it is natural to investigate the
consequences of Theorem 3.2 in the setting of Poisson random measures. Let σ be a Radon
measure on Rd, diffuse on Rd \ {0}, such that σ({0}) = 1, and∫

Rd\{0}
(|x|2 ∧ 1)σ(dx) < ∞,

and consider a random measure ω(dt, dx) of the form

ω(dt, dx) =
∑
i∈N

δ(ti,xi)(dt, dx)

identified to its (locally finite) support {(ti, xi)}i∈N. We assume that ω(dt, dx) is Poisson dis-
tributed with intensity dtσ(dx) on R+ × Rd \ {0}, and consider a standard Brownian motion
(Wt)t∈R+ , independent of ω(dt, dx), under a probability P on Ω. Let

Ft = σ(Ws, ω([0, s]×A) : 0 ≤ s ≤ t, A ∈ Bb(Rd \ {0})), t ∈ R+,

where Bb(Rd \ {0}) = {A ∈ B(Rd \ {0}) : σ(A) < ∞}. The stochastic integral of a square-
integrable Ft-predictable process u ∈ L2(Ω× R+ × Rd, dP × dt× dσ) is written as∫ +∞

0
u(t, 0)dWt +

∫
R+×Rd\{0}

u(t, x)(ω(dt, dx)− σ(dx)dt), (5.1)

and satisfies the Itô isometry

E

(∫ +∞

0
u(t, 0)dWt +

∫ +∞

0

∫
Rd\{0}

u(t, x)(ω(dt, dx)− σ(dx)dt)

)2
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= E

[∫ +∞

0
u2(t, 0)dt

]
+ E

[∫
R+×Rd\{0}

u2(t, x)σ(dx)dt

]

= E

[∫
R+×Rd

u2(t, x)σ(dx)dt

]
. (5.2)

Recall that due to the Itô isometry, the predictable and adapted version of u can be used
indifferently in the stochastic integral (5.1), cf. p. 199 of [5] for details. When u ∈ L2(R+ ×
Rd, dt× dσ), the characteristic function of

I1(u) :=
∫ +∞

0
u(t, 0)dWt +

∫
R+×Rd\{0}

u(t, x)(ω(dt, dx)− σ(dx)dt),

is given by the Lévy-Khintchine formula

E
[
eiI1(u)

]
= exp

(
−1

2

∫ +∞

0
u2(t, 0)dt +

∫
R+×Rd\{0}

(eiu(t,x) − 1− iu(t, x))σ(dx)dt

)
.

Theorem 5.1. Let F with the representation

F = E[F ] +
∫ +∞

0
HsdWs +

∫ +∞

0

∫
Rd\{0}

Ju,x(ω(du, dx)− σ(dx)du),

where (Ht)t∈R+ ∈ L2(Ω × R+), and (Jt,x)(t,x)∈R+×Rd are Ft-predictable with (Jt,x)(t,x)∈R+×Rd ∈
L1(Ω×R+×Rd \ {0}, dP ×dt×dσ) and (Jt,x)(t,x)∈R+×Rd ∈ L2(Ω×R+×Rd \ {0}, dP ×dt×dσ)
respectively in (i) and in (ii− iii) below.

i) Assume that 0 ≤ Ju,x ≤ k, dPσ(dx)du-a.e., for some k > 0, and let

β2
1 =

∥∥∥∥∫ +∞

0
|Hu|2du

∥∥∥∥
∞

, and α1(x) =
∥∥∥∥∫ +∞

0
Ju,xdu

∥∥∥∥
∞

, σ(dx)− a.e.

Then we have

E[φ(F − E[F ])] ≤ E

[
φ

(
W (β2

1) + kÑ

(∫
Rd\{0}

α1(x)
k

σ(dx)

))]
,

for all convex functions φ : R → R.

ii) Assume that Ju,x ≤ k, dPσ(dx)du-a.e., for some k > 0, and let

β2
2 =

∥∥∥∥∫ +∞

0
|Hu|2du

∥∥∥∥
∞

, and α2
2(x) =

∥∥∥∥∫ +∞

0
|Ju,x|2du

∥∥∥∥
∞

, σ(dx)− a.e.

Then we have

E[φ(F − E[F ])] ≤ E

[
φ

(
W (β2

2) + kÑ

(∫
Rd\{0}

α2
2(x)
k2

σ(dx)

))]
,

for all convex functions φ : R → R such that φ′ is convex.
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iii) Assume that Ju,x ≤ 0, dPσ(dx)du-a.e., and let

β2
3 =

∥∥∥∥∥
∫ +∞

0
|Hu|2du +

∫ +∞

0

∫
Rd\{0}

|Ju,x|2duσ(dx)

∥∥∥∥∥
∞

.

Then we have
E[φ(F − E[F ])] ≤ E

[
φ(W (β2

3))
]
,

for all convex functions φ : R → R such that φ′ is convex.

Proof. The proof is similar to that of Theorem 4.1, replacing the use of Corollary 3.9 by that of
Corollary 3.8. Let

Mt = M0 +
∫ t

0
HudWu +

∫
Rd\{0}

∫ t

0
Ju,x(ω(du, dx)− σ(dx)du),

generating the filtration (FM
t )t∈R+ . Here, νt(dx) denotes the image measure of σ(dx) by the

mapping x 7→ Jt,x, t ≥ 0, and µ(dt, dx) denotes the image measure of ω(dt, dx) by (s, y) 7→
(s, Js,y), i.e.

µ(dt, dx) =
∑

ω({(s,y)})=1

δ(s,Js,y)(dt, dx).

i)− ii) For p = 1, 2, let the filtrations (Ft)t∈R+ and (F∗
t )t∈R+ be defined by

F∗
t = FM

∞ ∨ σ(Ŵβ2
p
− ŴV 2

p (s) + N̂αp
p/kp − N̂Up

p (s)/kp : s ≥ t}),

and
Ft = FM

t ∨ σ(Ŵs, N̂s : s ≥ 0), t ∈ R+,

and let
M∗

t = Ŵβ2
p
− ŴV 2

p (t) + k(N̂αp
p/kp − N̂Up

p (t)/kp)− (αp
p − Up

p (t))/kp−1,

where

V 2
p (t) =

∫ t

0
|Hs|2ds and Up

p (t) =
∫ t

0

∫ +∞

−∞
xpνs(dx)ds, P − a.s., t ≥ 0.

Then (M∗
t )t∈R+ satisfies the hypothesis of Theorem 3.2−i) − ii), and also the condition

E[M∗
t |FM

t ] = 0, t ∈ R+, with H∗
s = Hs, ν∗s =

∫ +∞
−∞ xpνs(dx), dPds-a.e., hence

E[φ(Mt)] ≤ E[φ(M∗
0 )].

Letting t go to infinity we obtain (4.2) and (4.3), respectively for p = 1, 2.

iii) Let
M∗

s = Wβ2
3
−WU2

3 (s),

where

U2
3 (s) =

∫ s

0
|Hu|2du +

∫ s

0

∫ +∞

−∞
|x|2νu(dx)du, P − a.s., s ≥ 0.

501



Then (M∗
t )t∈R+ satisfies the hypotheses of Theorem 3.2−iii) with

|H∗
s |2 = |Hs|2 +

∫ +∞

−∞
|x|2νs(dx)

and ν∗s = 0, dPds-a.e., hence
E[φ(Mt)] ≤ E[φ(M∗

0 )],

and letting t go to infinity we obtain (4.4). �

In Theorem 4.1, (Zt)t∈R+ can be taken equal to the standard Poisson process (Nt)t∈R+ , which also
satisfies the hypotheses of Theorem 5.1 since it can be defined with d = 1 and σ(dx) = 1[0,1](x)dx
as

Nt = ω([0, t]× [0, 1]), t ≥ 0.

In other terms, being a point process, (Nt)t∈R+ is at the intersection of Corollary 3.8 and
Corollary 3.9, as already noted in Remark 4.2.

6 Clark formula

In this section we examine the consequence of results of Section 5 when the predictable repre-
sentation of random variables is obtained via the Clark formula. We work on a product

(Ω, P ) = (ΩW × ΩX , PW ⊗ PX),

where (ΩW , PW ) is the classical Wiener space on which is defined a standard Brownian motion
(Wt)t∈R+ and

ΩX =

{
ωX(dt, dx) =

∑
i∈N

δ(ti,xi)(dt, dx) : (ti, xi) ∈ R+ × (Rd \ {0}), i ∈ N

}
.

The elements of ΩX are identified to their (by assumption locally finite) support {(ti, xi)}i∈N,
and ωX 7→ ωX(dt, dx) is Poisson distributed under PX with intensity dtσ(dx) on R+ ×Rd \ {0}.

The multiple stochastic integral In(hn) of hn ∈ L2(R+×Rd, dtdσ)◦n can be defined by induction
with

In(hn) = n

∫ ∞

0
In−1(πn

t,0hn)dWt + n

∫
R+×Rd

In−1(πn
t,xhn)(ωX(dt, dx)− σ(dx)dt),

where

(πn
t,xhn)(t1, x1, . . . , tn−1, xn−1) := hn(t1, x1, . . . , tn−1, xn−1, t, x)1[0,t](t1) · · · 1[0,t](tn−1),

t1, . . . , tn−1, t ∈ R+, x1, . . . , xn−1, x ∈ Rd. The isometry property

E
[
In(hn)2

]
= n!‖hn‖2

L2(R+×Rd,dt⊗σ)⊗n
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follows by induction from (5.2). Let the linear, closable, finite difference operator

D : L2(Ω, P ) −→ L2(Ω× R+ × Rd, dP × dt× dσ)

be defined as
Dt,xIn(fn) = nIn−1(fn(∗, t, x)), σ(dx)dtdP − a.e.,

cf. e.g. [12], [17], with in particular

Dt,0In(fn) = nIn−1(fn(∗, t, 0)), dtdP − a.e.,

Recall that the closure of D is also linear, and given F ∈ Dom(D), for σ(dx)dt-a.e. every
(t, x) ∈ R+ × (Rd \ {0}) we have

Dt,xF (ωW , ωX) = F (ωW , ωX ∪ {(t, x)})− F (ωW , ωX), P (dω)− a.s.,

cf. e.g. [12], [14], while Dt,0 has the derivation property, and

Dt,0f(I1(f
(1)
1 ), . . . , I1(f

(n)
1 )) =

n∑
k=1

f
(i)
1 (t, 0)∂kf(I1(f

(1)
1 ), . . . , I1(f

(n)
1 )),

dtdP -a.e., f
(1)
1 , . . . , f

(d)
1 ∈ L2(R+ × Rd, dtdσ), f ∈ C∞b (Rn), cf. e.g. [16].

The Clark formula for Lévy processes, cf. [13], [16], states that every F ∈ L2(Ω) has the
representation

F = E[F ] +
∫ +∞

0
E[Ds,0F |Fs]dWs +

∫ +∞

0

∫
Rd\{0}

E[Ds,xF |Fs](ωX(ds, dx)− σ(dx)ds). (6.1)

(The formula originally holds for F in the domain of D but its extension to L2(Ω) is straight-
forward, cf. [16], Proposition 12). Theorem 5.1 immediately yields the following corollary when
applied to any F ∈ L2(Ω) represented as in (6.1).

Corollary 6.1. Let F ∈ L2(Ω) have the representation (6.1), and assume additionally that∫ +∞
0

∫
Rd\{0} |E[Ds,xF |Fs]|σ(dx)ds < ∞ a.s. in (i) below.

i) Assume that 0 ≤ E[Du,xF |Fu] ≤ k, dPσ(dx)du-a.e., for some k > 0, and let

β2
1 =

∥∥∥∥∫ +∞

0
(E[Du,0F |Fu])2du

∥∥∥∥
∞

, and α1(x) =
∥∥∥∥∫ +∞

0
E[Du,xF |Fu]du

∥∥∥∥
∞

,

σ(dx)-a.e. Then we have

E[φ(F − E[F ])] ≤ E

[
φ

(
W (β2

1) + kÑ

(∫
Rd\{0}

α1(x)
k

σ(dx)

))]
, (6.2)

for all convex functions φ : R → R.
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ii) Assume that E[Du,xF |Fu] ≤ k, dPσ(dx)du-a.e., for some k > 0, and let

β2
2 =

∥∥∥∥∫ +∞

0
(E[Du,0F |Fu])2du

∥∥∥∥
∞

, and α2
2(x) =

∥∥∥∥∫ +∞

0
(E[Du,xF |Fu])2du

∥∥∥∥
∞

,

σ(dx)-a.e. Then we have

E[φ(F − E[F ])] ≤ E

[
φ

(
W (β2

2) + kÑ

(∫
Rd\{0}

α2
2(x)
k2

σ(dx)

))]
, (6.3)

for all convex functions φ : R → R such that φ′ is convex.

iii) Assume that E[Du,xF |Fu] ≤ 0, dPσ(dx)du-a.e., and let

β2
3 =

∥∥∥∥∥
∫ +∞

0
(E[Du,0F |Fu])2du +

∫ +∞

0

∫
Rd\{0}

(E[Du,xF |Fu])2duσ(dx)

∥∥∥∥∥
∞

.

Then we have
E[φ(F − E[F ])] ≤ E

[
φ(W (β2

3))
]
, (6.4)

for all convex functions φ : R → R such that φ′ is convex.

As mentioned in the introduction, from (6.4) we deduce the deviation inequality

P (F − E[F ] ≥ y) ≤ e2

2
P (W (β2

3) > y) ≤ e2

2
exp

(
− y2

2β2
3

)
, y > 0,

provided E[Du,xF |Fu] ≤ 0, dPσ(dx)du-a.e., and∫ +∞

0
(E[Du,0F |Fu])2du +

∫ +∞

0

∫
Rd\{0}

(E[Du,xF |Fu])2duσ(dx) ≤ β2
3 , P − a.s.

Similarly from (6.3) we get

P (E − E[F ] ≥ y) ≤ exp
(

y

k
−
(

y

k
+

α2
2

k2

)
log
(

1 +
ky

α2
2

))
, y > 0, (6.5)

provided
E[Dt,xF |Ft] ≤ k, dPσ(dx)dt− a.e., (6.6)

and ∫
R+×Rd\{0}

(E[Dt,xF |Ft])2σ(dx)dt ≤ α2
2, P − a.s.,

for some k > 0 and α2
2 > 0. In [1] this latter estimate has been proved using (modified)

logarithmic Sobolev inequalities and the Herbst method under the stronger condition

|Dt,xF | ≤ k, dPσ(dx)dt-a.e., (6.7)

and ∫
R+×Rd\{0}

|Dt,xF |2σ(dx)dt ≤ α2
2, P − a.s., (6.8)
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for some k > 0 and α2
2 > 0. In [19] it has been shown, using sharp logarithmic Sobolev

inequalities, that the condition |Dt,xF | ≤ k can be relaxed to

Dt,xF ≤ k, dPσ(dx)dt-a.e., (6.9)

which is nevertheless stronger than (6.6).

In the next result, which however imposes uniform almost sure bounds on DF , we consider
Poisson random measures on Rd \ {0} instead of R+ × Rd \ {0}.

Corollary 6.2. i) Assume that 0 ≤ DxF ≤ β(x) ≤ k, dPσ(dx)− a.e., where β(·) : Rd \ {0} →
[0, k] is deterministic and k > 0. Then for all convex functions φ we have

E[φ(F − E[F ])] ≤ E

[
φ

(
kÑ

(∫
Rd\{0}

β(x)
k

σ(dx)

))]
.

ii) Assume that |DxF | ≤ β(x) ≤ k, dPσ(dx)-a.e., where β(·) : R → [0, k] and k > 0 are
deterministic. Then for all convex functions φ with a convex derivative φ′ we have

E[φ(F − E[F ])] ≤ E

[
φ

(
kÑ

(∫
Rd\{0}

β2(x)
k2

σ(dx)

))]
.

iii) Assume that −β(x) ≤ DxF ≤ 0, dPσ(dx)-a.e., where β(·) : R → [0,∞) is deterministic.
Then for all convex functions φ with a convex derivative φ′ we have

E[φ(F − E[F ])] ≤ E

[
φ

(
W

(∫
Rd\{0}

β2(x)σ(dx)

))]
.

Proof. Assume that ωX(dt, dx) has intensity 1[0,1](s)σ(dx)ds on R+ × Rd \ {0}, we define the
random measure ω̂ on Rd \ {0} with intensity σ(dx) as

ω̂X(A) = ωX([0, 1]×A), A ∈ Bb(Rd \ {0}).

Then it remains to apply Corollary 6.1 to F̂ (ωW , ωX) := F (ωW , ω̂X). �

In Corollary 6.2, Rd \ {0} can be replaced by Rd without additional difficulty.

7 Normal martingales

In this section we interpret the above results in the framework of normal martingales. Let
(Zt)t∈R+ be a normal martingale, i.e. (Zt)t∈R+ is a martingale such that d〈Z,Z〉t = dt. If
(Zt)t∈R+ is in L4 and has the chaotic representation property it satisfies the structure equation

d[Z,Z]t = dt + γtdZt, t ∈ R+,

where (γt)t∈R+ is a predictable square-integrable process, cf. [6]. Recall that the cases γs = 0,
γs = c ∈ R \ {0}, γs = βZs, β ∈ (−2, 0), correspond respectively to Brownian motion, the
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compensated Poisson process with jump size c and intensity 1/c2, and to the Azéma martingales.
Consider the martingale

Mt = M0 +
∫ t

0
RudZu, (7.1)

where (Ru)u∈R+ ∈ L2(Ω× R+) is predictable. We have

d〈M c,M c〉t = 1{γt=0}|Rt|2dt

and
µ(dt, dx) =

∑
∆Zs 6=0

δ(s,Rsγs)(dt, dx), ν(dt, dx) =
1
γ2

t

∑
∆Zs 6=0

δRsγs(dx)dt,

and the Itô formula, cf. [6]:

φ(Mt) = φ(Ms) +
∫ t

s
1{γu=0}Ruφ′(Mu)dZu +

∫ t

s
1{γu 6=0}

φ(Mu− + γuRu)− φ(Mu−)
γu

dZu

+
1
2

∫ t

s
1{γu=0}|Ru|2φ′′(Mu)du +

∫ t

s
1{γu 6=0}

φ(Mu + γuRu)− φ(Mu)− γuRuφ′(Mu)
|γu|2

du,

φ ∈ C2(R). The multiple stochastic integrals with respect to (Mt)t∈R+ are defined as

In(fn) = n!
∫ +∞

0

∫ tn

0
· · ·
∫ t2

0
fn(t1, . . . , tn)dMt1 · · · dMtn ,

for fn a symmetric function in L2(Rn
+). As an application of Corollary 3.9 we have the following

result.

Theorem 7.1. Let (Mt)t∈R+ have the representation (7.1), let (M∗
t )t∈R+ be represented as

M∗
t =

∫ +∞

t
H∗

s d∗W ∗
s +

∫ +∞

t
J∗s (d∗Z∗

s − λ∗sds),

assume that (Mt)t∈R+ is an F∗
t -adapted Ft-martingale and that (M∗

t )t∈R+ is an Ft-adapted F∗
t -

martingale. Then we have

E[φ(Mt + M∗
t )] ≤ E[φ(Ms + M∗

s )], 0 ≤ s ≤ t,

for all convex functions φ : R → R, provided any of the following three conditions is satisfied:

i) 0 ≤ γtRt ≤ J∗t , 1{γt=0}|Rt|2 ≤ |H∗
t |2, and

1{γt 6=0}
Rt

γt
≤ λ∗t J

∗
t , dPdt− a.e.,

ii) γtRt ≤ J∗t , 1{γt=0}|Rt|2 ≤ |H∗
t |2, and

1{γt 6=0}|Rt|2 ≤ λ∗t |J∗t |2, dPdt− a.e.,

and φ′ is convex,

506



iii) γtRt ≤ 0, |Rt|2 ≤ |H∗
t |2, J∗t = 0, dPdt - a.e., and φ′ is convex.

As above, if further E[M∗
t |FM

t ] = 0, t ∈ R+, we obtain

E[φ(Mt)] ≤ E[φ(Ms + M∗
s )], 0 ≤ s ≤ t.

As a consequence we have the following result which admits the same proof as Theorem 4.1.

Theorem 7.2. Let F ∈ L2(Ω,F , P ) have the predictable representation

F = E[F ] +
∫ +∞

0
RtdZt.

i) Assume that 0 ≤ γtRt ≤ k, dPdt-a.e., for some k > 0, and let

β2
1 =

∥∥∥∥∫ +∞

0
1{γs=0}|Rs|2ds

∥∥∥∥
∞

and α1 =
∥∥∥∥∫ +∞

0
1{γs 6=0}

Rs

γs
ds

∥∥∥∥
∞

.

Then we have
E[φ(F − E[F ])] ≤ E

[
φ
(
W (β2

1) + kÑ(α1/k)
)]

,

for all convex functions φ : R → R.

ii) Assume that γuRu ≤ k, dPdt-a.e., for some k > 0 and

β2
2 =

∥∥∥∥∫ +∞

0
1{γs=0}|Rs|2ds

∥∥∥∥
∞

and α2
2 =

∥∥∥∥∫ +∞

0
1{γs 6=0}|Rs|2ds

∥∥∥∥
∞

.

Then for all convex functions φ with a convex derivative φ′, we have

E[φ(F − E[F ])] ≤ E
[
φ
(
W (β2

2) + kÑ(α2
2/k2)

)]
.

iii) Assume that γuRu ≤ 0 and let

β2
3 =

∥∥∥∥∫ +∞

0
|Rs|2ds

∥∥∥∥
∞

.

Then for all convex functions φ with a convex derivative φ′, we have

E[φ(F − E[F ])] ≤ E[φ(Ŵ (β2
3))].

Let now
D : L2(Ω,F , P ) 7→ L2(Ω× [0, T ], dP × dt)

denote the annihilation operator on multiple stochastic integrals defined as Dt = In(fn) =
nIn(fn(∗, t)), t ∈ R+. The Clark formula for normal martingales [11] provides a predictable
representation for F ∈ Dom(D) ⊂ L2(Ω,F ,P), which can be used in Theorem 7.2:

F = E[F ] +
∫ +∞

0
E[DtF |Ft]dZt,

where Ft = σ(Zs, 0 ≤ s ≤ t).
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8 Appendix

In this section we prove the Itô type change of variable formula for forward/backward martingales
which has been used in the proofs of Theorem 3.2 and Theorem 3.3. Assume that (Ω,F , P ) is
equipped with an increasing filtration (Ft)t∈R+ and a decreasing filtration (F∗

t )t∈R+ .

Theorem 8.1. Consider (Mt)t∈R+ an F∗
t -adapted, Ft-forward martingale with right-continuous

paths and left limits, and (M∗
t )t∈R+ an Ft-adapted, F∗

t -backward martingale with left-continuous
paths and right limits, whose characteristics have the form (3.3) and (3.4). For all f ∈ C2(R2, R)
we have

f(Mt,M
∗
t )− f(M0,M

∗
0 )

=
∫ t

0+

∂f

∂x1
(Mu− ,M∗

u)dMu +
1
2

∫ t

0

∂2f

∂x2
1

(Mu,M∗
u)d〈M c,M c〉u

+
∑

0<u≤t

(
f(Mu,M∗

u)− f(Mu− ,M∗
u)−∆Mu

∂f

∂x1
(Mu− ,M∗

u)
)

−
∫ t−

0

∂f

∂x2
(Mu,M∗

u+)d∗M∗
u −

1
2

∫ t

0

∂2f

∂x2
2

(Mu,M∗
u)d〈M∗c,M∗c〉u

−
∑

0≤u<t

(
f(Mu,M∗

u)− f(Mu,M∗
u+)−∆M∗

u

∂f

∂x2
(Mu,M∗

u+)
)

,

where d∗ denotes the backward Itô differential and (M c
t )t∈R+, (M∗c

t )t∈R+ respectively denote the
continuous parts of (Mt)t∈R+, (M∗

t )t∈R+.

Proof. We adapt the arguments of Theorem 32 of Chapter II in [18], using here the following
version of Taylor’s formula:

f(y1, y2)− f(x1, x2) = f(y1, y2)− f(y1, x2) + f(y1, x2)− f(x1, x2) (8.1)

= (y1 − x1)
∂f

∂x1
(x1, x2) +

1
2
(y1 − x1)2

∂2f

∂x2
1

(x1, x2)

+(y2 − x2)
∂f

∂x2
(y1, y2)−

1
2
(y2 − x2)2

∂2f

∂x2
2

(y1, y2)

+R(x, y),

where R(x, y) ≤ o(|y − x|2). Assume first that (Ms)s∈[0,t] and (M∗
s )s∈[0,t] take their values in

a bounded interval, and let {0 = tn0 ≤ tn1 ≤ · · · ≤ tnkn
= t}, n ≥ 1, be a refining sequence of

partitions of [0, t] tending to the identity. As in [18], for any ε > 0, consider Aε,t, Bε,t two
random subsets of [0, t] such that

i) Aε,t is finite, P -a.s.,

ii) Aε,t ∪Bε,t exhausts the jumps of (Ms)s∈[0,t] and (M∗
s )s∈[0,t],

iii)
∑

s∈Bε,t
|∆Ms|2 + |∆∗M∗

s |2 ≤ ε2,

iv) for each 1 ≤ i ≤ n, exactly one of the two sets Aε,t∩(tni−1, t
n
i ] or Bε,t∩(tni−1, t

n
i ] is non-empty,

P -a.s.

508



We have

f(Mt,M
∗
t )− f(M0,M

∗
0 ) =

∑
Aε,t∩(tni−1,tni ] 6=∅

f(Mtni
,M∗

tni
)− f(Mtni−1

,M∗
tni−1

)

+
∑

Bε,t∩(tni−1,tni ] 6=∅

f(Mtni
,M∗

tni
)− f(Mtni−1

,M∗
tni−1

),

and from Taylor’s formula (8.1) we get

f(Mt,M
∗
t )− f(M0,M

∗
0 )

=
∑

Aε,t∩(tni−1,tni ] 6=∅

f(Mtni
,M∗

tni
)− f(Mtni

,M∗
tni−1

) + f(Mtni
,M∗

tni−1
)− f(Mtni−1

,M∗
tni−1

)

+
∑

Bε,t∩(tni−1,tni ] 6=∅

f(Mtni
,M∗

tni
)− f(Mtni

,M∗
tni−1

) + f(Mtni
,M∗

tni−1
)− f(Mtni−1

,M∗
tni−1

)

=
∑

Aε,t∩(tni−1,tni ] 6=∅

f(Mtni
,M∗

tni
)− f(Mtni

,M∗
tni−1

) + f(Mtni
,M∗

tni−1
)− f(Mtni−1

,M∗
tni−1

)

+
∑

Bε,t∩(tni−1,tni ] 6=∅

(Mtni
−Mtni−1

)
∂f

∂x1
(Mtni−1

,M∗
tni−1

) +
1
2
|Mtni

−Mtni−1
|2 ∂2f

∂x2
1

(Mtni−1
,M∗

tni−1
)

+
∑

Bε,t∩(tni−1,tni ] 6=∅

(M∗
tni
−M∗

tni−1
)

∂f

∂x2
(Mtni

,M∗
tni

)− 1
2
|M∗

tni
−M∗

tni−1
|2 ∂2f

∂x2
2

(Mtni
,M∗

tni
)

+
∑

Bε,t∩(tni−1,tni ] 6=∅

R(Mtni
,M∗

tni
,Mtni−1

,M∗
tni−1

)

=
∑

Aε,t∩(tni−1,tni ] 6=∅

f(Mtni
,M∗

tni
)− f(Mtni

,M∗
tni−1

) + f(Mtni
,M∗

tni−1
)− f(Mtni−1

,M∗
tni−1

)

+
n∑

i=1

(Mtni
−Mtni−1

)
∂f

∂x1
(Mtni−1

,M∗
tni−1

) +
1
2
|Mtni

−Mtni−1
|2 ∂2f

∂x2
1

(Mtni−1
,M∗

tni−1
)

−
∑

Aε,t∩(tni−1,tni ] 6=∅

(Mtni
−Mtni−1

)
∂f

∂x1
(Mtni−1

,M∗
tni−1

) +
1
2
|Mtni

−Mtni−1
|2 ∂2f

∂x2
1

(Mtni−1
,M∗

tni−1
)

+
n∑

i=1

(M∗
tni
−M∗

tni−1
)

∂f

∂x2
(Mtni

,M∗
tni

)− 1
2
|M∗

tni
−M∗

tni−1
|2 ∂2f

∂x2
2

(Mtni
,M∗

tni
)

−
∑

Aε,t∩(tni−1,tni ] 6=∅

(M∗
tni
−M∗

tni−1
)

∂f

∂x2
(Mtni

,M∗
tni

)− 1
2
|M∗

tni
−M∗

tni−1
|2 ∂2f

∂x2
2

(Mtni
,M∗

tni
)

+
∑

Bε,t∩(tni−1,tni ] 6=∅

R(Mtni
,M∗

tni
,Mtni−1

,M∗
tni−1

).

By the same arguments as in [18] and from conditions (3.1) and (3.2), letting n tend to infinity
we get

f(Mt,M
∗
t )− f(M0,M

∗
0 )
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=
∑

u∈Aε,t

(
f(Mu,M∗

u)− f(Mu− ,M∗
u)−∆Mu

∂f

∂x1
(Mu− ,M∗

u)− 1
2
|∆Mu|2

∂2f

∂x2
1

(Mu− ,M∗
u)
)

−
∑

u∈Aε,t

(
f(Mu,M∗

u+)− f(Mu,M∗
u)−∆∗M∗

u

∂f

∂x2
(Mu,M∗

u+) +
1
2
|∆∗M∗

u |2
∂2f

∂x2
2

(Mu,M∗
u+)
)

+
∫ t

0

∂f

∂x1
(Mu− ,M∗

u)dMu +
1
2

∫ t

0

∂2f

∂x2
1

(Mu− ,M∗
u)d[M,M ]u

−
∫ t

0

∂f

∂x2
(Mu,M∗

u+)d∗M∗
u −

1
2

∫ t

0

∂2f

∂x2
2

(Mu,M∗
u+)d[M∗,M∗]u.

Then letting ε tend to 0, the above sum converges to

f(Mt,M
∗
t )− f(M0,M

∗
0 )

=
∫ t

0+

∂f

∂x1
(Mu− ,M∗

u)dMu +
1
2

∫ t

0+

∂2f

∂x2
1

(Mu− ,M∗
u)d[M,M ]u

+
∑

0<u≤t

(
f(Mu,M∗

u)− f(Mu− ,M∗
u)−∆Mu

∂f

∂x1
(Mu− ,M∗

u)− 1
2
|∆Mu|2

∂2f

∂x2
1

(Mu− ,M∗
u)
)

−
∫ t−

0

∂f

∂x2
(Mu,M∗

u+)d∗M∗
u −

1
2

∫ t−

0

∂2f

∂x2
2

(Mu,M∗
u+)d[M∗,M∗]u

−
∑

0≤u<t

(
f(Mu,M∗

u)− f(Mu,M∗
u+)−∆∗M∗

u

∂f

∂x2
(Mu,M∗

u+) +
1
2
|∆∗M∗

u |2
∂2f

∂x2
2

(Mu,M∗
u+)
)

,

which yields

f(Mt,M
∗
t )− f(M0,M

∗
0 ) =

∫ t

0+

∂f

∂x1
(Mu− ,M∗

u)dMu +
1
2

∫ t

0

∂2f

∂x2
1

(Mu,M∗
u)d〈M c,M c〉u

+
∑

0<u≤t

(
f(Mu,M∗

u)− f(Mu− ,M∗
u)−∆Mu

∂f

∂x1
(Mu− ,M∗

u)
)

−
∫ t−

0

∂f

∂x2
(Mu,M∗

u+)d∗M∗
u −

1
2

∫ t

0

∂2f

∂x2
2

(Mu,M∗
u)d〈M∗c,M∗c〉u

−
∑

0≤u<t

(
f(Mu,M∗

u)− f(Mu,M∗
u+)−∆∗M∗

u

∂f

∂x2
(Mu,M∗

u+)
)

,

where the integral with respect to (〈M∗,M∗〉t)t∈R+ is defined as a Stieltjes integral with respect
to a (not necessarily F∗

t -adapted) increasing process. In the general case, define the stopping
times

Rm = inf{u ∈ [0, t] : |Mu| ≥ m}, and R∗
m = sup{u ∈ [0, t] : |M∗

u | ≥ m}.

The stopped process (Mu∧Rm ,M∗
u∨R∗m

)u∈[0,t] is bounded by 2m and since Itô’s formula is valid
for (XRm

u )u∈[0,t] for each m, it is also valid for (Xu)u∈R+ . �

Note that the cross partial derivative
∂2f

∂x1∂x2
(Mu,M∗

u) does not appear in the formula and there

is no need to consider or define a bracket of the form d〈M,M∗〉t.
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