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Abstract

We introduce a class of iterated processes called α-time Brownian motion for 0 < α ≤ 2.
These are obtained by taking Brownian motion and replacing the time parameter with a
symmetric α-stable process. We prove a Chung-type law of the iterated logarithm (LIL) for
these processes which is a generalization of LIL proved in [14] for iterated Brownian motion.
When α = 1 it takes the following form

lim inf
T→∞

T−1/2(log log T ) sup
0≤t≤T

|Zt| = π2
√
λ1 a.s.

where λ1 is the first eigenvalue for the Cauchy process in the interval [−1, 1]. We also define
the local time L∗(x, t) and range R∗(t) = |{x : Z(s) = x for some s ≤ t}| for these processes
for 1 < α < 2. We prove that there are universal constants cR, cL ∈ (0,∞) such that

lim sup
t→∞

R∗(t)
(t/ log log t)1/2α log log t

= cR a.s.

lim inf
t→∞

supx∈R L
∗(x, t)

(t/ log log t)1−1/2α
= cL a.s.
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1 Introduction

In recent years, several iterated processes received much research interest from many mathe-
maticians, see [1, 4, 7, 9, 20, 21, 25, 29] and references there in. Inspired by these results, we
introduce a new class of iterated processes called α-time Brownian motion for 0 < α ≤ 2. These
are obtained by taking Brownian motion and replacing the time parameter with a symmetric
α-stable process. For α = 2, this is the iterated Brownian motion of Burdzy [4]. One of the
main differences of these iterated processes and Brownian motion is that they are not Markov
or Gaussian. However, for α = 1, 2 these processes have connections with partial differential
operators as described in [1, 22].

To define α-time Brownian motion, let Xt be a two-sided Brownian motion on R. That is,
{Xt : t ≥ 0} and {X−t : t ≤ 0} are two independent copies of Brownian motion starting from 0.
Let Yt be a real-valued symmetric α-stable process, 0 < α ≤ 2, starting from 0 and independent
of Xt. Then α-time Brownian motion Zt is defined by

Zt ≡ X(Yt), t ≥ 0. (1.1)

It is easy to verify that Zt has stationary increments and is a self-similar process of index 1/2α.
That is, for every k > 0, {Zt : t ≥ 0} and {k−1/2αZkt : t ≥ 0} have the same finite-dimensional
distributions. We refer to Taqqu [27] for relations of self-similar stable processes to physical
quantities. The α-time Brownian motion is an example of nonstable self-similar processes.

Our aim in this paper is two-fold. Firstly, we will be interested in the path properties of the
process defined in (1.1). Since this process is not Markov or Gaussian, it is of interest to see
how the lack of independence of increments affect the asymptotic behavior. Secondly, we will
define the local time L∗(x, t) for this process for 1 < α < 2. We will prove the joint continuity
of the local time and extend LIL of Kesten [16] to these processes. We also obtain an LIL for
the range of these processes.

In the first part of the paper, we will be interested in proving a “liminf” law of the iterated
logarithm of the Chung-type for Zt. The study of this type of LIL’s was initiated by Chung [8]
for Brownian motion Wt. He proved that

lim inf
T→∞

(T−1 log log T )1/2 sup
0≤t≤T

|Wt| =
π

81/2
a.s.

This LIL was extended to several other processes later including symmetric α-stable processes
Yt by Taylor [28] in the following form

lim inf
T→∞

(T−1 log log T )1/α sup
0≤t≤T

|Yt| = (λα)1/α a.s.

where λα is the first eigenvalue of the fractional Laplacian (−∆)α/2 in [−1, 1].

One then wonders if a Chung-type LIL holds for the composition of symmetric stable processes.
Although these processes are not Markov or Gaussian, this has been achieved for the composition
of two Brownian motions, the so called iterated Brownian motion, which is the case of α = 2
proved by Hu, Pierre-Loti-Viaud, and Shi in [14]. They showed that

lim inf
T→∞

T−1/4(log log T )3/4 sup
0≤t≤T

|S1
t | =

(
3π2

8

)3/4

a.s. (1.2)
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with S1
t = X(Wt) denoting iterated Brownian motion, where X is a two-sided Brownian motion

andW is another Brownian motion independent ofX. This is the definition of iterated Brownian
motion used by Burdzy [4].

Inspired by the above mentioned extensions of the Chung’s LIL we extend the above results to
composition of a Brownian motion and a symmetric α-stable process.

Theorem 1.1. Let α ∈ (0, 2] and let Zt be the α-time Brownian motion as defined in (1.1).
Then we have

lim inf
T→∞

T−1/2α(log log T )(1+α)/(2α) sup
0≤t≤T

|Zt| = Dα a.s. (1.3)

where Dα = C
(1+α)/2α
α , Cα = (π2/8)α/(1+α)(1 + α)(2αλα)1/(1+α)(α)−α/(1+α).

A Chung-type LIL has also been established for other versions of iterated Brownian motion (see
[7], [17]) as follows:

lim inf
T→∞

T−1/4(log log T )3/4 sup
0≤t≤T

|St| =
33/4π3/2

211/4
a.s. (1.4)

with St ≡W (|Ŵt|) denoting another version of iterated Brownian motion, where W and Ŵ are
independent real-valued standard Brownian motions, each starting from 0. For a generalization
of this result to α-time Brownian motions we define the process

Z1
t ≡ X(|Yt|), t ≥ 0. (1.5)

for Brownian motion Xt and symmetric α-stable process Yt independent of X, each starting
from 0, 0 < α ≤ 2. For this process we have

Theorem 1.2. Let α ∈ (0, 2] and let Z1
t be the α-time Brownian motion as defined in (1.5).

Then we have
lim inf
T→∞

T−1/2α(log log T )(1+α)/(2α) sup
0≤t≤T

|Z1
t | = D1

α a.s. (1.6)

where D1
α = (C1

α)(1+α)/2α, C1
α = (π2/8)α/(1+α)(1 + α)(λα)1/(1+α)(α)−α/(1+α).

We note that the constants appearing in (1.3) and (1.6) are different. The main reason for this
is that the process Zt have three independent processes {Xt : t ≥ 0}, {X−t : t ≤ 0} and Y ,
while the process Z1

t does not have a contribution from {X−t : t ≤ 0}. The proof of Theorem
1.2 follows the same line of proof of Theorem 1.1, except for the small deviation probability
estimates for Z1

t we use Theorem 2.4.

The motivation for the study of local times of α-time Brownian motion came from the results of
Csáki, Csörgö, Földes, and Révész [11] and Shi and Yor [25] about Kesten–type laws of iterated
logarithm for iterated Brownian motion. The study of this type of LIL’s was initiated by Kesten
[16]. Let Bt be a Brownian motion, L(x, t) its local time at x. Then Kesten showed

lim sup
t→∞

L(0, t)√
2t log log t

= lim sup
t→∞

supx∈R L(x, t)√
2t log log t

= 1 a.s. (1.7)

and
lim inf
t→∞

supx∈R L(x, t)√
t/ log log t

= c a.s. 0 < c <∞. (1.8)
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These types of laws were generalized later to symmetric stable processes of index α ∈ (1, 2).
More specifically, Donsker and Varadhan [12] generalized (1.7) and Griffin [13] generalized (1.8)
to symmetric stable processes.

More recently, Kesten–type LIL’s were extended to iterated Brownian motion S. Let LS(x, t) be
the local time of St = W1(|W2(t)|), with W1 and W2 independent standard real-valued Brownian
motions. (1.7) was extended to the IBM case by Csáki, Csörgö, Földes, and Révész [11] and
Xiao [29]. This result asserts that there exist (finite) universal constants c1 > 0 and c2 > 0 such
that

c1 ≤ lim sup
t→∞

LS(0, t)
t3/4(log log t)3/4

≤ c2 a.s. (1.9)

(1.8) was extended to IBM case by Csáki, Csörgö, Földes, and Révész [11] and Shi and Yor [25].
This result asserts that there exist universal constants c3 > 0 and c4 > 0 such that

c3 ≤ lim inf
t→∞

t−3/4(log log t)3/4 sup
x∈R

LS(x, t) ≤ c4 a.s. (1.10)

Inspired by the definition of local time of IBM in [11], we define the local time of α-time Brownian
motion defined in (1.5) as follows:

L∗(x, t) =
∫ ∞

0
L̄2(u, t)duL1(x, u)

=
∫ ∞

0
(L2(u, t) + L2(−u, t))duL1(x, u), (1.11)

where L1, L2 and L̄2 denote, respectively, the local times of X, Y and |Y |. A similar definition
can be given for α-time Brownian motion defined in (1.1) using the ideas in [5].

In §3, we will extend (1.10) to α-time Brownian motion. We will also obtain partial results
towards extension of (1.7). However, our results does not imply an extension of LIL in (1.7)
and are far from optimal yet, and leave many problems open. These results will follow from the
study of Lévy classes for the local time of Z and Z1. We extend (1.10) as follows.

Theorem 1.3. There exists a universal constant cL ∈ (0,∞) such that

lim inf
t→∞

supx∈R L
∗(x, t)

(t/ log log t)1−1/2α
= cL a.s.

A similar result holds also for the local time of the process defined in (1.1). The usual LIL or
Kolmogorov’s LIL for Brownian motion which replaces the time parameter was used essentially
in the results in [11] and [25] to prove Kesten’s LIL for iterated Brownian motion. However,
there does not exist an LIL of this type for symmetric α-stable process which replaces the time
parameter in the definition of α-time Brownian motion. To overcome this difficulty we show in
Lemma 3.1 that the LIL for the range process of symmetric α-stable process suffices to prove
Theorem 1.3.

We also obtain usual LIL for the range of α-time Brownian motion. Then, we use it with a
particular case of occupation times formula to obtain Kesten’s LIL for these processes. This is
also essential in the study of some of Lévy classes of local time of Z1.

438



Theorem 1.4. There exists a universal constant cR ∈ (0,∞) such that

lim sup
t→∞

R∗(t)
(t/ log log t)1/2α log log t

= cR a.s.

where R∗(t) = |{x : Z1(s) = x for some s ≤ t}|.

A similar result holds also for range of the process defined in (1.1).

Our proofs of Theorems 1.1 and 1.2 in this paper follow the proofs in [14] making necessary
changes at crucial points. In studying the local time of α-time Brownian motion we use the ideas
we learned from Csáki, Csörgö, Földes, and Révész [11] and Shi and Yor [25] with necessary
changes in the use of usual LIL of the range processes. Our proofs differ from theirs since there
does not exist usual LIL for symmetric α-stable process. To overcome this difficulty we show
that the usual LIL for the range of symmetric α-stable process suffice for our results, see Lemma
3.1. We also adapt the arguments of Griffin [13] to our case to prove the usual LIL for the range
of α-time Brownian motion. Our proofs differs from his in that α-time Brownian motion does
not have independent increments. So we decompose the range of symmetric α-stable process to
get independent increments, see Lemma 3.6. One of the main difficulties arise from the fact that
the inner process Yt is a stable process instead of Brownian motion, which is not continuous.
This makes the arguments more difficult than the previous results on iterared Brownian motion.
The paper is organized as follows. We give the proof of Theorem 1.1 in §2. The local time and
the range of α-time Brownian motion are studied in §3.

2 Chung’s LIL for α-time Brownian motion

We will prove Theorem 1.1 in this section. Section 2.1 is devoted to the preliminary lemmas
about the small deviation probabilities. In section 2.2 we prove the lower bound in Theorem
1.1. Upper bound is proved in section 2.3.

2.1 Preliminaries

In this section we give some definitions and preliminary lemmas which will be used in the proof
of the main result.

A real-valued symmetric stable process Yt with index α ∈ (0, 2] is the process with stationary
independent increments whose transition density

pα
t (x, y) = pα(t, x− y), (t, x, y) ∈ (0,∞)× Rn × Rn,

is characterized by the Fourier transform∫
Rn

eiy.ξpα(t, y)dy = exp(−t|ξ|α), t > 0, ξ ∈ Rn.

The process has right continuous paths, it is rotation and translation invariant.

The following lemma gives the small ball probabilities for the process sup0≤t≤1 |Yt|.
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Lemma 2.1 (Mogul’skii, 1974, [19]). Let 0 < α ≤ 2 and let Yt be a symmetric α-stable process.
Then

lim
ε→0+

εα logP [ sup
0≤t≤1

|Yt| ≤ ε ] = −λα,

where λα is the first eigenvalue of the fractional Laplacian operator in the interval [−1, 1].

This is an equivalent statement of the fact that

lim
t→∞

1
t

logP [τ > t] = −λα,

due to scaling property of sup0≤t≤1 |Yt|, where τ = inf{s : |Ys| ≥ 1} is the first exit time of the
interval [−1, 1]

Let R = sup0≤t≤1 Yt − inf0≤t≤1 Yt be the range of Yt. The following is a special case of Theorem
2.1 in [6].

Theorem 2.1 (Mogul’skii, 1974, [19]).

lim
ε→0+

εα logP [ R ≤ ε ] = −2αλα.

We use the following theorem (Kasahara [15, Theorem 3] and Bingham, Goldie and Teugels [3,
p. 254]) to find the asymptotics of the Laplace transform of R below.

Theorem 2.2 (de Bruijn’s Tauberian Theorem). Let X be a positive random variable such that
for some positive B1, B2 and p,

−B1 ≤ lim inf
x→0

xp logP [X ≤ x] ≤ lim sup
x→0

xp logP [X ≤ x] ≤ −B2.

Then

−(p+ 1)(B1)1/(p+1)p−p/(p+1) ≤ lim inf
λ→∞

λ−p/(p+1) logEe−λX

≤ lim sup
λ→∞

λ−p/(p+1) logEe−λX ≤ −(p+ 1)(B2)1/(p+1)p−p/(p+1).

From de Bruijn’s Tauberian theorem and Theorem 2.1 we have

Lemma 2.2.

lim
λ→∞

λ−α/(1+α) logE[e−λR] = −(1 + α)(2αλα)1/(1+α)α−α/(1+α).

The following theorem gives the small ball deviation probabilities for the process Zt defined in
(1.1).

Theorem 2.3. We have

lim
u→0

u2α/(1+α) logP [ sup
0≤t≤1

|Zt| ≤ u ] = −(π2/8)α/(1+α)Aα,

where Aα = (1 + α)(2αλα)1/(1+α)α−α/(1+α).
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Proof. Let Xt be a Brownian motion. From a well-known formula (see Chung [8]):

P [ sup
0≤t≤1

|Xt| ≤ u ] =
4
π

∞∑
k=1

(−1)k−1

2k − 1
exp

[
−(2k − 1)2π2

8u2

]
,

we get that, for all u > 0,

2
π

exp
(
− π2

8u2

)
≤ P [ sup

0≤t≤1
|Xt| ≤ u ] ≤ 4

π
exp

(
− π2

8u2

)
. (2.1)

Let Zt = X(Yt) be the α-time Brownian motion and let

S(t) ≡ sup
0≤s≤t

Ys, I(t) ≡ inf
0≤s≤t

Ys, (2.2)

then

P [ sup0≤t≤1 |Zt| ≤ u ]

= P [ sup
0≤t≤S(1)

|Xt| ≤ u, sup
I(1)≤t≤0

|Xt| ≤ u ]

= E

[
P

(
sup

0≤t≤1
|Xt| ≤

u√
S(1)

|Y

)
P

(
sup

0≤t≤1
|Xt| ≤

u√
−I(1)

|Y

)]

≤ 16
π2
E exp

(
−π

2(S(1)− I(1))
8u2

)
. (2.3)

This last inequality follows from the second part of (2.1). Similarly the first part of (2.1) gives
us a lower bound, with 4π−2 instead of 16π−2. Now the proof follows from the given inequalities
and Lemma 2.2

The following theorem gives the small ball deviation probabilities for the process Z1
t defined in

(1.5).

Theorem 2.4. We have

lim
u→0

u2α/(1+α) logP [ sup
0≤t≤1

|Z1
t | ≤ u ] = −(π2/8)α/(1+α)A1

α,

where A1
α = (1 + α)(λα)1/(1+α)α−α/(1+α).

Proof. Let M(t) ≡ sup0≤s≤t |Ys|. The proof follows the same line of the proof of Theorem 2.3,
except at the end we have

P [ sup
0≤t≤1

|Z1
t | ≤ u ] = P [ sup

0≤t≤M(1)
|Xt| ≤ u, ]

= E

[
P

(
sup

0≤t≤1
|Xt| ≤

u√
M(1)

|Y

)]

≤ 4
π
E exp

(
−π

2M(1)
8u2

)
, (2.4)

and similarly a lower bound with 2/π instead of 4/π. Then we use Lemma 2.1 and de Bruijn’s
Tauberian theorem.
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Lemma 2.3. For all 0 < a ≤ b, u > 0 we have

P [ a < sup
0≤t≤u

|Zt| < b ] ≤ (b/a− 1)2.

Proof. The proof follows from the proof of Lemma 4.1 in [14].

The following proposition is the combination of two propositions in [2], which are stated as
Proposition 2 on page 219 and Proposition 4 on page 221.

Proposition 2.1. Let Yt be a symmetric α-stable process. Let

S(t) = sup
0≤s≤t

Ys.

Then there exists k1, k2 > 0 such that

lim
x→∞

xαP [Y1 > x] = lim
x→∞

xαP [S(1) > x] = k1,

and
lim

x→0+
x−α/2P [S(1) < x] = k2.

We will use following versions of Borel-Cantelli lemmas in our proofs.

Lemma 2.4 (Borel-Cantelli Lemma 1). Let E1, E2, · · · be a sequence of events (sets) for which∑∞
n=1 P [En] <∞. Then

P [En i.o] = P [∩∞n=1 ∪∞i=n Ei] = 0,

i.e with probability 1 only a finite number of events En occur simultaneously.

Since the process Zt does not have independent increments we have to use another version of
the Borel-Cantelli lemma which is due to Spitzer [26].

Lemma 2.5 (Borel-Cantelli Lemma 2, p. 28 in [23]). Let E1, E2, · · · be a sequence of events
(sets) for which

∞∑
n=1

P [En] = ∞ and lim inf
n→∞

n∑
i=1

n∑
j=1

P [EiEj ]

/(
n∑

i=1

P [Ei]

)2

≤ c (c ≥ 1).

Then
P [∩∞n=1 ∪∞k=n Ek] = P [En i.o] ≥ 1/c.

2.2 Proof of the lower bound

The lower bound is easier as always. We use Theorem 2.3. Let

Cα = (π2/8)α/(1+α)(1 + α)(2αλα)1/(1+α)(α)−α/(1+α),

be the small deviation probability limit for sup0≤t≤T |Zt| given in Theorem 2.3. For every fixed
ε > 0, it follows from Theorem 2.3 that, for T sufficiently large, we have
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P
[
T−1/2α(log log T )(1+α)/2α sup0≤t≤T |Zt| ≤ (1− ε)(1+α)/αC

(1+α)/2α
α

]
= P

[
sup

0≤t≤1
|Zt| ≤ (1− ε)(1+α)/αC(1+α)/2α

α (log log T )−(1+α)/2α

]
≤ exp

[
−(1− ε)(1− ε)−2CαC

−1
α log log T

]
= exp

[
− 1

(1− ε)
log log T

]
.

Taking a fixed rational number a > 1 and Tk = ak gives that∑
k≥1

P [T−1/2α
k (log log Tk)(1+α)/2α sup

0≤t≤Tk

|Zt|

≤ (1− ε)(1+α)/αC(1+α)/2α
α ] < +∞.

It follows from Borel-Cantelli lemma, by letting ε→ 0, that

lim inf
k→+∞

T
−1/2α
k (log log Tk)(1+α)/2α sup

0≤t≤Tk

|Zt| ≥ C(1+α)/2α
α = Dα a.s. (2.5)

Since for every T > 0, there exists k ≥ 0 such that Tk ≤ T < Tk+1, we have

T−1/2α(log log T )(1+α)/2α sup
0≤t≤T

|Zt| ≥ T
−1/2α
k+1 (log log Tk)(1+α)/2α sup

0≤t≤Tk

|Zt|

= a−1/2αT
−1/2α
k (log log Tk)(1+α)/2α sup

0≤t≤Tk

|Zt|,

which together with (2.5), yields the lower bound, as the rational number a > 1 can be arbitrarily
close to 1.

2.3 Proof of the upper bound

We follow the steps in the proof of Lemma 4.2 in [14]. Let ε > 0 be fixed. For notational
simplicity, we use the following in the sequel

Tk = exp(k log k)

ak = (1 + 3ε)(1+α)/αC(1+α)/2α
α T

1/2α
k (log log Tk)−(1+α)/2α

Bk = { sup
0≤t≤Tk

|Zt| ≤ ak}.

It follows from Theorem 2.3 that there exists ko(ε), depending only on ε, such that for every
k > ko(ε), we have

P (Bk) ≥ exp
(
−(1 + 3ε)Cα(1 + 3ε)−2C−1

α log log Tk

)
= exp

(
− 1

1 + 3ε
log log Tk

)
≥ k−1/(1+2ε),
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which yields existence of positive constants C = C(ε) and N = N(ε) such that for every n > N ,

n∑
k=1

P (Bk) ≥ Cn2ε/(1+2ε). (2.6)

We now establish the following

Lemma 2.6. We have

lim inf
n→∞

n∑
i=1

n∑
j=1

P [BiBj ]

/(
n∑

i=1

P [Bi]

)2

≤ 1. (2.7)

Proof of Lemma 2.6. Let K > 0 be a constant such that

K ≥ 1/α(3(1 + 2ε)/ε− 2),

and let nε = [nε/(1+2ε)] (with [x] denoting the integer part of x). We set furthermore

E1 = {(i, j) : 1 ≤ i, j ≤ n, |i− j| ≤ 19}

E2 = {(i, j) : nε ≤ i, j ≤ n, |i− j| ≥ 20}.

Since by (2.6),

nε∑
i=1

n∑
j=1

P [BiBj ]

/(
n∑

i=1

P [Bi]

)2

≤ nε

/
n∑

i=1

P [Bi] ≤ C−1n−ε/(1+2ε),

and ∑ ∑
(i,j)∈E1

P [BiBj ]

/(
n∑

i=1

P [Bi]

)2

≤ 38

/
n∑

i=1

P [Bi] ≤ 38C−1n−2ε/(1+2ε),

it suffices to prove that

lim inf
n→∞

∑ ∑
(i,j)∈E2

P [BiBj ]

/(
n∑

i=1

P [Bi]

)2

≤ 1. (2.8)

Let
S(t) = sup

0≤s≤t
Ys, I(t) = inf

0≤s≤t
Ys,

F (x) = P [ sup
0≤t≤1

|Xt| ≤ x], ∀x > 0.

Then for all i < j and all positive numbers p1 < p2, q1 < q2,

P [BiBj |S(Ti) = p1, S(Tj) = p2, I(Ti) = q1, I(Tj) = q2]
= P [ sup

−q1≤t≤p1

|Xt| ≤ ai, sup
p1≤t≤p2

|Xt| ≤ aj , sup
−q2≤t≤−q1

|Xt| ≤ aj ]

= P [ sup
0≤t≤p1

|Xt| ≤ ai, sup
p1≤t≤p2

|Xt| ≤ aj ]

×P [ sup
0≤t≤q1

|Xt| ≤ ai, sup
q1≤t≤q2

|Xt| ≤ aj ].
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Notice that for all x > 0 and y > 0,
P [sup0≤t≤p1

|Xt| ≤ x, supp1≤t≤p2
|Xt| ≤ y]

≤ P [ sup
0≤t≤p1

|Xt| ≤ x] sup
|u|≤x

P [ sup
0≤t≤p2−p1

|Xt + u| ≤ y] (2.9)

= P [ sup
0≤t≤p1

|Xt| ≤ x]P [ sup
0≤t≤p2−p1

|Xt| ≤ y] (2.10)

= F (xp−1/2
1 )F (y(p2 − p1)−1/2).

The equation (2.9) is from the Markov property of Wiener processes, and equation (2.10) is due
to a general property of Gaussian measures (see, e.g. Ledoux and Talagrand [18, p.73])

It follows that

P [Bi] = E[F (aiS
−1/2(Ti))F (ai(−I(Ti))−1/2)],

P [BiBj ] ≤ E

[
F

(
ai√
S(Ti)

)
F

(
ai√
−I(Ti)

)

×F

(
aj√

S(Tj)− S(Ti)

)
F

(
aj√

I(Ti)− I(Tj)

)]
.

Let Ft ≡ {Ys, s ≤ t} and M(t) ≡ sup0≤s≤t |Ys|. Let f(t) = exp(Kt). By noticing that S(Tj) −
S(Ti) (resp. I(Ti)− I(Tj)) is bounded below by the positive part of σ+ (resp. τ+) of

σ ≡ sup
Ti≤t≤Tj

(Yt − YTi)− 2M(Ti)

(resp. τ ≡ − inf
Ti≤t≤Tj

(Yt − YTi)− 2M(Ti)), (2.11)

(i.e. sup
Ti≤t≤Tj

(Yt − YTi)− 2M(Ti)+ ≤ ( sup
Ti≤t≤Tj

(Yt) + |YTi | − 2M(Ti))+

≤ M(Tj)−M(Ti)),

we obtain that

E[F (aj(S(Tj)− S(Ti))−1/2)F (aj(I(Tj)− I(Ti))−1/2)|FTi ]

≤ E[F (aj(σ+)−1/2)F (aj(τ+)−1/2)|FTi ]

≤ sup
0≤x≤2M(Ti)

E[F (aj((S(Tj − Ti)− x)+)−1/2) (2.12)

×F (aj((I(Tj − Ti)− x)+)−1/2)]

≤ 1{M(Ti)>T
1/α
i f(log log Ti)}

+ E[F (aj(µ+)−1/2)F (aj(ν+)−1/2)],

with

µ = S(Tj − Ti)− 2T 1/α
i f(log log Ti) and ν = −I(Tj − Ti)− 2T 1/α

i f(log log Ti).

In the inequality (2.12) we use the fact that α-stable process has stationary independent incre-
ments.
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As F is always between 0 and 1, we get that

P [BiBj ] ≤ P [M(Ti) > T
1/α
i f(log log Ti)]

+P [Bi]E[F (aj(µ+)−1/2)F (aj(ν+)−1/2)]

= P [M(Ti) > T
1/α
i f(log log Ti)]

+P [Bi]E

F
 aj√

(S(1)− θ)+(Tj − Ti)1/α


×F

 aj√
(−I(1)− θ)+(Tj − Ti)1/α

 . (2.13)

The identity (2.13) is due to the scaling property of α-stable process, with

θ = 2(Tj − Ti)−1/αT
1/α
i f(log log Ti).

Now by using Proposition 2.1, limx→∞ xαP [S(1) > x] = k1, we get that, if i ≥ nε = [nε/(1+2ε)],
then since f(log log Ti) is large

P [M(Ti) > T
1/α
i f(log log Ti)] ≤ 2P [S(1) > f(log log Ti)]

≤ 4k1(f(log log Ti))−α

= 4k1(i log i)−αK

≤ 4k1n
−αKε/(1+2ε), (2.14)

i.e.

n∑
i=nε

n∑
j=1

P [M(Ti) > T
1/α
i f(log log Ti)]

/(
n∑

i=1

P [Bi]

)2

≤ 4k1C
−2n2−(αK+2)ε/(1+2ε)

≤ 4k1C
−2n−1, (2.15)

as K ≥ 1/α(3(1 + 2ε)/ε− 2). On the other hand, for j ≥ i+ 20

θ(Tj/Ti)1/2α ≤ 2(i log i)K/(j(j−i)/2 − 1)1/α ≤ 2C0j
−(j−i)/5α ≤ 2C0j

−20/5α,

which is small for the range of j we consider (if needed we can take j ≥ i + 20 + C(K), where
C(K) is a constant multiple of K). Since from Proposition 2.1, for x close to 0,

P [S(1) < x] ≤ (1 + ε)k2x
α/2,

we have

P [S(1)− θ < (1− (Tj/Ti)1/2α)S(1)] = P [S(1) < θ(Tj/Ti)1/2α]

≤ 2k2(θ(Tj/Ti)1/2α)α/2

≤ 2k2(2C0j
−20/5α)α/2

≤ C1j
−2,
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with some universal constant C1. This inequality holds for −I(1) instead of S(1) as well, since
symmetric α-stable process is symmetric. Therefore for all (i, j) ∈ E2, C2 being a universal
constant, we have

E

F
 aj√

(S(1)− θ)+(Tj − Ti)1/α

F

 aj√
(−I(1)− θ)+(Tj − Ti)1/α


≤ 2C1j

−2 + E

[
F

(
aj√

(S(1)Gij

)
F

(
aj√

(−I(1)Gij

)]
(Gij ≡ (Tj − Ti)1/α(1− (Ti/Tj)1/2α))

≤ 2C1j
−2 + E

F
aj(1 + C2j

−(j−i)/5α)√
S(1)T 1/α

j

F

aj(1 + C2j
−(j−i)/5α)√

−I(1)T 1/α
j


(since

√
T

1/α
j /Gij ≤ 1 + C2j

−(j−i)/5α)

≤ 2C1j
−2 + P [ sup

0≤t≤Tj

|Zt| ≤ aj(1 + C2j
−2)]

≤ 2C1j
−2 + P [Bj ] + P [aj ≤ sup

0≤t≤Tj

|Zt| ≤ aj(1 + C2j
−2)]

≤ 2C1j
−2 + P [Bj ] + C2

2j
−4,

where the last inequality follows from Lemma 2.3. Combining this with (2.13), (2.15) and (2.6)
gives that

∑ ∑
(i,j)∈E2

P [BiBj ]

/(
n∑

i=1

P [Bi]

)2

≤ 4k1C
−2n−1 + 1 + (2C1 + C2

2 )
n∑

i=1

P [Bi]
n∑

j=1

j−2

/(
n∑

i=1

P [Bi]

)2

≤ 1 + 4k1C
−2n−1 + π2(2C1 + C2

2 )(6C)−1n−2ε/(1+2ε),

which yields (2.8).

Since
∑∞

k=1 P [Bk] = ∞, it follows from (2.7) and a well-known version of Borel-Cantelli lemma
(Lemma 2.5 above) that P [lim supk→∞Bk] = 1 which implies the upper bound in Theorem 1.1.

3 Local time of α-time Brownian motion

In this section we give the definition of the local time of α-time Brownian motion and prove its
joint continuity. In section 3.0.1 we prove a lemma which is crucial in the proofs of the main
theorems. Sections 3.1-3.3 and section 3.5 give a study of the Lévy classes for the local time. In
section 3.4 we prove an LIL for the range of α-time Brownian motion.

Let L1(x, t) be the local time of Brownian motion, and L2(x, t) be the local time of symmetric
α-stable process for 1 < α ≤ 2 (see [23] for the properties of the local time of Brownian motion
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and see [13] and references there in for the properties of the local time of symmetric α-stable
processes). Let f , x ∈ R, be a locally integrable real-valued function. Then∫ t

0
f(Wi(s))ds =

∫ ∞

−∞
f(x)Li(x, t)dx, i = 1, 2, (3.1)

for W1 a standard Brownian motion and W2 a symmetric stable process.

Then we define the local time of the α-time Brownian motion as

L∗(x, t) :=
∫ ∞

0
L̄2(s, t)dsL1(x, s), x ∈ R, t ≥ 0, (3.2)

where L̄2(x, t) := L2(x, t) + L2(−x, t), x ≥ 0.

We prove next the joint continuity of L∗(x, t) and establish the occupation times formula for Z1
t .

Proposition 3.1. There exists an almost surely jointly continuous family of ”local times”,
{L∗(x, t) : t ≥ 0, x ∈ R}, such that for all Borel measurable integrable functions, f : R → R
and all t ≥ 0, ∫ t

0
f(Z1(s))ds =

∫ t

0
f(X(|Y (s)|))ds =

∫ ∞

−∞
f(x)L∗(x, t)dx. (3.3)

Proof. By equations (3.1) and (3.2)∫ ∞

−∞
f(x)L∗(x, t)dx =

∫ ∞

−∞
f(x)

∫ ∞

0
L̄2(s, t)dsL1(x, s)dx

=
∫ ∞

0
L̄2(s, t)ds

∫ ∞

−∞
f(x)L1(x, s)dx

=
∫ ∞

0
L̄2(s, t)ds

∫ s

0
f(X(u))du

=
∫ ∞

0
L̄2(s, t)f(X(s))ds

=
∫ t

0
f(X(|Y (s)|))ds. (3.4)

Hence we have the equation (3.3). The joint continuity of L∗(x, t) follows from the joint conti-
nuity of the local times of Brownian motion and of symmetric stable process.

We now give the scaling property of local time of Z1.

Theorem 3.1.

L∗(xt1/2α, t)/t1−1/2α (d)
=
∫ ∞

0
L̄2(s, 1)dsL1(x, s)dx = L∗(x, 1), x ∈ R. (3.5)

Corollary 3.1. For each fixed t ≥ 0, we have

L∗(0, t)/t1−1/2α (d)
= L∗(0, 1). (3.6)
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Proof of Theorem 3.1. The following scaling properties of the Brownian local time and stable
local time are well-known.

{L1(x, t); x ∈ R, t ≥ 0} (d)
= { 1

c1/2
L1(c1/2x, ct); x ∈ R, t ≥ 0}, (3.7)

and
{L2(x, t); x ∈ R, t ≥ 0} (d)

= { 1
c1−1/α

L1(c1/αx, ct); x ∈ R, t ≥ 0}, (3.8)

where c > 0 is an arbitrary fixed number. Consequently we have

L∗(x, t) =
∫ ∞

0
L̄2(s, t)dsL1(x, s)

(d)
=

1
c1−1/α

∫ ∞

0
L̄2(c1/αs, ct)dsL1(x, s) c > 0 fixed

(d)
= t1−1/α

∫ ∞

0
L̄2(

s

t1/α
, 1)dsL1(x, s), c = 1/t, t > 0 fixed

(d)
= t1−1/α

∫ ∞

0
L̄2(u, 1)duL1(x, ut1/α), u = s/t1/α, t > 0 fixed

(d)
= t1−1/αt1/2α

∫ ∞

0
L̄2(u, 1)duL1(

x

t1/α
, u), t > 0 fixed x ∈ R.

Clearly, the last equation is equivalent to (3.5).

3.0.1 Preliminaries

In this section we will prove a lemma which is crucial in the proof of the following theorems.
The usual LIL or Kolmogorov’s LIL for Brownian motion which replaces the time parameter
was used essentially in the results in [11] and [25] to prove Kesten’s LIL for iterated Brownian
motion. However, there does not exist an LIL of this type for symmetric α-stable process. To
overcome this difficulty with the use of the following lemma we show below that the LIL for the
range process of symmetric α-stable process suffices to prove Theorem 1.3.

Lemma 3.1. Let A ⊂ R+ be Lebesgue measurable. Let L(x,A) be local time of Brownian motion
over the set A. Then

sup
x∈R

L(x,A)
(d)
= sup

x∈R
L(x, |A|) = sup

x∈R
L(x, [0, |A|]),

where |.| denotes Lebesgue measure and
(d)
= means equality in distribution.

Proof. We use monotone class theorem from [24]. Define

S = {A ⊂ R+ : sup
x∈R

L(x,A)
(d)
= sup

x∈R
L(x, |A|)}.

Obviously R+ ∈ S. Let A,B ∈ S and A ⊂ B. Since L(x,A) is an additive measure in the set
variable

sup
x∈R

L(x,B) = sup
x∈R

L(x,A) + sup
x∈R

L(x,B \A),
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so

sup
x∈R

L(x, |B|) (d)
= sup

x∈R
L(x,B)

= sup
x∈R

L(x,A) + sup
x∈R

L(x,B \A).

On the other hand,

sup
x∈R

L(x, |B|) = sup
x∈R

L(x, |A|) + sup
x∈R

L(x, (|A|, |B|)),

hence

sup
x∈R

L(x, |B|) (d)
= sup

x∈R
L(x, |A|) + sup

x∈R
L(x, (|A|, |B|))

(d)
= sup

x∈R
L(x,A) + sup

x∈R
L(x,B \A).

For 0 < |A| < ∞, the moment generating function of supx∈R L(x, |A|) satisfies for some δ > 0,
(see [16, Remark p.452] )

0 < MGF (t) = E[et supx∈R L(x,|A|)] <∞, for |t| < δ.

Since supx∈R L(x, |A|) and supx∈R L(x, (|A|, |B|)) are independent and similarly supx∈R L(x,A)
and supx∈R L(x,B \A) are independent, considering moment generating functions (in case |A| =
0 or |B \ A| = 0, we do not need generating functions) which is the product of the moment
generating functions, we get that B \A ∈ S.

Let An ⊂ An+1 be an increasing sequence of sets in S. For λ > 0,

P [sup
x∈R

L(x,∪∞n=1An) ≤ λ] = P [sup
x∈R

lim
n→∞

L(x,An) ≤ λ]

= lim
n→∞

P [sup
x∈R

L(x,An) ≤ λ]

= lim
n→∞

P [sup
x∈R

L(x, |An|) ≤ λ]

= P [sup
x∈R

L(x, | ∪∞n=1 An|) ≤ λ].

Hence ∪∞n=1An ∈ S.

Now to complete the proof we show that open intervals are in S. Every interval is in S, since
the increments of Brownian motion are stationary. It is clear that sets of measure zero are also
in S. Hence S contains every Lebesgue measurable set by monotone class theorem.

3.1 On upper-upper classes

For further information on the Lévy classes we refer to Révész [23].

In this section we prove
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Theorem 3.2. There exists a t0 = t0(w) and a universal constant Cuu ∈ (0,∞) such that for
t > t0 we have

L∗(0, t) ≤ sup
x∈R

L∗(x, t) ≤ Cuut
1−1/2α(log log t)1+1/2α a.s. (3.9)

Proof. By the LIL for the range R(t) = |{x; Y (s) = x for some s ≤ t}| given in Griffin [13]

lim sup
t→∞

t−1/α(log log t)−(1−1/α)R(t) = c1 a.s. (3.10)

and the Kesten type LIL for Y , established by Donsker and Varadhan [12], for some finite
constant c2

lim sup
t→∞

t−(1−1/α)(log log t)−1/α sup
x∈R

L2(x, t) = c2 a.s. (3.11)

sup
x∈R

L∗(x, t) = sup
x∈R

∫ ∞

0
L̄2(s, t)dsL1(x, s)

= sup
x∈R

∫
Y [0,t]

L̄2(s, t)dsL1(x, s) a.s

= O(t1−1/α(log log t)1/α sup
x∈R

L1(x,R+ ∩ Y [0, t]))

= O(t1−1/α(log log t)1/α sup
x∈R

L1(x, |Y [0, t]|)) (by Lemma 3.1)

= O(t1−1/α(log log t)1/α sup
x∈R

L1(x, ct1/α(log log t)1−1/α)) a.s.

= O(t1−1/2α(log log t)1+1/2α) a.s. (3.12)

with t0 big enough, by using the LIL for the range of Y and LIL of Kesten for
sups∈R L̄2(s, t) from (3.10)-(3.11) respectively, and then applying the Kesten’s LIL once again
to supx∈R L1(x, ct1/α(log log t)1−1/α) given in [16].

3.2 On upper-lower classes

In this section we prove

Theorem 3.3. There exists a universal constant Cul ∈ (0,∞) such that

P [sup
x∈R

L∗(x, t) ≥ Cult
1−1/2α(log log t)(1+α)/2α i.o] = 1. (3.13)

Since the log log powers do not match in equations (3.9) and (3.13), we cannot deduce an LIL
for supx∈R L

∗(x, t).

Proof. Proof follows from Theorem 1.2 and the observation

t =
∫

x∈S(t)
L∗(x, t)dx ≤ R∗(t) sup

x∈R
L∗(x, t), a.s.

where R∗(t) = |S(t)| = |{x : Z1(s) = x for some s ≤ t}| and the fact that R∗(t) ≤
2 sup0≤s≤t |Z1

s |.
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3.3 On lower-upper classes

In this section we prove

Theorem 3.4. There exists a universal constant Clu ∈ (0,∞) such that

P [L∗(0, t) ≤ sup
x∈R

L∗(x, t) ≤ Clu(
t

log log t
)1−1/2α i.o] = 1. (3.14)

Proof. We have from Csáki and Földes [10]: for 0 ≤ a ≤ 1

P [sup
x∈R

L1(x, 1) ≤ a] ≥ exp(− c

a2
), (3.15)

for some absolute constant c > 0. A similar result for the local time of Y is given in [13]: there
exists θ > 0 and c1 > 0 such that for t large

P [sup
x∈R

L2(x, 1) ≤ θ/(log log t)1−1/α] ≥ c1β
(log log t), (3.16)

with e−1 < β < 1.

Define c2 =
√

4c/d with Cβ = d+ log β−1 < 1 and tk = exp(kp), with p ∈ (1, 1/Cβ) for k large.
Consider

sk
def
= 2c4t

1/α
k (log log tk)1−1/α, c4 constant in LIL of range of Y,

Dk
def
=

{
sup
x∈R

(L1(x, sk)− L1(x, sk−1)) ≤
c2t

1/2α
k

2(log log tk)1/2α

}
,

Ek
def
=

{
sup
x∈R

(L2(x, tk)− L2(x, tk−1)) ≤
θt

1−1/α
k

(log log tk)1−1/α

}
,

Fk
def
= Dk ∩ Ek.

We have by means of (3.15) and (3.16),

P [Dk] ≥ P [sup
x∈R

L1(x, 1) ≤ c2

2(log log tk)1/2
] ≥ exp(−d log log tk),

P [Ek] ≥ P [sup
x∈R

L2(x, 1) ≤ θ

(log log tk)1−1/α
] ≥ c1β

(log log tk).

Hence
P [Fk] = P [Dk]P [Ek] ≥

c1

kpCβ
,

which implies
∑

k P [Fk] = ∞. Thanks to the independence of the F ′ks, we can apply the Borel-
Cantelli lemma to conclude that, almost surely there exists infinitely many k’s for which Fk is
realized. On the other hand, by the Kesten LIL, for X and Y for all large k,

sup
x∈R

L1(x, sk−1) ≤ 2(sk−1 log log sk−1)1/2 ≤
c2t

1/2α
k

(log log tk)1/2α
,

452



sup
x∈R

L2(x, tk−1) ≤ 2c5t
1−1/α
k−1 (log log tk−1)1/α ≤

c6t
1−1/α
k

(log log tk)1−1/α
.

Therefore there exist infinitely many k’s such that

sup
x∈R

L1(x, sk) ≤
2c2t

1/2α
k

(log log tk)1/2α
, (3.17)

sup
x∈R

L2(x, tk) ≤
(θ + c6)t

1−1/α
k

(log log tk)1−1/α
. (3.18)

For those k satisfying (3.17)-(3.18), we have, by the usual LIL for the range of Y given in (3.10),

sup
x∈R

L∗(x, tk) = sup
x∈R

∫ ∞

0
L̄2(u, tk)duL1(x, u)

= sup
x∈R

∫
Y [0,tk]

L̄2(u, tk)duL1(x, u)

≤ 2 sup
y∈R

L2(y, tk) sup
x∈R

L1(x,R+ ∩ Y [0, tk])

≤ 4c2(θ + c6)
(

tk
log log tk

)1−1/2α

(by Lemma 3.1).

3.4 The range

In this section we will prove an LIL for the range R∗(t) = |{x : Z1(s) = x for some s ≤ t}|. The
idea of the proof is to look at the large jumps of the symmetric stable process which replaces the
time parameter in the process Z1(t). To prove LIL for the range of Z1 we need several lemmas.
We adapt the arguments of Griffin [13] to our case in the following lemmas.

If Y (t) is a process and T is some, possibly random, time then Y ∗(T ) = sup{|Y (r)| : 0 ≤ r ≤ T}.
If S < T then (Y (T )− Y (S))∗ = sup{|Y (r)− Y (S)| : S ≤ r ≤ T}.

Definition 3.1. TY (a) = inf{s : |Y (s)− Y (s−)| > a}.

We will usually write TY (a) = T (a) if it is clear which process we are referring to.

Lemma 3.2 (Griffin [13]). The random variables a−1/αY ∗(T (a1/α−)) and Y ∗(T (1)−) have the
same distribution.

Using the scaling of Brownian motion it is easy to deduce

Lemma 3.3. The random variables

a−1/2αX∗(Y ∗(T (a1/α−)))

and
X∗(Y ∗(T (1)−))

have the same distribution.
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As in Griffin [13], we can decompose Y as the sum of two independent Lévy processes

Y (t) = Y1(t) + Y2(t),

where

Y2 =
∑
s≤t

(Y (s)− Y (s−))1{|Y (s)− Y (s−)| > 1}

Y1(t) = Y (t)− Y2(t).

The Lévy measure of Y1 is given by 1{|x| ≤ 1}|x|−1−αdx and the moment generating function
by

E[exp(aY1(t))] = exp(tψ(a)),

where

ψ(a) =
∫ 1

−1
(eax − 1)

dx

|x|1+α
.

Observe that ψ(a) → 0 as a→ 0.

Lemma 3.4. [Griffin [13]] If a is small enough that ψ(a) < 2α−1, then

E[exp(aY ∗(T (1)−))] ≤ 8α−1

2α−1 − ψ(a)
.

We deduce the following from the last lemma.

Lemma 3.5. If a is small enough that ψ(a2/2) ≤ 2α−1, then

E[exp(aX∗(Y ∗(T (1)−)))] ≤ 32α−1

2α−1 − ψ(a2/2)
.

Proof. The moments of Brownian motion X are given by E[exp(θX(t))] = exp(θ2t/2), so

E[exp(aX∗(Y ∗(T (1)−)))] =
∫ ∞

0

∫ ∞

0
E[exp(aX∗(l))]fl(s)2α−1e−2α−1

dlds,

where fl(s) is the density of Y ∗(s).

Now P [X∗(t) > x] ≤ 2P [|X(t)| > x] for each x > 0 t > 0, hence

E[exp(aX∗(l))] ≤ 2E[exp(a|X(l)|)] ≤ 4E[exp(aX(l))] = exp(a2l/2),

therefore

E[exp(aX∗(Y ∗(T (1)−)))] ≤ 4
∫ ∞

0
E[exp(

a2

2
Y ∗(s))]2α−1e−2α−1

ds. (3.19)

From Lemma 3.4 we deduce that

E[exp(aX∗(Y ∗(T (1)−)))] ≤ 32α−1

2α−1 − ψ(a2/2)
.
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Definition 3.2. J(t, γ(t)) = #{s ≤ t : |Y (s)− Y (s−)| > γ(t)} where γ(t) = (t/ log log t)1/α.

We know from [13] that J(t, γ(t)) has Poisson distribution with parameter 2 log log t/α.

Definition 3.3. Fix t > 0 and define

T1 = inf{s : |Y (s)− Y (s−)| ≥ γ(t)}
Tk+1 = inf{s > Tk : |Y (s)− Y (s−)| ≥ γ(t)}.
V 1

k = (X(|Y (Tk−)|)−X(|Y (Tk−1)|))∗

Vk = X∗(((Y (Tk−))− Y (Tk−1))∗)
W 1

k = (t/ log log t)−1/2αV 1
k

Wk = (t/ log log t)−1/2αVk.

Observe that Wk, k = 1, 2, · · · are identically distributed as

X∗(Y ∗(T (1)−))

by Lemma 3.3.

Observe also that W 1
k , k = 1, 2, · · · are identically distributed as

X∗((|Y (T2−)| − |Y (T1)|)∗).

Furthermore
X∗((|Y (T2−)| − |Y (T1)|)∗) ≤ X∗((Y (T2−)− Y (T1))∗).

Finally, observe that X∗((Y (T2−)−Y (T1))∗) and X∗(Y ∗(T (1)−)) are identically distributed by
Lemma 3.3.

Since the paths of Y are not non-decreasing, the processes Wk, k = 1, 2, · · · are not independent.
To get independent processes we have to decompose the image of Y . So we define

V ∗
1 = sup

0≤s≤sup0≤r≤T1− |Y (r)|
|X(s)|

V ∗
k = sup

s,l∈Ak

|X(s)−X(l)|,

where Ak = |Y |[Tk−1, Tk−] ∩ (|Y |[0, Tk−1−])C , k = 2, 3, · · · Observe that given Y , V ∗
k are

independent for k = 1, 2, · · · , and V ∗
k ≤ 2V 1

k . Define

W ∗
k = (t/ log log t)−1/2αV ∗

k .

Now let ϕ(t) denote the function (t/ log log t)1/2α log log t.

Lemma 3.6. If λ is sufficiently large, then

P [V ∗
1 + · · ·+ V ∗

J(t,γ(t))+1 ≥ λϕ(t)] ≤ (log t)−2.
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Proof. We have by a lemma in Griffin [13], for β sufficiently large

P [J(t, γ(t)) ≥ [β log log t]] ≤ 1
2

1
(log t)2

. (3.20)

Since V ∗
k ≥ 0,

P [V ∗
1 + · · ·+ V ∗

J(t,γ(t))+1 ≥ λϕ(t)] ≤ P [V ∗
1 + · · ·+ V ∗

[β log log t] ≥ λϕ(t)]
+ P [J(t, γ(t)) ≥ [β log log t]].

Let ξ = 32α−1/(2α−1−ψ((2a)2/2)) and choosing β to satisfy (3.20), we see that by Lemma 3.5
for a sufficiently small and llt denoting log log t

P [V ∗
1 + · · ·+ V ∗

[βllt] ≥ λϕ(t)] = P [W ∗
1 + · · ·+W ∗

[βllt] ≥ λllt]
≤ exp(−aλllt)E[(E[exp(aW ∗

1 )|Y ]
×E[exp(aW ∗

2 )|Y ] · · ·E[exp(aW ∗
[βllt])|Y ])]

≤ exp(−aλllt)E[(E[exp(2aW1)|Y ]
×E[exp(2aW2)|Y ] · · ·E[exp(2aW[βllt])|Y ])]

≤ exp(−aλllt)E[(4E[exp(2a2U1)|Y ]
×4E[exp(2a2U2)|Y ] · · · 4E[exp(2a2U[βllt])|Y ])]

≤ exp(−aλllt)(4E[exp(2a2U1)])[βllt] (3.21)
≤ exp(−llt(aλ− β log ξ))

≤ 1
2(log t)2

,

if λ is sufficiently large. Where

Uk = (t/ log log t)−1/α(Y (Tk−)− Y (Tk−1))∗.

In the fourth line inequality we use equation (3.19). In equation (3.21) we use the fact that U ′
ks

are i.i.d. with common distribution Y ∗(T (1)−) and Lemma 3.4.

Theorem 3.5. There exits a t0 such that for t > t0, and for certain constants C,K ∈ (0,∞)

R∗(t) ≥ Ct1/2α(log log t)−(1+1/2α) a.s.

and
P [R∗(t) ≥ Kt1/2α(log log t)1−1/2α i.o] = 1.

Proof. This follows from Theorem 3.2 and

t =
∫

x∈S(t)
L∗(x, t)dx ≤ R∗(t) sup

x∈R
L∗(x, t),

where R∗(t) = |S(t)| = |{x : Z1(s) = x for some s ≤ t}|. The last probability follows similarly
using Theorem 3.4.
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Proof of Theorem 1.4. We will prove only the upper bound in the light of Theorem 3.5. To
prove the upper bound observe that

R∗(t) ≤ V ∗
1 + · · ·+ V ∗

J(t,γ(t))+1.

Thus by Lemma 3.6 for λ sufficiently large

P [R∗(t) ≥ λϕ(t)] ≤ (log t)−2.

Hence for large n,

P [R∗(t) ≥ λϕ(t) for some t ∈ [2n, 2n+1)]
≤ P [R∗(2n+1) ≥ λϕ(2n)]
≤ P [R∗(2n+1) ≥ (λc)ϕ(2n+1)]

≤ Clast

(n+ 1)2
.

if λ is sufficiently large. The result follows from Borel-Cantelli lemma.

3.5 On lower-lower classes

In this section we prove

Theorem 3.6. There exists a t0 = t0(w) and a universal constant Cll ∈ (0,∞) such that for
t > t0

sup
x∈R

L∗(x, t) ≥ Cll(
t

log log t
)1−1/2α a.s. (3.22)

Proof. The proof follows from Theorem 1.4 and the observation

t =
∫

x∈S(t)
L∗(x, t)dx ≤ R∗(t) sup

x∈R
L∗(x, t),

where R∗(t) = |S(t)| = |{x : Z1(s) = x for some s ≤ t}|.

Proof of Theorem 1.3. Theorems 3.4 and 3.6 imply the proof.
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for his guidance on this paper.

References

[1] H. Allouba and W. Zheng, Brownian-time processes: The pde connection and the half-
derivative generator, Ann. Prob. 29 (2001), no. 2, 1780-1795. MR1880242
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