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Abstract
A stochastic calculus similar to Malliavin’s calculus is worked out for Brownian
excursions. The analogue of the Malliavin derivative in this calculus is not a
differential operator, but its adjoint is (like the Skorohod integral) an extension
of the Itô integral. As an application, we obtain an expression for the integrand
in the stochastic integral representation of square integrable Wiener functionals;
this expression is an alternative to the classical Clark-Ocone formula. Moreover,
this calculus enables to construct stochastic integrals of predictable or anticipating
processes (forward, backward and symmetric integrals are considered).
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1 Introduction

Consider the Wiener space Ω = C(R+,Rd) of continuous paths ω : R+ → Rd, with the
Wiener measure P, the standard Wiener process Wt(ω) = ω(t), and the right continuous
filtration (Ft) generated by W . The two main questions which are addressed in this article
are:

• the representation of a variable F defined on Ω as a stochastic Itô integral with
respect to W ;

• the construction of stochastic integrals of predictable or anticipating processes with
respect to W .

These two questions have been dealt with for a long time by means of basic stochastic
calculus and of Malliavin’s calculus; here, we want to describe an alternative approach
based on Brownian excursions.

Consider first the representation problem. Let F be a square integrable random variable
defined on Ω. It is well known that the martingale E[F |Ft] can be written as

E[F |Ft] = E[F ] +

∫ t

0

(Zs, dWs) (1.1)

where Zt is a Rd-valued predictable process such that E
∫
|Zt|2dt is finite; moreover Zt(ω) is

unique to a P(dω) dt negligible set. This formula has important theoretical consequences
(this is the predictable representation property for the Wiener process), and it is also
useful in some applications (mathematical finance is a recent example). Consequently,
finding an expression of Z in terms of F is a natural question.

For instance, in the particular case F = f(W1), let

Ptf(x) = E
[
f(x+Wt)

]
denote the heat semigroup. Then the martingale E[F |Ft], 0 ≤ t ≤ 1, can be written as
P1−tf(Wt), and an easy application of the Itô formula shows that for t ≤ 1,

Zt = ∇
(
P1−tf

)
(Wt).

A classical extension of this particular case is based on the Malliavin calculus. If F is in
a suitable functional space, one can consider its Malliavin derivative DtF , and Z can be
written by means of the Clark-Ocone formula ([7], Proposition 1.3.5 of [6])

Zt = E
[
DtF

∣∣ Ft

]
(1.2)

which expresses Z as the predictable projection of DF . However, in this formula, we
have to assume that F is differentiable in the sense of Malliavin and this is a restriction
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(consider for instance variables related to the first exit time of an interval, or to some local
time). In order to bypass this difficulty, we can write a similar formula for distributions
on the Wiener space (in this case the derivative DtF is considered in distribution sense,
see [12]), but such a formula is not always very tractable; some other extensions have also
been worked out in view of mathematical finance applications.

Our aim is to obtain another formula for Z which does not use any differentiation and
which is valid in many cases. Notice that (1.2) follows from the fundamental formula of
Malliavin’s calculus (Definition 1.3.1 of [6])

E
[
F δ(ρ)

]
= E

∫ (
DtF, ρt

)
dt.

This formula expresses the duality between the Malliavin derivative D and a divergence
operator δ (the Skorohod integral); then (1.2) is a consequence of the fact that δ(ρ)
coincides with the Itô integral for predictable processes ρ. Actually, any operator D
satisfying the same property will provide a representation formula similar to (1.2). Here,
we are going to replace D by an operator D which modifies the excursions of the Brownian
path. It is not a differential operator; nevertheless, by working out a stochastic analysis
of these excursions, we will prove a formula

E
[
F Φ(ρ)

]
= E

∫ (
DtF, ρt

)
dt (1.3)

expressing the duality between D and an operator Φ which is again an extension of the
Itô integration. Thus we will deduce that

Zt = E
[
DtF

∣∣ Ft

]
. (1.4)

More explicitly, it will appear that the predictable projection in the right-hand side is
an integral with respect to a measure which is strongly related to the Itô measure for
Brownian excursions.

The operator Φ(ρ) coincides with Itô integrals for predictable processes ρ, so its study is
related to our second question, namely the construction of stochastic integrals by means
of the Brownian excursions. We will construct integrals with respect to a fixed component
of the Wiener process, so we will write the Wiener process as (Wt, Vt) ∈ R×Rd−1 and look
for integrals with respect to the first component W . If ω is a one-dimensional continuous
path with finite variation, the Lebesgue-Stieltjes integral with respect to ω can be obtained
by counting the points of increase and decrease of ω (this will be explained in Section 3).
If now ω is a Brownian path, it has no point of increase or decrease, but one can consider
the excursions of ω above or below any level, and the beginning (respectively the end) of
an excursion can be viewed as a point of increase or decrease on the right (respectively
the left). This procedure provides generalised Lebesgue-Stieltjes measures; notice that
we have not one measure, but four measures because we have the choice of considering
beginnings or ends of excursions below or above any level. Predictable processes are not
directly integrable with respect to these measures, but an approximation procedure leads
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to a construction of Itô, Stratonovich and backward integrals (depending on the choice
of the measure). This approximation is equivalent to a regularisation of the Wiener path
by means of a path with finite variation; in this sense, this procedure is similar to the
approach of [11], though the approximation and the results are different. If now we
integrate anticipating processes, we obtain forward, backward and symmetric integrals,
and we can study the adjoint Φ of D.

Technically, the study of these measures relies on classical formulas for excursions and
more generally exit systems, see [2, 1]; it is related to a calculus which consists in
appending and removing excursions to the Brownian path, and which is similar to
appending and removing jumps to Poisson processes as in [8]; this calculus has features
which are similar to the Malliavin calculus, but it is not a differential calculus.

Let us outline the contents of this article. The representation formula (1.4) of a variable
F is stated in Section 2, and an elementary proof is given for simple functionals F =
f(Wt1 , . . . ,Wtn). The general case relies on the duality formula (1.3) between D and Φ,
the proof of which is postponed; some examples are discussed.

In Section 3, the family of generalised Lebesgue-Stieltjes measures associated to a one-
dimensional continuous path ω are introduced, and their stochastic analysis is worked
out.

In Section 4, we deduce a construction of Itô, Stratonovich and backward integrals of
predictable processes, and we complete the proof of the representation formula (1.4).

In Section 5, we construct the associated anticipating integrals, and explore the duality
(1.3) between D and Φ.

We finish this introduction with a warning related to the general theory of processes. We
will often consider predictable processes. Since we use the Wiener filtration, predictable
and optional can be viewed as synonyms, but most of the results stated for predictable
processes will not be true for processes which are only progressively measurable; this is
usual in excursion theory and is due to the fact that the set of beginnings of excursions
is progressively measurable but not predictable.

2 Representation of Wiener functionals

In this section, we first state in §2.1 the result, give some hints about the proof in §2.2
(it will be completed in Section 4), and describe some applications in §2.3.

2.1 The result

We first consider the one-dimensional case d = 1 (the extension to the multidimensional
case is given at the end of the subsection). In order to introduce our result, we need some
notation. If ω and θ are two paths indexed by R+, and if t ≥ 0, we can consider the path
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ω|t|θ defined by

(ω|t|θ)(s) =

{
ω(s) if s < t,

ω(t) + θ(s− t) if s ≥ t.

If θ is a path, we can consider the hitting time

ζ(θ) = inf
{
s > 0; θ(s) = 0

}
,

and define the path θ? by

θ?(s) =

{
−θ(s) if s < ζ(θ),

θ(s) if s ≥ ζ(θ).
(2.1.1)

The path θ? is the reflection of θ up to ζ.

Let I be the Itô measure of Brownian excursions (see Chapter XII of [10]); this is a
σ-finite measure on Ω supported by

Θ =
{
θ ∈ Ω; ζ(θ) > 0; θ(0) = 0; θ(t) = 0 for t ≥ ζ(θ)

}
.

It can be characterised by the following property; under the restriction of I to {ζ > t}
(which is a finite measure), conditionally on Ft, the process (θ(t+ s); s ≥ 0) is a Wiener
process stopped at 0, and its entrance measure is

I
{
ζ(θ) > t; θ(t) ∈ dx

}
=

|x|√
2πt3

e−x2/(2t)dx. (2.1.2)

Excursions are either positive or negative, and this leads to a decomposition Θ = Θ↑∪Θ↓

and I = I↑ + I↓. Notice that θ 7→ θ? transforms I↑ and I↓ into each other.

Under I, the canonical process is stopped at ζ; it is useful to also consider the unstopped
process, that is an Itô excursion followed by a Wiener path. More precisely we let J be
the push forward of the measure I(dθ) P(dω) by the concatenation map

(θ, ω) 7→ θ|ω.

It is a measure on the set of paths θ ∈ Ω such that θ(0) = 0 and ζ(θ) > 0. It has a
characterisation similar to I; on {ζ > t}, conditionally on Ft, the process (θ(t+s); s ≥ 0)
is a Wiener process, and

J
{
ζ(θ) > t; θ(t) ∈ dx

}
=

|x|√
2πt3

e−x2/(2t)dx. (2.1.3)

Notice that under J , the map θ 7→ θ? consists of reflecting the first excursion without
modifying the remaining of the path. Like I, the measure J has a decomposition J =
J ↑ +J ↓ involving the sign of the first excursion, and θ 7→ θ? transforms J ↑ and J ↓ into
each other. We are now ready to state the main result.
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Figure 1: An example of paths ω|t|θ and ω|t|θ?

Theorem 2.1.4. On the one-dimensional Wiener space (d = 1), let F be a square
integrable variable and define

JtF (ω) =

∫ (
F (ω|t|θ)− F (ω|t|θ?)

)
J ↑(dθ) (2.1.5)

on

A =
{

(t, ω);

∫ ∣∣F (ω|t|θ)− F (ω|t|θ?)
∣∣J ↑(dθ) <∞

}
.

Then the stochastic integral representation (1.1) of E[F |Ft] satisfies the relation

Zt(ω) = JtF (ω) (2.1.6)

almost everywhere on A.

Remark 2.1.7. Variables F are often only defined almost surely. On the other hand, for
t fixed, the law of ω|t|θ under P⊗ J ↑ is singular with respect to P, so it seems that JtF
is not well defined; however, it will appear that this law is absolutely continuous after a
time integration, so JtF is actually well defined for almost any (t, ω) of A.

Remark 2.1.8. A noteworthy and useful description of Brownian excursions is the Williams
decomposition (Theorem XII.4.5 of [10]). Let

η(θ) = sup
{
|θ(t)|; 0 ≤ t ≤ ζ(θ)

}
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be the height of the excursion. Then

I↑(η ∈ da) = da
/

(2a2), (2.1.9)

and the law I↑ conditioned on {η = a} is described as follows; if Ta(θ) is the first hitting
time of a, then (θ(t); 0 ≤ t ≤ Ta(θ)) and (a − θ(Ta(θ) + t); 0 ≤ t ≤ ζ(θ) − Ta(θ)) are
two independent Bessel processes of dimension 3, up to their first hitting time of a. One
deduces a description of J ↑(dθ) by adding a Wiener path after ζ(θ). This decomposition
can be useful for the numerical simulation of Brownian excursions, and therefore for the
computation of Zt by means of a Monte-Carlo method.

Before entering the proof of the theorem, let us give its multidimensional extension.
Similarly to JtF in (2.1.5), we define

J ↑k (dθ1, . . . , dθd) = P(dθ1) . . .P(dθk−1)J ↑(dθk)P(dθk+1) . . .P(dθd),

θ?
(k) = (θ1, . . . , θk−1, (θk)

?, θk+1, . . . , θd), (2.1.10)

and

Jk
t F (ω) =

∫ (
F (ω|t|θ)− F (ω|t|θ?

(k))
)
J ↑k (dθ) (2.1.11)

on

Ak =
{

(t, ω);

∫ ∣∣F (ω|t|θ)− F (ω|t|θ?
(k))
∣∣J ↑k (dθ) <∞

}
.

Theorem 2.1.12. If F is a square integrable variable, then the kth component of Zt

satisfies Zk
t = Jk

t F almost everywhere on Ak.

2.2 About the proof

We first prove Theorems 2.1.4 and 2.1.12 for a particular class of variables; the proof is
indeed much simpler in this case, and is an application of the reflection principle for the
Brownian motion. We then give some hints about the general case (the proof will be
completed in Section 4).

Lemma 2.2.1. Suppose that
F = f(Wt1 , . . . ,Wtn)

is a bounded simple functional. Then, with the notations of Theorem 2.1.4 (one-
dimensional case), the set A has full measure and Zt(ω) = JtF (ω) almost everywhere.
Similarly, with the notations of Theorem 2.1.12 (multidimensional case), the set Ak has
full measure and Zk

t (ω) = Jk
t F (ω) almost everywhere.

Proof in the one-dimensional case. Fix t, and notice that for tj < t < tj+1, one has
F (ω|t|θ) = F (ω|t|θ?) on {θ; ζ(θ) ≤ tj+1 − t}; the complement of this event has finite
measure for J ↑. Thus A has full measure. Moreover, the martingale has the form

E[F |Ft] =

∫
F (ω|t|θ)P(dθ) = g(Wt1 , . . . ,Wtj ,Wt)
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for the function

g(w1, . . . , wj, x) = E
[
f(w1, . . . , wj, x+Wtj+1

−Wt, . . . , x+Wtn −Wt)
]

which is smooth with respect to the last variable. If g′ denotes the derivative with respect
to this last variable, then

Zt = g′(Wt1 , . . . ,Wtj ,Wt) (2.2.2)

= lim
ε↓0

1

2ε

(
g(Wt1 , . . . ,Wtj ,Wt + ε)− g(Wt1 , . . . ,Wtj ,Wt − ε)

)
= lim

ε↓0

1

2ε
E
[
f(Wt1 , . . . ,Wtj ,Wtj+1

+ ε, . . . ,Wtn + ε)

− f(Wt1 , . . . ,Wtj ,Wtj+1
− ε, . . . ,Wtn − ε)

∣∣∣ Ft

]
= lim

ε↓0

1

2ε

∫ (
F (ω|t|θ + ε)− F (ω|t|θ − ε)

)
P(dθ). (2.2.3)

For the last line, notice that the paths ω|t|θ ± ε are not continuous at time t and are
therefore not in Ω, but F (ω|t|θ ± ε) can still be defined for simple functionals F . The
integral involves the paths θ ± ε separately, so we can use another coupling of these two
processes. If we choose the coupling based on the reflection principle, we get, with the
notation (2.1.1),

Zt = lim
ε↓0

1

2ε

∫ (
F (ω|t|θ + ε)− F (ω|t|(θ + ε)?)

)
P(dθ). (2.2.4)

Define δ = tj+1 − t and let

ζε(θ) = inf
{
t ≥ 0; θ(t) = −ε

}
be the coupling time of θ+ε and its reflected path; the difference in the integral of (2.2.4)
is 0 on {ζε(θ) ≤ δ}, so

Zt = lim
ε↓0

1

2ε

∫ (
F (ω|t|θ + ε)− F (ω|t|(θ + ε)?)

)
1{ζε(θ)>δ}P(dθ).

In order to compute this expression, we need the law of (θ(δ + s) + ε; s ≥ 0) under
1{ζε(θ)>δ}P(dθ)/(2ε). This process has Brownian increments, and its initial measure is
obtained from the reflection principle; more precisely

1

2ε
P
{
θ; ζε(θ) > δ, θ(δ) + ε ∈ dx

}
=

1R+(x)

2ε
√

2πδ

(
e−(x−ε)2/(2δ) − e−(x+ε)2/(2δ)

)
dx.

By studying the limit as ε ↓ 0, it appears that this process converges in law (for the
convergence on all bounded Borel functions) to the process with Brownian increments
and initial measure

x√
2πδ3

e−x2/(2δ)1R+(x)dx.
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But (recall (2.1.3)) this is also the law of (θ(δ + s); s ≥ 0) under the measure
1{ζ(θ)>δ}J ↑(dθ), so

Zt =

∫ (
F (ω|t|θ)− F (ω|t|θ?)

)
1{ζ(θ)>δ}J ↑(dθ).

Since the indicator can be removed, we deduce that Zt = JtF .

Proof in the multidimensional case. Proving that Ak has full measure is similar. On the
other hand, Zk

t is given by a formula similar to (2.2.2), but involving the derivative of
g(w1, . . . , wj, x) with respect to the kth component of x. Then (2.2.3) becomes

Zk
t (ω) = lim

ε↓0

1

2ε

∫ (
F (ω|t|θ + εek)− F (ω|t|θ − εek)

)
P(dθ)

where θ ± εek is the path θ, the kth component of which is translated by ±ε. One can
replace θ − εek by the reflected path (θ + εek)

?
(k), and the coupling time is now

ζε
(k) = inf

{
t ≥ 0; θk(t) = −ε

}
.

Then one checks that the law of (θ(δ+s)+εek; s ≥ 0) under the measure 1{ζε
(k)

>δ}P(dθ)/(2ε)

converges as ε ↓ 0 to the law of (θ(δ+s); s ≥ 0) under 1{ζ(θk)>δ}J ↑k (dθ), and one concludes
like previously.

Let us now consider the case of a general square integrable variable F . We can
approximate it in L2 by simple functionals Fn, so Zt is the limit of JtFn. However, it
is not evident in the general case to prove the convergence of JtFn to JtF , so we work out
another method. The main tool is the following duality formula which will be proved in
Section 4 (see after Theorem 4.1.11).

Lemma 2.2.5. Let ρt be a real-valued bounded predictable process. Suppose 1 ≤ k ≤ d
and let F be a bounded F1-measurable variable such that

E
∫ 1

0

∫ ∣∣ρt

∣∣ ∣∣F (ω|t|θ)− F (ω|t|θ?
(k))
∣∣J ↑k (dθ)dt <∞, (2.2.6)

so that ρt J
k
t F is well defined almost everywhere. Then

E
∫ 1

0

ρt J
k
t F dt = E

[
F

∫ 1

0

ρtdW
k
t

]
. (2.2.7)

Taking for granted this lemma, let us explain how the representation formula is deduced.
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Proof of Theorems 2.1.4 and 2.1.12. We prove Theorem 2.1.4 (the multidimensional case
of Theorem 2.1.12 is similar). It is sufficient to consider a F1 measurable variable F and
to prove (2.1.6) for 0 ≤ t ≤ 1. Let us first assume that F is bounded and put

Z ′t =

∫ ∣∣F (ω|t|θ)− F (ω|t|θ?)
∣∣J ↑(dθ).

This is a predictable process. For any bounded predictable process ρ, we can apply Lemma
2.2.5 to ρ1{Z′≤µ} for µ > 0, and deduce

E
∫ 1

0

ρtZt1{Z′
t≤µ}dt = E

[
F

∫ 1

0

ρt1{Z′
t≤µ}dWt

]
= E

∫ 1

0

ρtJtF1{Z′
t≤µ}dt.

Thus Zt = JtF holds on {Z ′t ≤ µ} and therefore on A by letting µ tend to infinity. If F
is not bounded but only square integrable, we approach it by

FM = max(min(F,M),−M).

Let ZM
t be the integrand involved in (1.1) for FM . Then JtFM converges to JtF on A, and

ZM
t converges to Zt in L2, so we can take the limit in the formula for FM and conclude.

2.3 Examples

In the examples, we check that A has a negligible complement; this means∫ ∣∣F (ω|t|θ)− F (ω|t|θ?)
∣∣J ↑(dθ) <∞ (2.3.1)

for almost any (t, ω), or a similar relation with J ↑k in the multidimensional case. Then the
representation formula (1.1) holds with Zt = JtF almost everywhere. If θ is a path under
J , then ζ(θ) and η(θ) will denote the length and height of the first excursion. Recall that
J ↑ is the push forward of I↑ ⊗ P by the concatenation map (θ, ω) 7→ θ|ω; the law of η(θ)
under I↑ or J ↑ has already been given in (2.1.9), and the law of ζ(θ) is deduced from
(2.1.2) and is given by

I↑(ζ ∈ dt) = dt
/ (

2
√

2πt3
)

(2.3.2)

on (0,∞). In particular, ζγ ∧ 1 is integrable for γ > 1/2. The first examples are relevant
to the one-dimensional case d = 1.

Example 2.3.3. Let F = f(Tx), f(Lx
1) or f(gx

1 ) be a bounded function of the first hitting
time

Tx = inf
{
t ≥ 0; Wt = x

}
of x, of the local time

Lx
t =

∣∣Wt − x
∣∣− |x| − ∫ t

0

sgn(Ws − x)dWs (2.3.4)
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at time t = 1 and level x, or of the last hitting time

gx
1 = sup

{
t ∈ [0, 1]; Wt = x

}
∨ 0.

Then F (ω|t|θ) and F (ω|t|θ?) are different only when the height η(θ) of the excursion
exceeds |x− ω(t)|, so, from (2.1.9),

J ↑
{
θ;F (ω|t|θ) 6= F (ω|t|θ?)

}
≤ 1

2|x− ω(t)|
<∞

almost everywhere; since we have assumed that F is bounded, we deduce (2.3.1).

Example 2.3.5. Let F = TW1 be the first time t at which Wt hits W1. Then{
F (ω|t|θ) 6= F (ω|t|θ?)

}
⊂
{
η(θ) ≥

(
sup
[0,t]

ω − ω(t)
)
∧
(
ω(t)− inf

[0,t]
ω
)}

∪
{
ζ(θ) ≥ 1− t

}
because on the complement of the right hand side, one has

W1(ω|t|θ) = W1(ω|t|θ?) and Tx(ω|t|θ) = Tx(ω|t|θ?)

for any x. This set has again finite measure for J ↑, so we can conclude as in Example
2.3.3. The same argument can be applied for instance to the first hitting time of W1/2,
or to the time of [0, 1] at which W is minimal.

Example 2.3.6. Consider F = L0
1; this is similar to Example 2.3.3 but F is here unbounded.

Put δ = 1− t. Then
F (ω|t|θ) = L0

t + `
−ω(t)
δ

where ` denotes the local time of θ (it can be defined like L from Tanaka’s formula (2.3.4)),
and

F (ω|t|θ?) = L0
t + `

ω(t)
ζ(θ)∧δ + `

−ω(t)
δ − `

−ω(t)
ζ(θ)∧δ,

so ∣∣F (ω|t|θ)− F (ω|t|θ?)
∣∣ = `

|ω(t)|
ζ(θ)∧δ

(at most one of two local times `
±ω(t)
ζ(θ)∧δ is non zero). The right-hand side is zero except

on {η(θ) ≥ |ω(t)|}. Conditionally on this event, after hitting |ω(t)|, the process θ is a
Brownian motion, so

1

J ↑
{
θ; η(θ) ≥ |ω(t)|

} ∫ `
|ω(t)|
ζ(θ)∧δ(θ) 1{η(θ)≥|ω(t)|}J ↑(dθ) ≤ C

√
δ

from Tanaka’s formula. Thus∫ ∣∣F (ω|t|θ)− F (ω|t|θ?)
∣∣J ↑(dθ) ≤ C

√
δ J ↑

{
θ; η(θ) ≥ |ω(t)|

}
=

C
√
δ

2|ω(t)|
<∞

almost everywhere, so (2.3.1) again holds.
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Notice that in this example the martingale E[F |Ft] takes the form L0
t + ft(Wt) and Zt =

f ′t(Wt). The next example is devoted to a non Markovian example.

Example 2.3.7. Consider the local time F = LW1
1 at level W1. Then (2.3.1) again holds.

Proof. As in previous example, put δ = 1 − t and let ` denote the local time of θ. The
difference F (ω|t|θ) − F (ω|t|θ?) again involves ` but at two random levels; moreover, if
ζ(θ) > δ, one has W1(ω|t|θ) 6= W1(ω|t|θ?) and it also involves the local time L of ω at two
random levels. Thus we obtain the estimate∣∣F (ω|t|θ)− F (ω|t|θ?)

∣∣ ≤ 2 sup
x
`xζ∧δ + 2 sup

x
Lx

t 1{ζ(θ)>δ}.

We also notice that the difference is zero if |θ(δ)| > η(θ), so∣∣F (ω|t|θ)− F (ω|t|θ?)
∣∣ ≤2 sup

x
`xζ∧δ 1{|θ(δ)|≤η(θ)}1{ζ(θ)≤δ/2}

+ 2 sup
x
`xζ∧δ 1{ζ(θ)>δ/2} + 2 sup

x
Lx

t 1{ζ(θ)>δ}.

An easy Gaussian estimate shows that

J ↑
[
|θ(δ)| ≤ η(θ)

∣∣∣ θ(s); 0 ≤ s ≤ ζ(θ)
]
≤ 2η(θ)√

2π(δ − ζ(θ))
≤ 2η(θ)√

πδ

on {ζ(θ) ≤ δ/2}. Thus (with a constant C depending on δ),∫ ∣∣F (ω|t|θ)− F (ω|t|θ?)
∣∣J ↑(dθ)

≤ C

∫ (
sup

x
`xζ∧δ(θ)

)(
η(θ)1{ζ(θ)≤δ/2} + 1{ζ(θ)>δ/2}

)
I↑(dθ) + C sup

x
Lx

t

≤ C

(∫ (
sup

x
`xζ∧δ(θ)

)2I↑(dθ))1/2

(∫ (
η(θ)1{ζ(θ)≤δ/2} + 1{ζ(θ)>δ/2}

)2I↑(dθ))1/2

+ C sup
x
Lx

t .

For the second term of the product, we know that I↑{ζ > δ/2} is finite, and we have∫
η(θ)21{ζ(θ)≤δ/2}I↑(dθ) ≤

∫ (
sup

[0,ζ∧δ/2]

θ2
)
I↑(dθ)

≤ C

∫ (
ζ(θ) ∧ δ/2

)
I↑(dθ) <∞

by applying Doob’s inequality. For the first term of the product,∫ (
sup

x
`xζ∧δ(θ)

)2I↑(dθ) ≤ C

∫ (
ζ(θ) ∧ δ

)
I↑(dθ) <∞

by applying maximal inequalities on local times (Theorem XI.2.4 of [10]). This completes
the proof of (2.3.1).
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Example 2.3.8. In the multidimensional setting, consider the first exit time

τ = inf
{
t ≥ 0; Wt /∈ D

}
of some domain D 3 0, and let F = f(Wτ ) for f a Borel bounded function (we do not need
any smoothness assumption on f nor on the boundary of D). Then F (ω|t|θ) = F (ω|t|θ?

(k))

as soon as the height η(θ) of the excursion is smaller than the distance between ω(t) and
the complement of D, so (2.3.1) can be proved on {t < τ} as in Example 2.3.3. In this
case, E[F |Ft] = h(Wt) is given on {t < τ} by the solution h of the Dirichlet problem
with boundary condition f , and Zt = ∇h(Wt), so we obtain a stochastic representation
Zt = JtF for the gradient of h. Notice that this representation can be implemented by
means of a simple Monte-Carlo method, whereas the classical Clark-Ocone formula is
not directly applicable in this case; another classical stochastic interpretation of harmonic
functions in Malliavin’s calculus is to view them in duality with densities of some excessive
measures (see for instance [9]), but again such an interpretation is not easy to use from a
practical point of view. We can also consider F = f(τ,Wτ ).

Example 2.3.9. We now check that our result can also be applied to solutions of stochastic
differential equations with Lipschitz coefficients. Let F = f(X1), where Xt is the solution
of

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0,

with b and σ Lipschitz and bounded (we write the proof for real processes but the
multidimensional case is similar). Then (2.3.1) holds true almost everywhere as soon
as f satisfies ∣∣f(y)− f(x)

∣∣ ≤ C |y − x|α

for some rate α > 1/2.

Proof. For ω fixed, we have to compare the solutions of the equation starting at x = Xt(ω)
and driven respectively by the semimartingales θ and θ?. More precisely, put δ = 1 − t,
let ξs = ξs(θ) be the solution of

dξs = b(ξs)ds+ σ(ξs)dθs, ξ0 = Xt(ω),

and similarly for ξ?
s = ξs(θ

?); we have∫ ∣∣F (ω|t|θ)− F (ω|t|θ?)
∣∣J ↑(dθ) ≤ C

∫ ∣∣ξδ − ξ?
δ

∣∣αdJ ↑
≤ C

∫ ∣∣ξζ∧δ − ξ?
ζ∧δ

∣∣αdI↑,
where the last line is obtained by conditioning on the excursion (θ(s); 0 ≤ s ≤ ζ(θ)) and by
applying classical estimates on stochastic differential equations with Lipschitz coefficients.
We want to prove that this term is finite. We have

ξζ∧δ =ξ0 + b(ξ0)
(
ζ ∧ δ

)
+ σ(ξ0)θζ∧δ

+

∫ ζ∧δ

0

(b(ξs)− b(ξ0))ds+

∫ ζ∧δ

0

(
σ(ξs)− σ(ξ0)

)
dθs
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and similarly for ξ?, so

ξζ∧δ − ξ?
ζ∧δ =2σ(ξ0)θζ∧δ

+

∫ ζ∧δ

0

(b(ξs)− b(ξ?
s ))ds+

∫ ζ∧δ

0

(
σ(ξs)− σ(ξ?

s )
)
dθs.

For the first term, we have from (2.1.2)∫
θα

ζ∧δI↑(dθ) =

∫
{ζ(θ)>δ}

θα
δ I↑(dθ) =

1√
2πδ3

∫ ∞
0

x1+αe−x2/(2δ)dx <∞,

and for the others, it is sufficient (from Burkholder’s inequalities) to prove that

I :=

∫ (∫ ζ∧δ

0

(ξs − ξ0)
2ds
)α/2

I↑(dθ) <∞.

We have ∫ ζ∧δ

0

(ξs − ξ0)
2ds ≤

(∫ ζ∧δ

0

spds
)1/p(∫ ζ∧δ

0

|ξs − ξ0|2q

sq
ds
)1/q

= Cq

(
ζ ∧ δ

)2−1/q
(∫ ζ∧δ

0

|ξs − ξ0|2q

sq
ds
)1/q

for 1/p+ 1/q = 1. Thus

I ≤ Cα/2
q

∫ (
ζ ∧ δ

)α(2q−1)/(2q)
(∫ ζ∧δ

0

|ξs − ξ0|2q

sq
ds
)α/(2q)

I↑(dθ)

≤ Cα/2
q

(∫ (
ζ ∧ δ

)α(2q−1)/(2q−α)I↑(dθ)
)1−α/(2q)

(∫∫ ζ∧δ

0

|ξs − ξ0|2q

sq
dsI↑(dθ)

)α/(2q)

for q > α/2 ∨ 1. For the first term, we notice that the exponent of ζ ∧ δ is greater than
1/2 if q is chosen large enough (because α > 1/2), so this term is finite from (2.3.2). On
the other hand, from classical estimates on Itô processes and by applying again (2.3.2),∫

(ξs∧ζ − ξ0)
2qI↑(dθ) ≤ C ′q

∫
(s ∧ ζ)qI↑(dθ)

= C ′q

(∫ s

0

tq−3/2

2
√

2π
dt+ sq

∫ ∞
s

t−3/2

2
√

2π
dt
)

= C ′′q s
q−1/2,

so ∫∫ ζ∧δ

0

|ξs − ξ0|2q

sq
dsI↑(dθ) ≤ C ′′q

∫ δ

0

s−1/2ds <∞

We can conclude that I is finite.
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3 Generalised Stieltjes measures

In this section, considering a real-valued function, we construct in §3.1 a family of measures
which generalise the classical Lebesgue-Stieltjes measure, and we show in §3.2 and §3.3
how the calculus for Brownian excursions can be applied to them. This will be the main
tool for the construction of stochastic integrals in next section, and in particular for the
proof of Lemma 2.2.5. Throughout this section, except in §3.4, we suppose that we are
in the one-dimensional case (d = 1).

3.1 A family of measures

If ω is a real-valued continuous increasing path, then∫
f(t)dω(t) =

∫
f(ω−1(x))dx.

More generally, if ω is continuous and piecewise monotone, let Sω(t) be +1 (respectively
−1) on intervals where ω is increasing (respectively decreasing). Then the Lebesgue-
Stieltjes integral with respect to ω can be written as∫

f(t)dω(t) =

∫ ∑
t∈ω−1(x)

Sω(t)f(t)dx.

If now ω is a general continuous path (such as a typical Brownian path), this formula has
no clear sense since the sum can be uncountable and the path may have no increase or
decrease time (so Sω is not well defined). Instead of considering all the times t in ω−1(x),
we will only consider times t such that ω is decreasing or increasing on the left or on the
right of t. In other words, we will be concerned with beginnings or ends of excursions
above or below any level x, and Sω will be linked to the sign of these excursions. An end
of excursion is obtained as a first hitting time

dx
t = inf

{
s ≥ t;ω(s) = x

}
(in particular Tx = dx

0), and a beginning of excursion is obtained as a last hitting time

gx
t = sup

{
s ≤ t;ω(s) = x

}
. (3.1.1)

More precisely, consider

ζt(ω) = inf
{
s > 0;ω(t+ s) = ω(t)

}
which is almost surely finite for a Brownian path. We say that an excursion begins at
time t if ζt(ω) > 0. In this case, we define the excursion Υtω ∈ Θ beginning at t by

Υtω : s 7→ (Υtω)(s) =

{
ω(t+ s)− ω(s) if s < ζt(ω),

0 if s ≥ ζt(ω).
(3.1.2)
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Figure 2: An excursion Υt

The length and the height of this excursion are ζt and ηt = η(Υt) (see Figure 2). For
other values of t, we let Υt = 0 be the null excursion. We obtain a path with values in
Θ∪ {0}; we will write Υt > 0 or Υt < 0 depending on the sign of the excursion. Then we
let ω↗x (dt) be the counting measure for the set of beginnings of excursions of the path ω
above level x, that is

ω↗x (A) =
∑

t:ω(t)=x,Υt(ω)>0

1A(t)

for A ⊂ R+, and we define

ω↗(A) =

∫
ω↗x (A)dx. (3.1.3)

Lemma 3.1.4. Let ω be a fixed real-valued continuous path. Then ω↗ is a σ-finite
measure on the set of beginnings of positive excursions of ω. Moreover, if ∆ = (tj) is a

subdivision of [0, 1] and if ω↗∆ is the restriction of ω↗ to

B∆(ω) =
⋃
j

{
t; Υt(ω) > 0, t ≤ tj ≤ t+ ζt(ω)

}
,

then
ω↗∆ ([r, s]) = inf

[s,tj+1]
ω − inf

[r,tj+1]
ω (3.1.5)

for tj ≤ r ≤ s ≤ tj+1. The measure ω↗ can be obtained on [0, 1] as the increasing limit of

measures ω↗∆n
for any refining sequence of subdivisions such that |∆n| = max(tnj+1−tnj ) ↓ 0.

If ω has finite variation, then ω↗(dt) is the positive part ω+(dt) of the Lebesgue-Stieltjes
measure associated to ω.
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Proof. We first verify the description (3.1.5) of the measure ω↗∆ . The set B∆ ∩ [tj, tj+1]
is the set of beginnings of positive excursions beginning in [tj, tj+1] and straddling time
tj+1, so that (with notation (3.1.1))

B∆ ∩ [tj, tj+1] =
{
gx

tj+1
; inf

[tj ,tj+1]
ω ≤ x ≤ ω(tj+1)

}
.

Thus, for tj ≤ r ≤ s ≤ tj+1,

ω↗∆ ([r, s]) =

∫
1[r,s](g

x
tj+1

)dx = inf
[s,tj+1]

ω − inf
[r,tj+1]

ω

and (3.1.5) is proved. It is clear that ω↗ is the limit of ω↗∆n
, and since ω↗∆n

is finite, this
implies that ω↗ is σ-finite. Let us now consider the case of a path ω with finite variation
on [0, 1]. We deduce from (3.1.5) that

ω↗∆ ([r, s]) ≤ ω(s)− inf
[r,s]

ω ≤ ω+([r, s])

for tj ≤ r ≤ s ≤ tj+1, so at the limit, ω↗(dt) ≤ ω+(dt). On the other hand,

ω↗∆ ([tj, tj+1]) = sup
tj≤s≤tj+1

(
ω(tj+1)− ω(s)

)
≥
(
ω(tj+1)− ω(tj)

)+
,

so if ∆n is the sequence of dyadic subdivisions (tnj ) of [0, 1], we have

ω↗∆n
([0, 1]) ≥

∑
j

(
ω(tnj+1)− ω(tnj )

)+
.

At the limit, we obtain that ω↗([0, 1]) ≥ ω+([0, 1]); since ω↗ ≤ ω+, the proof of ω↗ = ω+

on [0, 1] is complete.

Remark 3.1.6. The integral with respect to ω↗∆ (dt) can be written as∫ 1

0

f(t)ω↗∆ (dt) =
∑

j

∫ tj+1

tj

f(t)d
(

inf
[s,tj+1]

ω
)

=
∑

j

∫ ω(tj+1)

inf[tj ,tj+1] ω

f(gx
tj+1

)dx. (3.1.7)

In the definition (3.1.3), the measure ω↗(dt) is decomposed according to the level x =
ω(t); we now see that it can also be decomposed according to the height a = ηt of the
excursion starting at time t; this will be useful in Section 4 (see the proof of Theorem
4.4.13).

Lemma 3.1.8. The measure ω↗ of (3.1.3) can be written as

ω↗(A) =

∫ ∑
t:Υt(ω)>0,ηt=a

1A(t) da. (3.1.9)
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Figure 3: The function α (Proof of Lemma 3.1.8)

Proof. Following the notation of Lemma 3.1.4, it is sufficient to study the measure ω↗∆ on
[tj, tj+1]. Consider the restriction of ω:

ωj : B∆ ∩ [tj, tj+1] → R t 7→ ω(t).

This map is injective, its image is the interval I = [inf [tj ,tj+1] ω, ω(tj+1)], and the pull back

ω−1
j (dx) of the Lebesgue measure on I is the measure ω↗∆ . On the other hand, for each

level x ∈ I, let us consider the height α(x) = ηgx
tj+1

of the excursion starting at gx
tj+1

(see

Figure 3). Then
α(x) = ω(τ(x))− x

where τ(x) is the time at which this excursion is maximal. Actually, x 7→ τ(x) is piecewise
constant; it changes its value when the end dx

tj+1
of the excursion is a local minimum of ω,

and the excursion starting at this minimum has a height greater than α(x); in this case one
has α(x−) > α(x). Thus x 7→ α(x) is decreasing, and is the sum of an affine function with
slope −1 and of jumps. We deduce that the pull back α−1(da) of the Lebesgue measure
on α(I) is the Lebesgue measure on I; by composition, the pull back (α ◦ω)−1(da) of the
Lebesgue measure on α(I) is ω↗∆ . This proves (3.1.9) when A is included in B∆∩ [tj, tj+1];
thus it holds for A ⊂ B∆, and therefore for any A by letting |∆| ↓ 0.

Similarly to ω↗x and ω↗, we can consider the measures

ω↘x (A) =
∑

t:ω(t)=x,Υt(ω)<0

1A(t), ω↘(A) =

∫
ω↘x (A)dx

associated to beginnings of negative excursions. In the finite variation case, ω↘ is the
negative part of the Lebesgue-Stieltjes measure of ω.
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Let us now consider ends (instead of beginnings) of excursions; the excursion Υ†t ending
at time t will be defined later; now let us simply denote Υ†t > 0 or Υ†t < 0 depending on
the sign of this excursion (the sign is well defined even if the excursion is incomplete).
Then we can define

ω↖x (A) =
∑

t:ω(t)=x,Υ†
t (ω)>0

1A(t), ω↖(A) =

∫
ω↖x (A)dx,

ω↙x (A) =
∑

t:ω(t)=x,Υ†
t (ω)<0

1A(t), ω↙(A) =

∫
ω↙x (A)dx.

Thus we have four elementary measures associated to ω. Then we put

ω→(dt) = ω↗(dt)− ω↘(dt), ω←(dt) = ω↙(dt)− ω↖(dt),

ω↑(dt) = ω↗(dt)− ω↖(dt), ω↓(dt) = ω↙(dt)− ω↘(dt).
(3.1.10)

They are not finite signed measures, except if ω has finite variation; in that case, all of
them coincide with the Lebesgue-Stieltjes measure (Lemma 3.1.4). In the other cases,
they are only differences of σ-finite measures with disjoint supports. Relations between
them can be obtained by means of the correction measures

ω�(dt) = ω↙(dt)− ω↗(dt), ω�(dt) = ω↘(dt)− ω↖(dt) (3.1.11)

which are 0 in the finite variation case. More precisely, we have

ω← = ω→ + ω� + ω� = ω↑ + ω� = ω↓ + ω�.

All these definitions are summarised in the following table, where GLSM stands for
generalised Lebesgue-Stieltjes measure.

ω↗ beginnings of positive excursions
ω↘ beginnings of negative excursions
ω↖ ends of positive excursions
ω↙ ends of negative excursions
ω↑ ω↗ − ω↖ GLSM based on positive excursions
ω↓ ω↙ − ω↘ GLSM based on negative excursions
ω→ ω↗ − ω↘ GLSM based on beginnings of excursions
ω← ω↙ − ω↖ GLSM based on ends of excursions
ω� ω↙ − ω↗ a correction measure

ω� ω↘ − ω↖ a correction measure

Remark 3.1.12. It is known that positive excursions of a path can be viewed as a tree (see
for instance [4, 3]). Then ω↗ and ω↖ actually correspond to the Lebesgue measure on
this tree. This point of view will be explored in another article.
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If we apply this construction to the Wiener paths, we obtain the measures W↗
x (dt), . . .

and W↗(dt), . . . . Of course, a result for one of them can be transferred to the three
others by time reversal and/or change of sign. Notice however that if we want to study
predictable processes, there is a big difference between the measures W↖(dt) and W↙(dt)
which are predictable, and the two others which are supported by a set (beginnings of
excursions) intersecting no graph of stopping time but only graphs of honest times, see
[2]. Notice also that all of these measures are supported by dense Lebesgue negligible
subsets of R+.

3.2 Calculus for excursions

We need to define some transformations of Ω consisting in adding and removing excursions.
The transformation E+

t,θ consists in inserting the excursion θ ∈ Θ at time t, so that

(E+
t,θω)(s) =


ω(s) if s < t,

ω(t) + θ(s− t) if t ≤ s < t+ ζ(θ),

ω(s− ζ(θ)) if s ≥ t+ ζ(θ).

(3.2.1)

On the other hand, E−t removes the excursion beginning at time t if an excursion indeed
begins at this time, otherwise it does nothing; thus

(E−t ω)(s) =

{
ω(s) if s < t,

ω(s+ ζt(ω)) if s ≥ t.
(3.2.2)

Notice that if φt is a predictable process, then

φt ◦ E+
t,θ = φt ◦ E−t = φt. (3.2.3)

This property is evident for φt = 1{r<t≤s}F and F a Fr-measurable variable, and it is
extended to other predictable process with a monotone class theorem. Let us now study
the effect of these transformations on non predictable processes.

Theorem 3.2.4. If φt is a nonnegative process, one has

E
∫
φtW

↗(dt) = E
∫∫

φt ◦ E+
t,θI

↑(dθ)dt. (3.2.5)

In order to prove this theorem, we first state the following basic lemma about excursions
at a given level.

Lemma 3.2.6. Fix some real x and let Lx
t be the local time at level x given by the Tanaka

formula (2.3.4). Let φt be a nonnegative measurable process. Then

E
∑

t:Wt=x,Υt 6=0

φt = E
∫∫

φt ◦ E+
t,θI(dθ)dLx

t . (3.2.7)
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In particular,

E
∫
φtW

↗
x (dt) = E

∫∫
φt ◦ E+

t,θI
↑(dθ)dLx

t . (3.2.8)

Proof. Let Υ′t be the path Υ′t(s) = Wt+s −Wt, s ≥ 0 and consider φt = ψtF (Υ′t), where
ψt is predictable. Then it is known (see Chapter XX of [2] or Chapter III of [1]) that

E
∑

t:Wt=x,Υt 6=0

φt =
(∫

FdJ
)(

E
∫
ψtdL

x
t

)
. (3.2.9)

On the other hand, if we look at the right-hand side of (3.2.7), we have

φt ◦ E+
t,θ = ψtF (θ|Υ′t).

Under P(dω)I(dθ), the concatenated path θ|Υ′t(ω) is independent of Ft and has law J ,
so

E
[∫

φt ◦ E+
t,θI(dθ)

∣∣∣ Ft

]
= ψt

∫
F dJ ,

and

E
∫∫

φt ◦ E+
t,θI(dθ)dLx

t =
(∫

FdJ
)(

E
∫
ψtdL

x
t

)
. (3.2.10)

By joining (3.2.9) and (3.2.10), we obtain (3.2.7) for this class of processes φ. The general
case follows from a monotone class argument, and (3.2.8) is obtained by replacing φt by
φt1{Υt>0}.

Remark 3.2.11. Another proof can be worked out by using the Poisson calculus rather
than the excursion calculus. More precisely, if we change the time with the inverse of
t 7→ Lx

t , then it is well known that the excursion process Υt becomes a Poisson point
process with intensity measure I. Applying the basic formula of [8, Corollaire 1] for
Poisson measures also yields (3.2.7).

Proof of Theorem 3.2.4. We integrate (3.2.8) with respect to x. In the left-hand side we
obtain the measure W↗(dt), and in the right-hand side, integrating dLx

t with respect to
x gives the Lebesgue measure dt.

Of course, a similar formula holds for W↘(dt) and I↓(dθ).

3.3 Iterated formulas

We now notice that Theorem 3.2.4 can be iterated to study integrals of higher order.
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Theorem 3.3.1. Let φt1,t2 be a nonnegative process indexed by R2
+. Then

E
∫∫
{t1<t2}

φt1,t2W
↗(dt1)W

↗(dt2)

= E
∫∫∫∫

{t1<t2}
φt1,t2 ◦ E+

t2,θ2
◦ E+

t1,θ1
I↑(dθ1)I↑(dθ2)dt1 dt2.

(3.3.2)

A similar result holds if (W↗(dti), I↑(dθi)) is replaced by (W↘(dti), I↓(dθi)) for i = 1
and/or 2; under an integrability condition, one can also replace it by (W→(dti), Il(dθi)),
with Il = I↑ − I↓.

Proof. We iterate (3.2.5) by applying it firstly with respect to t2, secondly with respect
to t1. Since we are on {t1 < t2}, we notice that

W↗(dt1) ◦ E+
t2,θ2

= W↗(dt1)

and obtain (3.3.2). The other cases are similar.

In the right-hand side of (3.3.2), we first append an excursion at time t1, then another
one at time t2. This may result in two different figures. If t2 > t1 + ζ(θ1), then we have
appended two disjoint excursions. On the other hand, if the reverse inequality holds, we
insert θ2 inside θ1 and obtain an augmented path E+

t2−t1,θ2
θ1 containing θ2 as an excursion;

this augmented path always begins with an excursion; however it is not an excursion if θ1

and θ2 have opposite signs and η(θ2) ≥
∣∣θ1(t2 − t1)

∣∣. We denote by θ̃ the first excursion
of this augmented path (see Figure 4), so that

θ̃ = θ̃(t2 − t1, θ1, θ2) :=

{
Υ0(E+

t2−t1,θ2
θ1) if t2 ≤ t1 + ζ(θ1),

θ1 otherwise.
(3.3.3)

We are going to see that θ̃ plays an important role in our estimations.

Theorem 3.3.1 can be applied to processes of type φt1,t2 = φt1φt2 , in order to deduce the
L2 norm or the variance of

∫
φtW

↗(dt) or
∫
φtW

→(dt). Let us explain this calculation in
the simple case φt = 1B(t,Υt) for a B ⊂ R+ ×Θ of finite measure for dt I(dθ). Relation
(3.2.5) is written as

E
∫

1B(t,Υt)W
↗(dt) =

∫∫
1B(t, θ)I↑(dθ)dt,

so (
E
∫

1B(t,Υt)W
↗(dt)

)2

= 2

∫∫∫∫
{t1<t2}

1B(t1, θ1)1B(t2, θ2)I↑(dθ1)I↑(dθ2)dt1dt2.
(3.3.4)
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t2,θ2

E+
t1,θ1

ω with θ̃

On the other hand, for t1 < t2,

1B(t2,Υt2) ◦ E+
t2,θ2

◦ E+
t1,θ1

= 1B(t2, θ2), 1B(t1,Υt1) ◦ E+
t2,θ2

◦ E+
t1,θ1

= 1B(t1, θ̃)

with the notation (3.3.3), so (3.3.2) is written as

E
(∫

1B(t,Υt)W
↗(dt)

)2

= 2

∫∫∫∫
{t1<t2}

1B(t1, θ̃)1B(t2, θ2)I↑(dθ1)I↑(dθ2)dt1dt2

(3.3.5)

By comparing (3.3.4) and (3.3.5), we get the variance

var
(∫

1B(t,Υt)W
↗(dt)

)
= 2

∫∫∫∫
{t1<t2}

(1B(t1, θ̃)− 1B(t1, θ1))1B(t2, θ2)I↑(dθ1)I↑(dθ2)dt1dt2.
(3.3.6)

Notice that in this integral we only have to consider times t2 ≤ t1 + ζ(θ1) (otherwise

θ̃ = θ1). We can handle similarly negative excursions, and by considering opposite signs,
we get the covariance

cov
(∫

1B(t,Υt)W
↗(dt),

∫
1B(t,Υt)W

↘(dt)
)

=

∫∫∫∫
{t1<t2}

(1B(t1, θ̃)− 1B(t1, θ1))1B(t2, θ2)(
I↑(dθ1)I↓(dθ2) + I↓(dθ1)I↑(dθ2)

)
dt1dt2.

(3.3.7)
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We also deduce

var
(∫

1B(t,Υt)W
→(dt)

)
= 2

∫∫∫∫
{t1<t2}

(1B(t1, θ̃)− 1B(t1, θ1))1B(t2, θ2)Il(dθ1)Il(dθ2)dt1dt2.

Example 3.3.8. Let us study the excursions of height η ≥ a by considering B = [0, 1] ×
{θ; η(θ) ≥ a}. If we look at positive excursions, we have

E
∫ 1

0

1{ηt≥a}W
↗(dt) = I↑

{
η ≥ a

}
=

1

2a

from (2.1.9). For the variance, we use (3.3.6); we notice that

1B(t1, θ̃)− 1B(t1, θ1) ≥ 0 (3.3.9)

if θ1 and θ2 have the same sign, and it is non zero when θ1 have an height less than a, but
θ2 has height greater than a and becomes a sub-excursion of θ1. Thus

var

∫ 1

0

1{ηt≥a}W
↗(dt) = 2

∫∫
[0,1]2

∫∫
(Θ↑)2

1{η(θ1)<a}1{η(θ2)≥a}1{t1<t2≤t1+ζ(θ1)}

I↑(dθ1)I↑(dθ2)dt1dt2

=
1

a

∫ 1

0

∫
{η(θ)<a}

(ζ(θ) ∧ (1− t))I↑(dθ)dt. (3.3.10)

IfXt is a Bessel process (of dimension 3), thenX2
t −3t is a martingale, so the expected time

of the first hitting time of a is a2/3; consequently, the Williams decomposition recalled
in Remark 2.1.8 shows that the expected length of an excursion of height a is 2a2/3. We
deduce that the conditional expectation under I↑ of ζ(θ) given η(θ) is equal to 2η(θ)2/3,
and that

1

a

∫
{η(θ)<a}

ζ(θ)I↑(dθ) =
2

3a

∫
{η(θ)<a}

η(θ)2I↑(dθ) =
1

3
. (3.3.11)

We also check with the Williams decomposition that the conditional expectation of ζ(θ)2

given η(θ) is finite and proportional to η(θ)4, so the difference between (3.3.10) and
(3.3.11) is bounded by

1

a

∫ 1

0

∫
{η(θ)<a}

ζ(θ)1{ζ(θ)>1−t}I↑(dθ)dt ≤
1

a

∫
{η(θ)<a}

ζ(θ)2I↑(dθ)

=
C

a

∫
{η(θ)<a}

η(θ)4I↑(dθ)

= O(a2).
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Thus the variance (3.3.10) of our variable is bounded by 1/3, and

lim
a→0

var

∫ 1

0

1{ηt≥a}W
↗(dt) = 1/3. (3.3.12)

Similarly,

lim
a→0

var

∫ 1

0

1{ηt≥a}W
↘(dt) = 1/3. (3.3.13)

On the other hand, the covariance is given by (3.3.7) and

1B(t1, θ̃)− 1B(t1, θ1) ≤ 0 (3.3.14)

if θ1 and θ2 have opposite signs, and is non zero when excursions θ1 and θ2 have height
greater than a, but the height of θ̃ is less than a; this happens when t2 − t1 is less than
the first hitting time Ta(θ1) of a (or −a) by θ1. The contributions of I↑(dθ1)I↓(dθ2) and
I↓(dθ1)I↑(dθ2) are equal, and

cov
(∫ 1

0

1{ηt≥a}W
↗(dt),

∫ 1

0

1{ηt≥a}W
↘(dt)

)
= −2

∫∫
[0,1]2

∫∫
1{η(θ1)≥a}1{η(θ2)≥a}1{t1<t2≤t1+Ta(θ1)}I↑(dθ1)I↓(dθ2)dt1dt2

= −1

a

∫ 1

0

∫
{η(θ)≥a}

(Ta(θ) ∧ (1− t))I↑(dθ)dt. (3.3.15)

Conditionally on {η(θ) ≥ a}, Ta(θ) is the hitting time of a by a Bessel process, so it has
expectation a2/3 and

− 1

a

∫
{η(θ)≥a}

Ta(θ)I↑(dθ) = −a
3
I↑
{
η ≥ a

}
= −1

6
. (3.3.16)

The difference between (3.3.15) and (3.3.16) is bounded by

1

a

∫ 1

0

∫
{η(θ)≥a}

Ta(θ)1{Ta(θ)>1−t}I↑(θ)dt ≤
1

a

∫
{η(θ)≥a}

Ta(θ)
2I↑(dθ)

= C a3I↑
{
η ≥ a

}
= O(a2),

so

lim
a→0

cov
(∫ 1

0

1{ηt≥a}W
↗(dt),

∫ 1

0

1{ηt≥a}W
↘(dt)

)
= −1/6. (3.3.17)

We deduce from (3.3.12), (3.3.13) and (3.3.17) that

lim
a→0

var

∫ 1

0

1{ηt≥a}W
→(dt) = 1. (3.3.18)
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Example 3.3.19. Excursions of length greater than ε are studied withB = [0, 1]×{θ; ζ(θ) ≥
ε}. The variance of

∫ 1

0
1{ζt≥ε}W

↗(dt) is obtained from combined excursions where θ1 has

length less than ε. One has I↑{ζ ≥ ε} = 1/
√

2πε from (2.3.2), so

var

∫ 1

0

1{ζt≥ε}W
↗(dt) = 2

∫∫
[0,1]2

∫∫
1{ζ(θ1)<ε}1{ζ(θ2)≥ε}1{t1<t2≤t1+ζ(θ1)}

I↑(dθ1)I↑(dθ2)dt1dt2

=
2√
2πε

∫ 1

0

∫
{ζ(θ)<ε}

(ζ(θ) ∧ (1− t))I↑(dθ)dt.

By proceeding as in previous example, we can prove that this variance is dominated by
its limit

lim
ε→0

var

∫ 1

0

1{ζt≥ε}W
↗(dt) = lim

ε→0

2√
2πε

1

2
√

2π

∫ ε

0

dy
√
y

=
1

π
,

and similarly for W↘. One can also write the formula involving mixed excursions for the
covariance, but calculations are more complicated. Subsequently, we will only use the
boundedness of the covariance, which follows from the boundedness of the variances.

3.4 The multidimensional case

In this short subsection, we describe how results of §3.2 and §3.3 are extended to
the multidimensional case Ω = C(R+,Rd). Excursions of each component have to be
considered separately, so let us suppose that we want to study the first component;
then we write the Wiener process as (Wt, Vt) ∈ R × Rd−1. We let Θ1 be the space of
d-dimensional continuous paths such that the first component θ1 is an excursion with
length ζ(θ), and the other components are paths stopped at time ζ(θ). On this space,
we consider the measures I↑1 and I↓1 under which the first component θ1 is a Brownian
positive or negative excursion, and the other components are independent Wiener paths
up to time ζ(θ); the main difference with respect to the one-dimensional case is that now
θ(ζ(θ)) 6= 0. Then E+

t,θ again consists in inserting θ at t; the difference with respect to
(3.2.1) is that

E+
t,θω(s) = ω(s− ζ(θ)) + θ(ζ(θ))

for s > t+ ζ(θ). Similarly, E−t is defined like (3.2.2), but

E−t ω(s) = ω(s+ ζt(ω))− ω(t+ ζt(ω)) + ω(t)

for s > t. The process Υt is defined as in (3.1.2) (its first component is an excursion).
Then Theorems 3.2.4 and 3.3.1 hold with the measures W↗(dt) and I↑1 (dθ) (one first
consider processes φt which are the product of a functional of W and of a functional of
V , then the general case follows from a standard monotone class theorem).
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4 Stochastic integration

In this section, we use the generalised Lebesgue-Stieltjes measures (3.1.10) in order to
construct stochastic integrals of predictable processes. As in §3.4, we write the Wiener
process as (Wt, Vt) ∈ R×Rd−1, and we want to construct integrals with respect to the first
component W . More precisely, we check that the measure W→(dt) leads to Itô integrals,
that the measures W ↑(dt) and W ↓(dt) lead to Stratonovich integrals, and that W←(dt)
leads to so-called backward integrals. Each type of integral is studied by means of an
approximation procedure; more precisely, the approximation consists in restricting the
generalised Lebesgue-Stieltjes measures to subsets of the time interval in order to obtain
finite signed measures. As an application, the construction of Itô integrals is closely
related to the duality formula of Lemma 2.2.5, so we are able to complete the proof of
the representation theorem for Wiener functionals (Theorems 2.1.4 and 2.1.12). Results
of this section are summarised in §4.5.

Notice however that this is a nonlinear approach to integration; we can separately
construct an integral with respect to each component of the Wiener process, but if now
we consider the integral with respect to the vector-valued process as the sum of these
integrals, then the result depends on the choice of the frame on Rd. For instance, the
measures W→

1 + W→
2 and (W1 + W2)

→ are not equal (a beginning of excursion of W1 is
not a beginning of excursion of W1 +W2), though they would be equal if W1 and W2 were
of finite variation (since they would coincide with Lebesgue-Stieltjes measures).

It is sometimes easier for notational convenience to consider processes indexed by R. In
this case, (Wt, Vt; t ≥ 0) and (W−tV−t; t ≥ 0) are independent standard Wiener processes.
However, we always construct integrals on the time interval [0, 1]; this means that we
integrate a process ρt, 0 ≤ t ≤ 1, which is extended by ρ ≡ 0 out of this interval.

4.1 Itô integrals

It can be seen from results of previous section that predictable processes cannot be directly
integrated with respect to W→(dt) (consider for instance a non zero constant process).
However (with the notations of §3.4), if B is a subset of [0, 1]×Θ1 which has finite measure
for dt I1(dθ), we have

E
∫

1B(t,Υt)W
↗(dt) =

∫
B

I↑1 (dθ)dt <∞

and similarly for W↘(dt), so we can consider

Ψ→B (ρ) =

∫
ρt1B(t,Υt)W

→(dt) =

∫ t

0

ρsdW
→
s (B) (4.1.1)

for any bounded process ρ, where

W→
t (B) = Ψ→B (1[0,t]) =

∫ t

0

1B(s,Υs)W
→(ds) (4.1.2)
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is an anticipating process with finite variation. Since we want positive and negative
excursions to compensate, we assume that B is symmetric, that is

(t, θ) ∈ B ⇔ (t, θ?) ∈ B

with θ?(t) = (−θ1(t), θ2(t), . . . , θd(t)) (it was denoted by θ?
(1) in (2.1.10) but we prefer a

lighter notation for this section). Then we can define Ψ→(ρ) as the limit in some sense
of Ψ→B (ρ) when B grows to [0, 1]×Θ1, if this limit exists. In this subsection, we suppose
that ρ is predictable; we check that the convergence holds for a weak topology and that
the limit Ψ→(ρ) coincides with the Itô integral. We also check that the convergence may
be stronger under some assumptions.

4.1a The general case

We now introduce the analogue of the Malliavin derivative in our calculus; this is the
difference operator

D1
tF =

∫ (
F ◦ E+

t,θ − F ◦ E+
t,θ?

)
I↑1 (dθ), (4.1.3)

which is defined for (t, ω) such that the integrand of the right-hand side is integrable.
Notice in particular that the operator J1

t defined in (2.1.11) can be written as the
predictable projection

J1
t F = E

[
D1

tF
∣∣ Ft

]
.

We have checked in Lemma 2.2.1 that for simple bounded functionals F , J1
t F is the

process Z1
t involved in the integral representation formula (1.1), so we deduce that if F

is simple, bounded, and ρt is predictable, bounded, then

E
[
F

∫ 1

0

ρtdWt

]
= E

∫ 1

0

ρtJ
1
t F dt = E

∫ 1

0

ρtD1
tF dt. (4.1.4)

We can now state the general convergence result of Ψ→B (ρ) to the Itô integral of ρ.

Theorem 4.1.5. Let F = f(Wt1 , Vt1 , . . . ,WtN , VtN ) be a bounded simple variable, and let
(ρt; 0 ≤ t ≤ 1) be a bounded predictable process. Then for any sequence Bn of symmetric
sets with finite measure increasing to [0, 1]×Θ1, one has

lim E
[
F Ψ→Bn

(ρ)
]

= E
[
F

∫ 1

0

ρtdWt

]
. (4.1.6)

This theorem states that Ψ→B (ρ) converges to the Itô integral of ρ for the weak topology
induced by bounded simple variables. The basic result used in the proof is the following
lemma.
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Lemma 4.1.7. Let ρt be a bounded predictable process, and let F be a bounded variable
such that

E
∫ 1

0

∫
|ρt|
∣∣F ◦ E+

t,θ − F ◦ E+
t,θ?

∣∣I↑1 (dθ)dt <∞. (4.1.8)

Then, for any (Bn) as in Theorem 4.1.5,

lim E
[
F Ψ→Bn

(ρ)
]

= E
∫ 1

0

ρtD1
tF dt. (4.1.9)

Proof. First notice as in (3.2.3) that since ρt is predictable, one has ρt ◦ E+
t,θ = ρt. Then

Theorem 3.2.4 (generalised in §3.4) implies that

E
[
F

∫ 1

0

ρt1Bn(t,Υt)W
↗(dt)

]
= E

∫∫ 1

0

1Bn(t, θ)ρt

(
F ◦ E+

t,θ

)
I↑1 (dθ)dt

and similarly for the W↘-integral, so, from the symmetry of Bn,

E
[
F Ψ→Bn

(ρ)
]

= E
∫∫ 1

0

1Bn(t, θ)ρt

(
F ◦ E+

t,θ − F ◦ E+
t,θ?

)
I↑1 (dθ)dt.

Assumption (4.1.8) enables to take the limit in the right-hand side and to deduce the
lemma.

Proof of Theorem 4.1.5. If (tj) are the times associated to the simple variable F , one has∣∣F ◦ E+
t,θ − F ◦ E+

t,θ?

∣∣ ≤ C 1{ζ(θ)≥tj+1−t}

for tj ≤ t < tj+1. On the other hand, from (2.3.2),∫ tj+1

tj

∫
1{ζ(θ)≥tj+1−t}I↑(dθ)dt =

∫ tj+1

tj

dt√
2π(tj+1 − t)

<∞

so (4.1.8) holds. We can apply Lemma 4.1.7, and the conjunction of (4.1.4) and (4.1.9)
enables to conclude.

4.1b The weak L2 convergence

The convergence of Theorem 4.1.5 holds for a large class of sequences (Bn). By choosing
particular sequences, we can have a better (but still weak) convergence, namely for the
weak topology of L2. In the same time, we are able to complete the proof of Lemma 2.2.5,
and therefore of the integral representation formula (Theorems 2.1.4 and 2.1.12).

Lemma 4.1.10. There exist sequences (Bn) such that the convergence result (4.1.6) of
Theorem 4.1.5 holds for any F ∈ L2 and any bounded predictable process ρt.
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Bounded sequences of L2 are relatively compact for the weak L2 topology, so it is easy
to see that the statement of Lemma 4.1.10 holds true as soon as Ψ→Bn

(ρ) is bounded
in L2 for any bounded predictable ρ; these sequences (Bn) are subsequently called good
approximating sequences. We give below three examples of good approximating sequences
(Bn), so this will complete the proof of the lemma.

An important consequence of Lemma 4.1.10 is the following duality formula.

Theorem 4.1.11. The duality formula

E
∫ 1

0

D1
tF ρtdt = E

[
F

∫ 1

0

ρtdWt

]
(4.1.12)

holds for any bounded F and any bounded predictable process ρ satisfying (4.1.8).

Proof. The left-hand side of (4.1.12) is expressed in (4.1.9) as a limit, and the fact that
this limit is the also the right-hand side of (4.1.12) is exactly Lemma 4.1.10 if we choose
a good sequence (Bn).

Proof of Lemma 2.2.5 (for k = 1). Since a path under J ↑1 is made (for its first
component) with a positive excursion followed by an independent Wiener path, we notice
that the assumptions (2.2.6) and (4.1.8) are equivalent, as well as the conclusions (2.2.7)
and (4.1.12), so Lemma 2.2.5 follows from Theorem 4.1.11.

We now look for examples of good approximating sequences (Bn). It is sufficient to put
conditions on the first component of θ, so we suppose d = 1 in these examples; the
generalisation to the multidimensional case is straightforward.

Example 4.1.13. Consider excursions with a height greater than some a > 0; more
precisely, let B = B0(a) be defined by

B0(a) =
{

(t, θ) ∈ [0, 1]×Θ; η(θ) ≥ a
}
.

We have already studied in Example 3.3.8 the case ρ ≡ 1, and check that Ψ→B (1) is centred
with bounded variance. We now have to consider other bounded predictable processes ρ;
the approximation Ψ→B (ρ) is again centred and we have to compute the variance. First
notice that if φt is a bounded symmetric process in the sense that

φt ◦ E+
t,θ = φt ◦ E+

t,θ? ,

then, from (3.2.5),

E
∫
φt1B(t,Υt)W

→(dt) = 0.

Consequently,

E
∫∫
{t1<t2}

ρt1ρt21B(t1,Υt1 ◦ E−t2 )1B(t2,Υt2)W
→(dt1)W

→(dt2) = 0
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because this is the integral with respect to W→(dt2) of a symmetric process. Thus

EΨ→B (ρ)2 = 2 E
∫∫
{t1<t2}

ρt1ρt2

(
1B(t1,Υt1)− 1B(t1,Υt1 ◦ E−t2 )

)
1B(t2,Υt2)

W→(dt1)W
→(dt2) (4.1.14)

≤ C E
∫∫
{t1<t2}

∣∣1B(t1,Υt1)− 1B(t1,Υt1 ◦ E−t2 )
∣∣1B(t2,Υt2)∣∣W→(dt1)

∣∣∣∣W→(dt2)
∣∣

= C

∫∫∫∫
{t1<t2}

∣∣1B(t1, θ1)− 1B(t1, θ̃)
∣∣1B(t2, θ2)I(dθ1)I(dθ2)dt1dt2

by applying Theorem 3.3.1, and with the notation θ̃ given in (3.3.3). By applying the

decomposition I = I↑+ I↓, the sign of 1B(t1, θ̃)− 1B(t1, θ1) given in (3.3.9) and (3.3.14),
and formulas (3.3.6) and (3.3.7), we check that the quadruple integral is half of the
variance of Ψ→B (1). It is dominated by the variances of Ψ↗B (1) and Ψ↘B (1) which have
been proved to be bounded in Example 3.3.8. Thus Ψ→B (ρ) is bounded in L2, and it is
sufficient to choose a sequence Bn = B0(an) corresponding to a sequence an ↓ 0 to obtain
a good approximating sequence.

Remark 4.1.15. A disadvantage of the approximation B = B0(a) for the integral on [0, 1]
is that Ψ→B (ρ) is not F1-measurable, because knowing the height of an excursion beginning
in [0, 1] may involve information on the Wiener path after time 1. To bypass this point,
a possibility is to add to B0(a) all (t, θ) such that ζ(θ) ≥ 1− t and to consider

B1(a) =
{

(t, θ) ∈ [0, 1]×Θ; η(θ) ≥ a or ζ(θ) ≥ 1− t
}
.

This means that we consider all excursions straddling time 1, independently of their
height. The approximation Ψ→B (ρ) for B = B1(a) is now F1-measurable, and it converges
like previous one, because the difference between this approximation and previous one
is dominated by a. Subsequently, as mentioned in the beginning of the section, it will
be useful to consider paths indexed by R; in this case, we also add to B1(a) excursions
beginning before time 0 and ending in [0, 1]; this means that we put

B(a) = B1(a) ∪
{

(t, θ) ∈ (−∞, 0]×Θ; −t ≤ ζ(θ) ≤ 1− t
}
. (4.1.16)

Approximations of integrals based on B(a) will subsequently be called height-based
approximations.

Example 4.1.17. A similar procedure can be worked out by considering excursions of
length ζ(θ) ≥ ε, more precisely

B′(ε) =
{

(t, θ) ∈[0, 1]×Θ; ζ(θ) ≥ ε ∧ (1− t)
}

∪
{

(t, θ) ∈ (−∞, 0]×Θ; −t ≤ ζ(θ) ≤ 1− t
}
.

We are again reduced to the boundedness of the variances corresponding to ρ ≡ 1
(Example 3.3.19). These approximations will be called length-based approximations.
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Example 4.1.18. Consider a subdivision ∆ = (tj) of [0, 1], and let B = B(∆) be the set
of (t, θ) such that the interval [t, t + ζ(θ)] contains a point of the subdivision. With the
notation ω↗∆ introduced in (3.1.5), a similar notation ω↘∆ and ω→∆ = ω↗∆ − ω↘∆ , we have
from (3.1.7) ∫ 1

0

f(t)ω→∆ (dt) =
∑

k

∫
ω[tj ,tj+1]

f(gx
tj+1

) sgn(ω(tj+1)− x)dx

where ω[r, s] is the range of ω on [r, s]. Thus

Ψ→B (ρ) =

∫ 1

0

ρtW
→
∆ (dt) =

∑
k

Y[tj ,tj+1]

where

Y[r,s] =

∫ s

r

ρt1{ζt>s−t}W
→(dt) =

∫
W [r,s]

ρgx
s
sgn(Ws − x)dx.

An application of the duality formula (3.2.5) shows that

E
[
F Y[r,s]

]
= E

∫ s

r

ρtDs−t
t Fdt (4.1.19)

with

Dδ
tF =

∫
{ζ(θ)>δ}

(
F ◦ E+

t,θ − F ◦ E+
t,θ?

)
I↑(dθ).

We check that Y[r,s] is Fs-measurable, and an application of (4.1.19) with a Fr-measurable
variable F enables to deduce

E
[
Y[r,s]

∣∣ Fr

]
= 0

because Ds−t
t F = 0 for r ≤ t ≤ s. Thus the variables Y[tk,tk+1] are centred and orthogonal

in L2. Moreover ∣∣Y[r,s]

∣∣ ≤ C

∫
W [r,s]

dx = C
(
sup
[r,s]

W − inf
[r,s]

W
)
,

so the variance of Y[tj ,tj+1] is of order tj+1 − tj, and the sum
∑
Y[tj ,tj+1] is bounded in

L2. Thus Theorem 4.1.11 can be applied to Bn = B(∆n) for any sequence ∆n = (tnj ) of
subdivisions of [0, 1] such that maxj(t

n
j+1 − tnj ) → 0.

4.1c The strong L2 convergence

Notice that the approximations Ψ→B (ρ) generally do not converge strongly in L2. For
instance, for ρ ≡ 1, consider the approximation based on time discretization of Example
4.1.18. In this case we have

Y[r,s] =

∫
W [r,s]

sgn(Ws − x)dx = 2Ws − inf
[r,s]

W − sup
[r,s]

W.
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From the invariance of the Wiener measure by time reversal, we check that

E
[(
Ws +Wr − inf

[r,s]
W − sup

[r,s]

W
)
(Ws −Wr)

]
= 0.

Thus
E
[
Y[r,s](Ws −Wr)

]
= E

[
(Ws −Wr)

2
]

= s− r,

so Y[r,s] is the sum of Ws −Wr and of a non trivial orthogonal variable and

E
(
Y[r,s]

)2
= C(s− r) with C > 1.

Thus

E
(
Ψ→B (1)

)2
= E

(∑
j

Y[tj ,tj+1]

)2

= C

does not converge to E[W 2
1 ] = 1, and the convergence lim Ψ→B (1) = W1 does not hold

strongly in L2.

Nevertheless, we now prove the strong convergence for a particular approximation when
ρ is continuous.

Theorem 4.1.20. If we use height-based approximations B = B(a) given by (4.1.16) and
if ρ is a bounded continuous predictable process, then the convergence of Ψ→B (ρ) to the Itô
integral of ρ holds for the strong topology of L2.

Proof. We already have the weak convergence, so it is sufficient to prove that

lim E
(
Ψ→B (ρ)

)2

= E
∫ 1

0

ρ2
tdt (4.1.21)

for B = B(a) and a ↓ 0. This has been checked in (3.3.18) for ρ ≡ 1, and we have
to write the formulas in the general case. The variance has already been estimated in
Example 4.1.13; we again use (4.1.14), but we handle it differently, taking advantage of
the continuity of ρ. We have

E
(
Ψ→B (ρ)

)2

= I1 + I2

with

I1 = 2 E
∫∫
{t1<t2}

ρ2
t1

(
1B(t1,Υt1)− 1B(t1,Υt1 ◦ E−t2 )

)
1B(t2,Υt2)

W→(dt1)W
→(dt2),

I2 = 2 E
∫∫
{t1<t2}

ρt1

(
ρt2 − ρt1

)(
1B(t1,Υt1)− 1B(t1,Υt1 ◦ E−t2 )

)
1B(t2,Υt2)

W→(dt1)W
→(dt2).
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The first term is studied from Theorem 3.3.1 (notice that ρt1 is not affected by E+
t1,θ1

and

E+
t2,θ2

), and we get

I1 = 2E
∫∫∫∫

{t1<t2}
ρ2

t1

(
1B(t1, θ̃)− 1B(t1, θ1)

)
1B(t2, θ2)Il1 (dθ1)Il1 (dθ2)dt1dt2.

By proceeding as in Example 3.3.8, we check

lim I1 = E
∫ 1

0

ρ2
tdt.

For I2, we have enumerated in Example 3.3.8 the cases where the difference between the
indicators is non zero; this can happen only when t2 belongs to the excursion beginning
at t1, and before this excursion hits the level ±a, so we must have

t2 ≤ inf
{
t > t1; |Wt −Wt1| ≥ a

}
and

t1 ∈
{
gx

t2
; Wt2 − a ≤ x ≤ Wt2 + a

}
.

The first condition shows that

|ρt2 − ρt1| ≤ Ra = sup
{
|ρs − ρr|; max

[r,s]
W −min

[r,s]
W ≤ a

}
,

and the second one shows that for t2 fixed,∫ ∣∣1B(Υt1)− 1B(Υt1 ◦ E−t2 )
∣∣ ∣∣W→(dt1)

∣∣ ≤ 2a,

so

I2 ≤ C aE
[
|Ra|

∫
1B(Υt)

∣∣W→(dt)
∣∣].

This term is shown to converge to 0 from the Cauchy-Schwarz inequality because Ra

converges almost surely to 0 and
∫

1B(Υt)|W→(dt)| is of order 1/a in L2. Adding the
asymptotic behaviours of I1 and I2 yields (4.1.21).

Remark 4.1.22. In §4.4, in Remark 4.4.10, we will see that almost sure convergence holds
in some cases.

Remark 4.1.23. We do not know whether the same result holds for length-based
approximations of Example 4.1.17, but we doubt it. From the proof which is given
here, the strong convergence for height-based approximations may seem to come from the
miraculous formula (3.3.18). Actually, the particularity of height-based approximations
with respect to others will appear more clearly in §4.3.
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4.2 Backward integrals

In this subsection we consider the measure W←(dt) based on ends of excursions. More
precisely, we suppose that (Wt, Vt; t ≥ 0) and (W−t, V−t; t ≥ 0) are independent standard
Wiener processes. We can define the length of the excursion of W ending at t by

ζ†t = inf
{
s > 0; Wt−s = Wt

}
,

and the excursion ending at t by

Υ†t : s 7→ Wt−ζ†t +s −Wt−ζ†t
for 0 ≤ s ≤ ζ†t .

Then, similarly to (4.1.1) and (4.1.2), we consider the operator

Ψ←B (ρ) =

∫
1B(t− ζ†t ,Υ

†
t)ρtW

←(dt) =

∫ 1

0

ρtdW
←
t (B) (4.2.1)

with
W←

t (B) = Ψ←B (1[0,t]).

The process W←
t (B) also has finite variation, but an important difference with respect

to W→
t (B) is that it is predictable. If we use for instance height-based approximations

(4.1.16), then Ψ←B(a)(ρ) is measurable with respect to (Wt, Vt; 0 ≤ t ≤ 1) (see the discussion

of Remark 4.1.15). We are going to check that when ρ is a semimartingale, then Ψ←B (ρ)
is an approximation of what is usually called the backward integral of ρ.

Theorem 4.2.2. Suppose that (ρt; 0 ≤ t ≤ 1) is a bounded Itô process

ρt = ρ0 +

∫ t

0

αsds+

∫ t

0

bsdWs +

∫ t

0

(βs, dVs) (4.2.3)

for bounded predictable processes αt, bt and βt. Let B = (Bn) be a sequence such that
W←

t (Bn) is bounded in L2. Then Ψ←B (ρ) converges for the weak topology of L2 to

Ψ←(ρ) =

∫ 1

0

ρtdWt + 〈ρ,W 〉1 =

∫ 1

0

ρtdWt +

∫ 1

0

btdt. (4.2.4)

For height based approximations B = B(a) of (4.1.16), the convergence holds for the
strong topology of L2.

Proof. Theorem 4.1.5 and a time reversal imply that

lim E
[
F W←

t (Bn)
]

= E
[
F Wt

]
(4.2.5)
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for any bounded simple F ; from our assumption about the L2 boundedness of W←
t (Bn),

this convergence also holds for any F ∈ L2. On the other hand, Itô’s formula applied to
(4.2.1) and (4.2.4) yields

Ψ←B (ρ) =ρ1W
←
1 (B)−

∫ 1

0

W←
t (B)αtdt−

∫ 1

0

W←
t (B)btdWt

−
∫ 1

0

W←
t (B)(βt, dVt)

(4.2.6)

and

Ψ←(ρ) = ρ1W1 −
∫ 1

0

Wtαtdt−
∫ 1

0

WtbtdWt −
∫ 1

0

Wt(βt, dVt).

If now F is a square integrable variable, it can be written from (1.1) as a stochastic
integral of a predictable square integrable process Zt = (Z1

t , Z
′
t) with respect to (Wt, Vt),

and we have

E
[
F Ψ←B (ρ)

]
=E
[
Fρ1W

←
1 (B)

]
−
∫ 1

0

E
[
FW←

t (B)αt

]
dt

−
∫ 1

0

E
[
Z1

tW
←
t (B)bt

]
dt−

∫ 1

0

E
[
W←

t (B)(Z ′t, βt)
]
dt

(4.2.7)

and

E
[
F Ψ←(ρ)

]
=E
[
Fρ1W1

]
−
∫ 1

0

E
[
FWtαt

]
dt

−
∫ 1

0

E
[
Z1

tWtbt
]
dt−

∫ 1

0

E
[
Wt(Z

′
t, βt)

]
dt.

(4.2.8)

From (4.2.5), each term of the right-hand side of (4.2.7) converges to the corresponding
term of (4.2.8), so the first statement of the theorem is proved. For height based
approximations, one proves as in Theorem 4.1.20 that W←

t (B(a)) converges strongly to
Wt, so one can take the limit in (4.2.6) and obtain the strong convergence of Ψ←B(a)(ρ).

Remark 4.2.9. As for Itô integrals, we will see in Remark 4.4.10 that the convergence can
be almost sure.

Remark 4.2.10. We deduce of course from Theorems 4.1.11 and 4.2.2 that the difference
Ψ←B (ρ) − Ψ→B (ρ) is a weak approximation of the quadratic covariation 〈ρ,W 〉1. Next
subsection is devoted to another approximation of this covariation.
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4.3 Quadratic covariation

We now study the correction measure W�(dt) given by (3.1.11) (one can of course study
similarly W�(dt)). We consider like previously paths indexed by R and put

Ψ�
B (ρ) =

∫
ρt

(
1B(t− ζ†t ,Υ

†
t)W

↙(dt)− 1B(t,Υt)W
↗(dt)

)
=

∫
ρtdW

�
t (B)

with
W�

t (B) = Ψ�
B (1[0,t]).

As for Ψ→B and Ψ←B , we are interested in the asymptotic behaviour of this expression.
However, we only consider height-based approximations B = B(a) defined in (4.1.16).
We suppose that ρ is a smooth Itô process, that is a process given by (4.2.3) for bounded
α, b, and β, such that

bt − br = O(
√
t− r) (4.3.1)

in the spaces Lp, 1 ≤ p <∞.

The particularity of height-based approximations is that positive and negative excursions
of height greater than a are in bijection with each other, and actually, this explains the
particular behaviour of these approximations which was already noticed in Theorems
4.1.20 and 4.2.2. Let us define

σt = inf
{
s ≥ t; Ws ≥ Wt + a

}
. (4.3.2)

If t is the beginning of a positive excursion of height greater than a, then σt is the end of
a negative excursion of height greater than a, and t 7→ σt is a bijection between these two
sets. This remark is important for the following result.

Theorem 4.3.3. Suppose that ρ is a smooth Itô process (4.2.3) satisfying (4.3.1). Then

lim Ψ�
B (ρ) =

1

2
〈ρ,W 〉1 =

1

2

∫ 1

0

btdt

in probability for height-based approximations. If β ≡ 0 (in particular in the one-
dimensional case d = 1), then the convergence is almost sure.

We first prove the following lemma.

Lemma 4.3.4. One has

lim
a→0

a

∫
1B(t,Υt)btW

↗(dt) =
1

2

∫ 1

0

bsds (4.3.5)

almost surely.
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Proof. Let us first consider the case b ≡ 1. The difference between the two sides is of order
a in L2 (recall the calculation of Example 3.3.8). We can deduce from the Borel-Cantelli
lemma that the almost sure convergence holds for the sequence an = 1/n. Moreover, the
monotonicity of a 7→ B(a) implies that

n

n+ 1
an

∫
1B(an)(t,Υt)W

↗(dt) ≤ a

∫
1B(a)(t,Υt)W

↗(dt)

≤ n+ 1

n
an+1

∫
1B(an+1)(t,Υt)W

↗(dt)

for an+1 ≤ a ≤ an. We deduce the whole almost sure convergence as a ↓ 0. The case
bt = 1[0,r](t) is studied similarly, so almost surely, the measure a1B(t,Υt)W

↗(dt) converges
weakly to dt/2, and the lemma is proved for any continuous b. But the continuity of b
follows from (4.3.1) and the Kolmogorov lemma (Theorem I.1.8 of [10]).

Remark 4.3.6. For b ≡ 1, if we factorise W↗(dt) into W↗
x (dt)dx as in (3.1.3), a well

known approximation of the local time by the number of upcrossings (Theorem VI.1.10
of [10]) states that

lim
a→0

a

∫
1B(t,Υt)W

↗
x (dt) =

1

2
Lx

t ,

and the convergence (4.3.5) for b ≡ 1 is the integrated form of this result.

Another step in the proof of Theorem 4.3.3 consists in estimating double integrals

Art =

∫ t

r

(bs − br)dWs.

Lemma 4.3.7. For any fixed 0 < γ < 1, one has

|bt − br| ≤ K(t− r)γ/2, |Art| ≤ K(t− r)γ

for any 0 ≤ r ≤ t ≤ 1, and for some finite variable K.

Remark 4.3.8. If b were assumed to be a semimartingale, this type of result can be used
to check that the process (W, b) with its Lévy area has finite p-variation for p > 2 (see
[5]). The multiplicative property satisfied by rough paths is here written as

Art = Ars + Ast + (bs − br)(Wt −Ws) (4.3.9)

for r ≤ s ≤ t.

Proof of Lemma 4.3.7. The first estimate is classical from the Kolmogorov lemma and
relies on (4.3.1). In particular, from (4.3.9),∣∣Art − Ars − Ast

∣∣ ≤ K0(t− r)γ (4.3.10)
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for r ≤ s ≤ t and for some finite K0. On the other hand, the variable

A′rt = sup
r≤u≤t

∣∣∣∫ u

r

(bs − br)dWs

∣∣∣
is of order t− r in Lp (apply Doob’s inequality), so

P
[
A′rt ≥ (t− r)γ

]
≤ C(t− r)p(1−γ).

We apply this inequality to r = tnk = k2−n, t = tnk+1, and obtain

∑
n

2n−1∑
k=0

P
[
A′tnk ,tnk+1

≥ (tnk+1 − tnk)γ
]
≤ C

∑
n

2n2−pn(1−γ) <∞

if p is chosen large enough. Thus the Borel-Cantelli lemma shows that

A′tnk ,tnk+1
≤ K1(t

n
k+1 − tnk)γ (4.3.11)

for some finite K1. Now, for 0 < r < t < 1, let n = n(r, t) be the maximal integer such
that

tnk−1 ≤ r ≤ tnk ≤ t ≤ tnk+1 (4.3.12)

for some k. Then
2−n−1 ≤ t− r ≤ 2−n+1 (4.3.13)

because if it is smaller, then n+1 satisfies (4.3.12). The almost additive property (4.3.10)
shows that

Art = Artnk
+ Atnk t +O((t− r)γ)

= Atnk−1tnk
− Atnk−1r + Atnk t +O(2−nγ),

so
|Art| ≤ 2A′tnk−1tnk

+ A′tnk tnk+1
+K22

−nγ ≤ K(t− r)γ

from (4.3.11) and (4.3.13).

Proof of Theorem 4.3.3 when β ≡ 0. By using the time σt defined in (4.3.2), the bijection
t 7→ σt transforms 1{ηt≥a}W

↗(dt) into 1{η†t≥a}W
↙(dt). Thus we can write

Ψ�
B (ρ) =

∫
1{0≤t≤σt≤1}1{ηt≥a}(ρσt − ρt)W

↗(dt) +O(a)

because all the beginnings and ends of excursions of Ψ�
B are taken into account in the

integral of the right side, except a small part of the first and last hitting times. On the
other hand, notice that Lemma 4.3.7 and (4.2.3) imply that

ρt − ρr = br(Wt −Wr) +O((t− r)γ) (4.3.14)
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for 0 < γ < 1. Thus∣∣∣Ψ�
B (ρ)− a

∫
1{0≤t≤σt≤1}1{ηt≥a}btW

↗(dt)
∣∣∣ ≤ K

∫ 1

0

((σt− t)γ ∧ 1)W↗(dt) +C a. (4.3.15)

The integral in the left-hand side is close to the integral of the left-hand side of (4.3.5).
For the right-hand side, notice that (σt − t)γ ∧ 1 converges almost surely to 0 as a ↓ 0,
and is bounded by ζγ

t ∧ 1. Moreover,

E
∫ 1

0

(ζγ
t ∧ 1)W↗(dt) =

∫
(ζ(θ)γ ∧ 1)I↑(dθ) <∞

for γ > 1/2, so ∫ 1

0

(ζγ
t ∧ 1)W↗(dt) <∞ (4.3.16)

almost surely. Thus we deduce from the dominated convergence theorem that the right-
hand side of (4.3.15) converges to 0. This completes the proof of the almost sure
convergence of Ψ�

B (ρ).

Proof of Theorem 4.3.3 in the general case. We have already considered the case β ≡ 0,
so we can now suppose α ≡ b ≡ 0. We use the filtration F ′t generated by (Ws; 0 ≤ s ≤ 1)
and (Vs; 0 ≤ s ≤ t). ThenW�

t (B) is F ′0-measurable, the process Vt is a F ′t-Wiener process,
and

Ψ�
B (ρ) =

∫
ρtdW

�
t (B) = ρ1W

�
1 (B)−

∫
W�

t (B)(βt, dVt)

where the stochastic integral is understood in the filtration (F ′t). Similarly to the previous
case, we can prove that W�

t (B) = Ψ�
B (1[0,t]) converges almost surely to 0, uniformly in t,

so we deduce the convergence in probability of Ψ�
B (ρ) to 0.

4.4 Stratonovich integrals

In this subsection, we consider the measures W ↑(dt) and W ↓(dt) on R, and define

Ψ↑B(ρ) =

∫
ρt

(
1B(t,Υt)W

↗(dt)− 1B(t− ζ†t ,Υ
†
t)W

↖(dt)
)

=

∫ 1

0

ρtdW
↑
t (B)

(4.4.1)

with
W ↑

t (B) = Ψ↑B(1[0,t]), (4.4.2)

and similarly

Ψ↓B(ρ) =

∫
ρt

(
1B(t− ζ†t ,Υ

†
t)W

↙(dt)− 1B(t,Υt)W
↘(dt)

)
.
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Actually, we focus our study on Ψ↑B since the other one is similar. Notice that

Ψ↑B(ρ) = Ψ←B (ρ)−Ψ�
B (ρ), (4.4.3)

so we deduce from Theorems 4.2.2 and 4.3.3 that for a smooth Itô process and for height-
based approximations, it converges in probability to the Stratonovich integral. Our aim
is to prove that the convergence in probability actually holds for any approximation and
that it is almost sure when β ≡ 0 or for height-based approximations. Notice that if Ψ↑B(ρ)
converges in probability as B ↑ Θ↑1, the limit is necessarily the Stratonovich integral (since
this is the limit on a subsequence).

The definition (4.4.1) of Ψ↑B involves the beginnings and ends of the same excursions, so
we can write

Ψ↑B(ρ) =

∫
1B(t,Υt)

(
ρt − ρt+ζt

)
W↗(dt). (4.4.4)

Thus if ∫ ∣∣ρt − ρt+ζt

∣∣W↗(dt) <∞ (4.4.5)

almost surely, then Ψ↑B(ρ) converges almost surely to∫ 1

0

ρt ◦ dWt =

∫ (
ρt − ρt+ζt

)
W↗(dt). (4.4.6)

Theorem 4.4.7. Let ρ be smooth Itô process satisfying (4.2.3) and (4.3.1). If β ≡ 0, the
integrability condition (4.4.5) holds true, so the Stratonovich integral is given by (4.4.6),
and Ψ↑B(ρ) converges almost surely to it.

Proof. Since ρ is bounded, in order to prove (4.4.5), we can neglect the first and last
incomplete excursions and only prove that∫ ∣∣ρt+ζt − ρt

∣∣1{0≤t<t+ζt≤1}W
↗(dt) <∞. (4.4.8)

We deduce from (4.3.14) that ∣∣ρt+ζt − ρt

∣∣ ≤ K(ζγ
t ∧ 1),

so (4.3.16) implies (4.4.8). The other statements of the theorem follow from the above
discussion.

Remark 4.4.9. The approximation (4.4.1) of the Stratonovich integral is written as the
integral with respect to the anticipating process with finite variationW ↑

t (B). For instance,
for the height-based approximations of (4.1.16), the path W ↑

t (B(a)) is depicted in Figure
5, and one has Wt − a ≤ W ↑

t (B(a)) ≤ Wt. For approximations associated to subdivisions
∆ = (tj) of [0, 1] (Example 4.1.18), one has

W ↑
t (B(∆)) =

∑
j

1[tj ,tj+1)(t)
(

inf
[tj ,t]

W ∨ inf
[t,tj+1]

W
)
.
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0
1

-

?

6
a

W

W (a)

Figure 5: Paths Wt and W
(a)
t := W ↑

t (B(a))

Remark 4.4.10. We can deduce from (4.4.3), Theorems 4.3.3 and 4.4.7 that for height-
based approximations and when β ≡ 0, the approximations Ψ←B (ρ) converge almost surely
to the backward integral. Similarly, by using

Ψ→B (ρ) = Ψ↓B(ρ)−Ψ�
B (ρ),

we check that Ψ→B (ρ) converges almost surely to the Itô integral.

Theorem 4.4.11. If ρ is a smooth Itô process satisfying (4.2.3) and (4.3.1), the
convergence of Ψ↑B(ρ) to the Stratonovich integral holds in probability.

Proof. The case β ≡ 0 has already been studied in Theorem 4.4.7, so we now suppose
α ≡ b ≡ 0 (in particular, Itô, backward and Stratonovich integrals coincide). We use as
in Theorem 4.3.3 the enlarged filtration F ′t generated by (Ws, 0 ≤ s <∞;Vs, 0 ≤ s ≤ t).
The process ρt is a semimartingale for this filtration, and the process W ↑

t (B) given by
(4.4.2) is F ′0-measurable. We can write

Ψ↑B(ρ) =

∫ 1

0

ρtdW
↑
t (B) =

∫ 1

0

(W ↑
1 (B)−W ↑

t (B))(βt, dVt). (4.4.12)

We have proved in Theorem 4.4.7 that W ↑
t (B) converges almost surely to Wt. Moreover,

inf
[0,t]

W ≤ W ↑
t (B) ≤ Wt − inf

[0,t]
W,
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so ∣∣W ↑
t (B)

∣∣ ≤ 2 sup
[0,t]

|W |.

This estimation is sufficient to deduce the convergence in probability of Ψ↑B(ρ) in the form
(4.4.12).

We now show that in the case of height-based approximations, almost sure convergence
to the Stratonovich integral holds even when β 6≡ 0.

Theorem 4.4.13. If ρ is a smooth Itô process satisfying (4.2.3) and (4.3.1), then Ψ↑B(ρ)
converges almost surely for height based approximations (4.1.16) to the Stratonovich
integral.

Proof. The result has already been proved for β ≡ 0 in Theorem 4.4.7, so we now suppose
α ≡ b ≡ 0, and consider the enlarged filtration F ′t. We use Lemma 3.1.8 to write (4.4.4)
in the form

Ψ↑B(a)(ρ) =

∫ ∞
a

∑
t:Υt>0,ηt=b

(
ρt − ρt+ζt

)
db+O(a)

where the ‘O(a)’ involves the small excursions straddling time 0 or 1. Thus the theorem
will proved if we check that∫

0+

∣∣∣∣∣ ∑
t:Υt>0,ηt=a

(
ρt − ρt+ζt

)∣∣∣∣∣ da <∞ (4.4.14)

almost surely. But∑
t:Υt>0,ηt=a

(
ρt − ρt+ζt

)
= −

∫ 1

0

( ∑
t:Υt>0,ηt=a

1[t,t+ζt](s)

)
(βs, dVs)

is bounded in L1 as a → 0 because the sum in the right-hand side is 0 or 1, so (4.4.14)
holds true.

4.5 Summary

We summarise in a table the results obtained in this section about convergence to the
stochastic integrals and the quadratic covariation in various frameworks, when ρ is a
smooth semimartingale satisfying (4.2.3) and (4.3.1), and either for any approximating
sequence, or for the height-based approximations B(a) of (4.1.16).

Any B B = B(a)
Any β β ≡ 0 Any β β ≡ 0

Ψ→B (ρ) → Itô (w) if B good (P) (a.s.)
Ψ←B (ρ) → backward (w) if B good (P) (a.s.)

Ψ�
B (ρ) → covariation (P) (a.s.)

Ψ↑B(ρ) → Stratonovich (P) (a.s.) (a.s.)
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The weak L2 convergence ((w) in the table) holds if Ψ→B (ρ) is bounded in L2 (for the Itô
integral) or when Ψ←B (1) is bounded in L2 (for the backward integral).

5 Anticipating calculus

In this section, we explain how techniques of previous section can be applied to study
Ψ→B (ρ), . . . for some anticipating processes ρ and to construct anticipating integrals
Ψ→(ρ), . . . . We also obtain a duality between the transformation D of the Wiener path
and an operator Φ; this duality is similar to the duality between the Malliavin derivative
and the Skorohod integral (see for instance [6]).

5.1 Anticipating integrals

We again consider the space generated by the Wiener process (Wt, Vt), and we want to
integrate with respect to W processes ρt, 0 ≤ t ≤ 1, which are not predictable for the
Wiener filtration. We say that the bounded process ρt is in the domain of Ψ→ with
integral Ψ→(ρ) if Ψ→B (ρ) defined in (4.1.1) converges in probability to Ψ→(ρ) for height-
based approximations B = B(a) of (4.1.16), a ↓ 0. We can give a similar definition
for Ψ←, Ψ↑, Ψ↓. In view of the predictable case, we can say that Ψ→(ρ) is a forward
integral, that Ψ←(ρ) is a backward integral, and that Ψ↑(ρ) and Ψ↓(ρ) are symmetric
integrals; these two last integrals were equal in the predictable case and are also equal in
the examples below.

Remark 5.1.1. One can consider other definitions, by requiring for instance the weak L2

convergence instead of the convergence in probability.

Example 5.1.2. In the case dρt = αtdt, it is not necessary to assume that α is adapted.
Even in the anticipative case, one can write

Ψ→B (ρ) =

∫ 1

0

ρtdW
→
t (B) = ρ1W

→
1 (B)−

∫ 1

0

W→
t (B)αtdt

and similarly for the other integrals, so the four types of integrals exist and coincide with

Ψ(ρ) = ρ1W1 −
∫ 1

0

Wtαtdt.

A similar result holds in the case dρt = βtdVt, where βt is non anticipating with respect
to V but may be anticipating with respect to W ; this means that we use (like previously)
the filtration F ′t generated by (Ws; s ≥ 0) and (Vs; 0 ≤ s ≤ t).

Example 5.1.3. Suppose that ρt = ρ′t+ε, where ρ′t is an Itô process (4.2.3). Then we divide
the time interval into intervals of length ε. On each of these intervals, ρ is an integral
with respect to the Wiener increments on the next interval, and these increments can be
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viewed as an independent process. Thus we are reduced to Example 5.1.2, and all the
integrals coincide with

Ψ(ρ) = ρ1W1 −
∫ 1

0

Wsdρs

where the integral is computed for the filtration Ft+ε.

Example 5.1.4. If
|ρt − ρs| ≤ K |t− s|γ

for some finite variable K and some 1/2 < γ ≤ 1, then ρt+ζt−ρt is integrable with respect
to W↗ ((4.4.5) holds true), and Ψ↑(ρ) can be defined by the right-hand side of (4.4.6).
We can approach it by

Ψ↑B(∆)(ρ) =
∑

k

(∫ Wtj+1

inf[tj ,tj+1] W

ρgx
tj+1

dx−
∫ Wtj

inf[tj ,tj+1] W

ρdx
tj
dx
)

for a subdivision ∆ = (tj) of [0, 1]. If we compare with Riemann sums, it appears that∣∣∣Ψ↑B(∆)(ρ)−
∑

j

ρtj(Wtj+1
−Wtj)

∣∣∣
≤
∑

j

sup
tj≤t≤tj+1

∣∣ρt − ρtj

∣∣(Wtj +Wtj+1
− 2 inf

[tj ,tj+1]
W
)
.

Estimates on the modulus of continuity of W and ρ show that this expression converges to
0, so Ψ↑(ρ) is the limit of Riemann sums and therefore coincides with the Young integral
(described in §3.3.2 of [5]). On the other hand, the study of Ψ�

B (ρ) for B = B(a) shows
that it is dominated by ∫

1{ηt≥a}(σt − t)γW↗(dt).

Recall (Example 3.3.8) that∫
1{η(θ)≥a}Ta(θ)I↑1 (dθ) =

a2

3
I↑1
{
η(θ) ≥ a

}
,

so ∫
1{η(θ)≥a}Ta(θ)

γI↑1 (dθ) = O(a2γ) I↑1
{
η(θ) ≥ a

}
= O(a2γ−1).

Thus

E
∫ 1

0

1{ηt≥a}(σt − t)γW↗(dt) = O(a2γ−1)

converges to 0, so Ψ�
B (ρ) (and also Ψ�

B (ρ)) converges to 0, and the four types of integrals
coincide.
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Example 5.1.5. In the one-dimensional case, consider ρ′t = f(ρt, .), where f(ρ, ω) is a
random function which is C2

b with respect to ρ, and ρt is a smooth Itô process (4.2.3).
Then ∣∣ρ′t+ζt

− ρ′t
∣∣ ≤ C

∣∣ρt+ζt − ρt

∣∣,
so ρ′ is like ρ in the domain of Ψ↑, and Ψ↑(ρ′) is again given by (4.4.6). On the other
hand, from Taylor’s formula,

ρ′σt
− ρ′t = f ′(ρt)

(
ρσt − ρt

)
+O

(∣∣ρσt − ρt

∣∣2)
= abtf

′(ρt) +O
(
(σt − t)γ

)
for 0 < γ < 1 (recall (4.3.14)). One can deduce at the limit (Lemma 4.3.4 is valid for
anticipating processes) that

Ψ�(ρ′) = Ψ�(ρ′) =
1

2

∫ t

0

f ′(ρs)bsds.

In particular, Ψ↑(ρ′) and Ψ↓(ρ′) again coincide.

5.2 A duality property

We now describe for the multidimensional Wiener process (W 1
t , . . . ,W

d
t ) the relation

between our integrals and the adjoint Φ of D = (D1, . . . ,Dd) in L2, where each operator
Dk is defined similarly to (4.1.3). If we compare this calculus with standard anticipating
calculus, the operator Φ can be viewed as an analogue of the Skorohod integral, so our
problem is similar to the description of some anticipating integrals (which are constructed
as some limits) by means of the Skorohod integral, as in §3.1 of [6].

Let S be the class of simple functionals F = f(Wt1 , . . . ,Wtn) with f bounded and
Lipschitz; in particular,∫ ∣∣F ◦ E+

t,θ − F ◦ E+
t,θ?

∣∣J ↑k (dθ) ≤ C
∑

j

∫
θk(tj+1 − t)I↑k(dθ) = C n

for any 1 ≤ k ≤ d and for tj < t < tj+1, so DtF is bounded for these functionals. We
define the domain of Φ to be the set of processes ρt in L2(R+ × Ω; Rd) such that

E
∫

(ρt,DtF ) dt ≤ C E
[
F 2
]1/2

for any F ∈ S, and for some C ≥ 0. Then Φ(ρ) is defined in L2 by

E
∫

(ρt,DtF ) dt = E
[
F Φ(ρ)

]
for any F ∈ S.
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In particular, Φ(ρ) is centred. Since S is dense in L2, it is classical to verify that Φ(ρ) is
uniquely defined by this relation. Moreover, Φ is a closed operator.

We use the notation
ρ−k,t = ρk,t ◦ E−k,t

where ρk,t is the kth component of ρt, and E−k,t removes the excursion of the kth Wiener
component starting at time t (see §3.4 for k = 1); this excursion is denoted by Υk,t. In
particular, if ρ is predictable, then ρ− = ρ.

Theorem 5.2.1. Let ρ be a bounded process on [0, 1] which is extended by 0 out of this
interval, and consider height-based approximations B = B(a) of (4.1.16). Then ρ is in
the domain of Φ if and only if

Ψ→B(a)(ρ
−) :=

d∑
k=1

∫
ρ−k,t1B(a)(t,Υk,t)W

→
k (dt)

converges for the weak topology of L2 induced by S, and Φ(ρ) is its limit.

Remark 5.2.2. Roughly speaking, by applying §5.1, the theorem says that Φ(ρ) = Ψ→(ρ−).

Proof. We deduce from Theorem 3.2.4 that

E
[
F

∫
1B(t,Υk,t)ρ

−
k,tW

↗
k (dt)

]
= E

∫∫
B

(
F ◦ E+

t,θ

)
ρk,tI↑k(dθ)dt.

If B is symmetric, we have a similar relation with W↗
k (dt) and E+

t,θ replaced by W↘
k (dt)

and E+
t,θ?

(k)
, so by taking the difference between these two relations, we obtain for F ∈ S

E
[
F

∫
1B(t,Υk,t)ρ

−
k,tW

→
k (dt)

]
= E

∫∫
B

(
F ◦ E+

t,θ − F ◦ E+
t,θ?

(k)

)
ρk,tI↑k(dθ)dt.

Thus

lim
a↓0

E
[
F Ψ→B(a)(ρ

−)
]

= E
∫

(DtF, ρt) dt

and the theorem is proved.

Example 5.2.3. If ρ is predictable, then ρ− = ρ and both Φ(ρ) and Ψ→(ρ) are the Itô
integral.

Example 5.2.4. In the one-dimensional case, consider ρt = g(W1) 1[0,1](t) for a bounded
Lipschitz function g. It is easy to check that

Ψ→(ρ) = g(W1)W1.

We now prove that ρ is in the domain of Φ and that

Φ(ρ) = g(W1)W1 +

∫
W [0,1]

Γxdx
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with
Γx = lim

a→0

∑
t:Wt=x

1B(a)(t,Υt) sgn(Υt)
(
g(W1)− g(W1+ζt)

)
strongly in L2.

Proof. We already know Ψ→(ρ) so we have to study Ψ→(ρ− ρ−). We have

ρ−t = 1[0,1](t)g(W1+ζt),

so

Ψ→B (ρ− ρ−) =

∫ 1

0

1B(t,Υt)
(
g(W1)− g(W1+ζt)

)
W→(dt)

=

∫ ∑
t:Wt=x,ζt>0

1B(t,Υt) sgn(Υt)
(
g(W1)− g(W1+ζt)dx.

If we separate the last excursion from the others, we get

Ψ→B (ρ−ρ−) =

∫
W [0,1]

1B(gx
1 ,Υgx

1
) sgn(Υgx

1
)
(
g(W1)− g(W1+ζgx

1
)
)
dx

+

∫ ∑
t:Wt=x,ζt>0

1B(t,Υt)1{ζt<1−t} sgn(Υt)
(
g(W1)− g(W1+ζt)

)
dx.

The first term is easily studied as B ↑ R+ ×Θ, and leads to the last excursion in Γx. Let
us write the second term as

∫
ΓB

x dx. Then ΓB
x is a sum of orthogonal variables because

the signs of the excursions are independent, and independent from the absolute excursions
and the future (Wt; t ≥ 1). Thus

E[(ΓB
x )2] = E

∑
t:Wt=x,ζt>0

1B(t,Υt)1{ζt<1−t}
(
g(W1)− g(W1+ζt)

)2
≤ CE

∑
t:Wt=x,ζt>0

1B(t,Υt)1{ζt<1−t}ζt

≤ CP[Tx < 1]

where in the second line we apply a conditional expectation given F1, and in the third
line we notice that the total length

∑
ζt of excursions is bounded by 1, and that there is

no term if the process does not hit x before time 1. Moreover, if we consider B = B(an)
for an ↓ 0 and if Γn

x are the associated variables, then (Γn+1
x − Γn

x;n ≥ 0) are orthogonal
(for the above reason of independent signs), so Γn

x converges strongly in L2, and it is not
difficult to deduce that

∫
Γn

xdx also converges (‖Γn
x − Γ∞x ‖2 converges to 0 for any x, and

is dominated by P[Tx < 1] which is integrable, so we apply the dominated convergence
theorem). We deduce the desired result.
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Example 5.2.5. Returning to the multidimensional case, let P be the set of processes
ρt = (ρk,t; 1 ≤ k ≤ d) of the form

ρk,t =
n−1∑
j=0

gk,j(W
k
t0
, . . . ,W k

tn ;W 1, . . . ,W k−1,W k+1, . . . ,W d)1[tj ,tj+1]

where (t0, . . . , tn) is a subdivision of [0, 1] and gk,j is bounded and Lipschitz with respect
to its (n + 1) first arguments. By proceeding as in previous example, we can prove that
P is included in the domain of Φ. In particular, the domain of Φ is dense in the space of
square integrable processes.

We can define the adjoint D of Φ as follows. The domain of D is the set of variables
F ∈ L2 such that

E
[
F Φ(ρ)

]
≤ C E

[∫
|ρt|2dt

]1/2

for any ρ in the domain of Φ, and for some C ≥ 0. If F is in this domain, DF is defined
in L2 by

E
∫

(DtF, ρt)dt = E
[
F Φ(ρ)

]
(5.2.6)

for any ρ in the domain of Φ. Then D is a closed operator. Let us compare D and D; it
is clear that they coincide on S.

Theorem 5.2.7. The operator D is the closure in L2 of the restriction of D to S.

Proof. The domain of Φ is dense in L2 (Example 5.2.5), so D is closed, and it is sufficient
to prove that S is dense in the domain of D endowed with the norm

‖F‖ = E
[
F 2 +

∫
|DtF |2dt

]1/2

.

Let G be in the domain of D and orthogonal to S; we want to check that G = 0. For any
F ∈ S, we have

E
[
FG+

∫
(DtF,DtG)dt

]
= E

[
FG+

∫
(DtF,DtG)dt

]
= 0,

so DG is in the domain of Φ, and

G+ Φ(DG) = 0.

Thus

0 = E
[
G2 + Φ(DG)2 + 2GΦ(DG)

]
= E

[
G2 + Φ(DG)2 + 2

∫
|DtG|2dt

]
from (5.2.6), and G = 0.
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Probab. Stat. 32 (1996), no. 4, 509–548. MR1411270

[9] J. Picard and C. Savona, Smoothness of harmonic functions for processes with jumps,
Stochastic Process. Appl. 87 (2000), 69–91. MR1751165

[10] D. Revuz and M. Yor, Continuous martingales and Brownian motion, Grundlehren
der Mathematischen Wissenschaften, vol. 293, Springer-Verlag, Berlin, 1991.
MR1083357

[11] F. Russo and P. Vallois, Forward, backward and symmetric stochastic integration,
Probab. Theory Relat. Fields 97 (1993), no. 3, 403–421. MR1245252
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