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1. Introduction

The classical Itô stochastic integral with respect to Brownian motion has been generalized in

several directions. One of these directions is to define the stochastic integral in the Lp–mean,

1 < p ≤ 2 (see Bichteler [6, 7]). This can be done easily if the integrator is of integrable

p–variation. The works of Dettweiler [19], Giné and Marcus [24], Dang Hung Thang [44] and

Neidhardt [36] have extended this procedure to certain types of Banach spaces in which most

of the probabilistic theorems necessary for defining a stochastic integral are valid.

If the integrator is a Poisson random measure it is quite natural to define the stochastic

integral in Lp-mean. In the case of SPDEs, examples can be covered which are not easily treated

using the Hilbert space or M type 2 Banach space theory (see Example 2.2 and Example 2.3).

Let E be a separable Banach space of M type p, 1 < p ≤ 2, with Borel σ-algebra E . Let A

be an infinitesimal generator of an analytic semigroup (St)t≥0 on E. Let Z be a Banach space

and Z be the Borel σ–algebra on Z. Let η be a Poisson random measure defined on (Z,Z)

with symmetric Lévy measure ν : Z → R+ satisfying certain moment conditions. Assume

that f : E → E, and g : E × Z → E are Lipschitz continuous and measurable functions. We

consider the following SPDE written in the Itô-form
{
du(t) = (Au(t−) + f(u(t−))) dt+

∫

Z
g(u(t−); z)η(dz; dt),

u(0) = u0.
(1)

Under a mild solution of equation (1) we understand a predictable càdlàg process u taking

values in a certain Banach space and satisfying the integral equation

u(t) = Stu0 +

∫ t

0+
St−sf(u(s−)) ds+

∫ t

0+

∫

Z

St−sg(u(s−); z) η(ds, dz), a.s. , t ≥ 0.

In Theorem 2.1 we find conditions which guarantee existence and uniqueness of the solution u

of problem (1).

In contrast to the Wiener process, the Lévy process

L(t) =

∫ t

0+

∫

Z

z η(dz; ds), t ≥,

itself is a.s. discontinuous, however L = {L(t), t ≥ 0} is càdlàg.

Parabolic SPDEs driven by the Gaussian white noise were initially introduced and discussed

by Walsh [46, 47], where he also mentioned as an example the cable equation driven by a

Poisson random measure. Kallianpur and Xiong [28, 29] showed existence and uniqueness for

equation (1) in the space of distributions, while Albeverio, Wu and Zhang [1] investigated

equation (1) and showed existence and uniqueness in Hilbert spaces under the L2–integrability

condition of the Poisson random measure under suitable hypothesis. Existence and uniqueness

of SPDEs driven by time and space Poisson random measure were considered by, among

others, Applebaum and Wu [2], Bié [8], Knoche [30], Mueller [34], and Mytnik [35]. Stochastic
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integration in Banach spaces has been discussed e.g. by Brooks and Dinculeanu [9], Dettweiler

[19], Kussmaul [31], Neidhardt [36], Rüdiger [42], in which article Banach spaces of M type 1

and M type 2 were considered. SPDEs in M type 2 Banach spaces driven by Wiener noise

have been investigated by Brzeźniak [10, 11], Elworthy and Brzeźniak [12].

We extend the Itô stochastic integral in the Lp–mean, 1 ≤ p ≤ 2 to a wide class of Banach

spaces. This allows us to investigate the existence and uniqueness of the solution to (1) a large

class of Banach spaces (see e.g. Example 2.2).

This article is organized as follows: In section two we state our main theorem and some

examples. In section three we recall some results about Poisson random measures, Lévy pro-

cesses, and stochastic integration. We then prove our results in sections four and five.

2. The main result

There exist many connections between the validity of certain theorems for Banach space

valued processes and the geometric structure of the underlying Banach space. We have omitted

a detailed introduction to this topic as this would exceed the scope of the paper. A short

summary of stochastic integration in Banach spaces is given in Chapter 3.2.

Definition 2.1. (see Pisier [39]) Let 1 ≤ p ≤ 2. A Banach space E is of M type p, iff

there exists a constant C = C(E, p) > 0 such that for any E-valued discrete martingale

(M0,M1,M2, . . .) with M0 = 0 the following inequality holds

sup
n≥1

E|Mn|
p ≤ C

∑

n≥1

E|Mn −Mn−1|
p.

Remark 2.1. This definition is equivalent to uniform p-smoothability. For literature on this

subject see e.g. Brzeźniak [10], Burkholder [13], Dettweiler [18, 19], Pisier [39] and Woyczyński

[48, 49].

Example 2.1. Let O be a bounded domain in Rd and p > 1. Then Lp(O) is of M type p ∧ 2

(see e.g. [48, Chapter 2, Example 2.2]).

Definition 2.2. (see Linde [32, Chapter 5.4]) Let E be a separable Banach space and E ′ be

the topological dual of E. Let E be the Borel-σ-algebra of E. A Borel-measure ν : E → R+ is

called a Lévy measure if it is σ–finite, ν({0}) = 0, and the function

E′ 3 a 7→ exp

(∫

E

(ei〈x,a〉 − 1) ν(dx)

)

∈ C

is a characteristic function of a Radon measure on E. If in addition ν(A) = ν(−A) for all

A ∈ E, then ν is called symmetric Lévy measure. Lsym(E) denotes the set of all symmetric

Lévy measures on (E, E).

Moreover, for δ ∈ R we denote by Vδ the domain of the fractional power of −A (for the

exact definition we refer to Appendix B). Now we can formulate our main result.
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Theorem 2.1. Let 1 < p ≤ 2 and E and Z be separable Banach spaces, where E is ofM type p

and let E and Z be theirs Borel σ–algebras. Let A be an infinitesimal generator of a compact,

analytic semigroup on E. Let (Ω,F , P ) be a probability space with given right-continuous

filtration (Ft)t≥0 and η : Z×̂B(R+) → R be a Poisson random measure with characteristic

measure ν ∈ Lsym(Z) over (Ω,F ,P). Let p, q ∈ [1,∞) be two constants such that 1 < p ≤ 2

and p < q. Let δf and δg be two constants and f : E → V−δf and g : E → L(Z, V−δg) two

mappings satisfying the following global Lipschitz conditions

|f(x)− f(y)|−δf ≤ C1|x− y|, x, y ∈ E,(2)
∫

Z

|g(x; z)− g(y; z)|p
l

−δg
ν(dz) ≤ C2 |x− y|

pl ,(3)

x, y ∈ E, l = 1, . . . , n,

where C1 and C2 are some constants. Let γ ≥ 0 be fixed. Then the following holds:

a.) Let q <∞. Assume that the constants δf , δg, δ and γ satisfy the following conditions

(i) δgq < 1, and δf < 1,

(ii) (δg − γ)p < 1− 1
q
, and δf − γ < 1− 1

q
,

(iii) γ < 1
q
,

(iv) δ > max(1
q
+ δg, δf − 1 + 1

q
, 1
q
).

If the initial condition u0 satisfies E|u0|q−γ <∞, then there exists a unique mild solution

to Problem (1) such that for any T > 0
∫ T

0
E|u(s)|q ds <∞, sup

0≤s≤T

E |u(s)|p−γ <∞

and

u ∈ L0(Ω; ID([0, T ];V−δ)).

b.) Let q <∞. Assume that the constants δf , δg, δ and γ satisfy the following conditions

(i) δgp < 1, and δf < 1,

(ii) (δg − γ)p < 1− 1
q
, and δf − γ < 1− 1

q
,

(iii) γ < 1
q
,

(iv) δ > max(1
q
+ δg, δf − 1 + 1

q
, 1
q
).

If the initial condition u0 satisfies E|u0|p−γ <∞, then there exists a unique mild solution

to Problem (1), such that for any T > 0
∫ T

0
(E|u(s)|p)

q
p ds <∞, sup

0≤s≤T

E|u(s)|p−γ <∞

and

u ∈ L0(Ω; ID([0, T ];V−δ)).

c.) Let q =∞ and γ = 0 and δ > max(δf , δg). Assume that δgp < 1 and δf < 1. If initial

condition u0 satisfies E|u0|p <∞, then there exists a unique mild solution to Problem
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(1), such that for any T > 0

sup
0≤s≤T

E|u(s)|p <∞,

and for all δ > 0

u ∈ L0(Ω; ID([0, T ];V−δ))).

Remark 2.2. (see Section 5) Using the same idea as Ikeda and Watanabe [26, Chapter 4] and

the amalgamation procedure of Elworthy [21, Chapter III.6], one can show the càdlàg property

for solutions to equation (1) under the hypothesis of Theorem 2.1, with no integrability condition

on the jumps size. In particular, conditions (4) can be replaced by
∫

{z∈Z||z|≤1}
|g(x; z)− g(y; z)|p−δg

ν(dz) ≤ C1(|x− y|
p), x, y ∈ E,

|g(x; ¦)− g(y; ¦)|L(V−δg ,E) ≤ C2 |x− y|, x, y ∈ E.

where C1 and C2 are some generic constants.

Remark 2.3. Let 1 ≤ p ≤ 2. Let E and Z be two separable Banach spaces, E is of M type p.

Let ν : B(Z)→ R+ be a not necessarily symmetric Lévy measure and η : B(E)×̂B(R+)→ R+

be a Poisson random measure with characteristic measure ν. Let γ(t) : B(Z)×̂B(R+)→ R+ be

the compensator of η, i.e. the unique predictable random measure such that

η(A× (0, t])− γ(A, (0, t])

is a martingale for each A ∈ B(Z). Let η̃ := η − γ be the compensated Poisson random

measure. Then by small modification (see Remark 3.3 and Remark 3.6) it can be shown, that

the Theorem 2.1 holds also for the following SPDE
{
u(t) dt = (Au(t−) + f(u(t−))) dt+

∫

Z
g(u(t−); z)η̃(dz; dt),

u(0) = u0.

Example 2.2. Let 1 < α < 2. Take any p ∈ (α,∞) and put E = W
p
d
p

(O), where O a smooth

domain in Rd. Let γ > 0 and Z = W
p
γ (O) and U = {x ∈ Z | |x| ≤ 1}. Let σ : ∂U → R+ be a

finite measure. Let η : B(E)×̂B(R+) → B(E) a Poisson random measure with characteristic

measure ν : B(E)→ R given by (see Example 3.1)

ν(B) =

∫

R+

∫

∂U

χB(sz)σ(dz) s
−1−α ds, B ∈ B(E).

Then the formula

Lt =

∫ t

0+

∫

E

z η(dz; ds), t ≥ 0,

defines an Z–valued, α-stable symmetric process. Moreover, the process

LU
t =

∫ t

0+

∫

U

z η(dz; ds), t ≥ 0,
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is of integrable p–variation (see 3.3). Our interest is the existence and uniqueness of the

solutions (u(t))t≥0 to the following parabolic equation






du(t, ξ) = ∆u(t−, ξ) dt+
∫

E
z(ξ) u(t−, ξ) η(dz; dt),

ξ ∈ O, t ≥ 0,
u(0, ξ) = u0(ξ) ξ ∈ O.

(4)

First, note that by Examples 3.9 and 3.10 the spaces W ϑ,p(O), ϑ ∈ R are of M type p. By

multiplier theorems (see e.g. Runst and Sickel [43, Theorem 1, p. 190]) one sees that

|z u|Lp ≤ C |z|W p
γ
|u|W p

d
p

.

If d
p
< 2(1 − 1

α
) then Theorem 2.1 and Remark 2.2 give existence and uniqueness of the mild

solution of (4) in L0(ID([0, T ];Lp(O)).

Example 2.3. Fix p ∈ (1, 2] and d ∈ IN. Let (Ω;F ,P) be a complete measurable probability

space with usual filtration (Ft)t≥0. Let θ : B(R)→ R+ be a symmetric Lévy measure such that
∫

R |z|
p θ(dz) <∞ and

η : B(Rd)× B(R)× B(R+)→ R+

be a Poisson random measure over (Ω;F ,P) with characteristic measure ν defined by

B(Rd)× B(R) 3 (A,B) 7→ ν(A,B) = λd(A)θ(B) ∈ R+,

where λd denotes the Lebegue measure in Rd. We consider the following SPDE






du(t, ξ) = ∆u(t, ξ)
+

∫

Rd
∫

R g(ξ, u(t, ξ); dζ)η(dξ, dζ, dt), t > 0, ξ ∈ Rd,

u(0, ξ) = u0(ξ), ξ ∈ Rd,

(5)

and limξ→±∞ u(t, ξ) = 0, t ≥ 0. We will show, that if α < 2
d
+ 1 is satisfied, then for any

T > 0 Theorem 2.1 will give existence and uniqueness for Problem (5).

Let E = Lp(Rd), Z = B
d
p
−d

p,∞ (Rd) be the Besov space (see e.g. Triebel [45, Chapter 2.3.2])

and B :=W−γ,p(Rd), where γ satisfies γ > d− d
p
.

Let U be the unit ball in Z, i.e. U = {x ∈ B | |x| ≤ 1}. By Runst and Sickel [43, p.34,

Remark 3] we have δξ ∈ Z, where δξ denotes the Delta measure at ξ ∈ Rd. Moreover, there

exists a constant c > 0 such that |δξ|Z = c for all ξ ∈ Rd and therefore 1
c
δξ ∈ U .

First, note that if A ∈ B(Rd), then A = {δξ | ξ ∈ A} ∈ B(Z). In particular, let us define the

function

f : Rd → Z

ξ 7→ c−1δξ.

The function f is bounded from Rd into Z and is continuous from Rd into W
−γ
p (Rd). The

latter holds, since for some β > 0, the dual of W−γ
p (Rd) can be continuously embedded in the

Hölder space C̄β(Rd) (see e.g. Triebel [45, Chapter 4.6.1]). Let j be the embedding of Z in

W
−γ
p (Rd). Then A = j−1 ◦ f(A) and therefore A ∈ B(Z).
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Let the measure σ : ∂U → R+ be defined by σ(A) := λ(f−1(A)), A ∈ B(∂U), and λ denotes

the Lebesgue measure. Now, the characteristic measure ν : B(Z)→ R is defined by

ν(B) =

∫

R+

∫

∂U

χB(rx)σ(dx)θ(dr), B ∈ B(Z).

Let η : B(B)×̂B(R+) → R+ be the corresponding Poisson random measure. By Linde [32,

Theorem 6.2.8] the process

Lt =

∫ t

0

∫

Z

zη(dx, ds), t ≥ 0,

is well defined and coincides with the space-time white noise defined above (for definition see

e.g. Bié [8]). We are interested in the problem
{
du(t) = ∆u(t−) dt+

∫

Z
u(t−) z η(dz, dt), t ≥ 0,

u(0) = u0 ∈ E,
(6)

which is equivalent to Problem (5). Theorem 2.1 gives existence and uniqueness of the solution

u to Problem (6) such that

u ∈ L0(Ω; ID((0, T ];W−γ
p (Rd))) ∩ C([0, T ];Lp(Ω;Lp(Rd))).

In fact, one can show that there exists constant C1 and C2, such that for all u ∈ Lp(Rd)
∫

|z|≤1
|uz|pZν(dz) =

∫ 1

0
|r|pθ(dr)

∫ d

R
|u(ξ)|pdξ ≤ C1|u|

p

Lp(Rd)

and for all u, v ∈ Lp(Rd)
∫

|z|≤1
|(u− v)z|pZν(dz) =

∫ 1

0
|r|pθ(dr)

∫ d

R
|u(ξ)− v(ξ)|pdξ ≤ C2|u− v|

p

Lp(Rd).

Therefore, the conditions of Theorem 2.1 are satisfied if

1

2

(

d−
d

p

)

<
1

p
.

A short calculation shows, that above is satisfied, if p < 2
d
+ 1. This is a condition which

coincides with the condition of Bié [8]. In particular, for all β > n
p
, the unique solution u to

Problem (6) exists and satisfies 〈u, φ〉 ∈ ID((0, T ];R) for all φ ∈W β
p (Rd).

3. Poisson random measures and stochastic integration

3.1. Poisson random measures. Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space.

Let Z be an arbitrary separable Banach space with σ–algebra Z. A point process with state

space Z is a sequence of Z × R+-valued random variables (Zi, Ti), i = 1, 2, . . . such that for

each i, Zi is FTi-measurable. Given a point process, one usually works with the associated

random measure η defined by

η(A× [0, t])(ω) =
∑

Ti≤t

1A(Zi(ω)), A ∈ Z, t ≥ 0, ω ∈ Ω.



SPDEs driven by Poisson Random Measure 1503

A point process is called a Poisson point process with characteristic measure ν on (Z,Z), iff

for each Borel set A ∈ Z with ν(A) <∞ and for each t the counting process of the set A, i.e.

the random variable Nt(A) = η(A × [0, t]), has a Poisson distribution with parameter ν(A)t,

i.e.

P(Nt(A) = k) = exp(−tν(A))
(ν(A)t)k

k!
.(7)

It follows, that the random measure η associated to a Poisson point process has independent

increments and that η(A× [0, t]) and η(B× [0, t]) are independent for all A,B ∈ Z, A∩B = ∅,

and t ≥ 0.

Let Z be a separable Banach space with Borel σ algebra Z. Starting with a measure ν

on Z, one may ask under what conditions one can construct a Poisson random measure η

on Z×̂B(R+), such that ν is the characteristic measure of η. If the measure ν is finite and

satisfies ν({0}) = 0, then the Poisson random measure η : Z×̂B(R+)→ R+ exists. Moreover,

one can show, that if ν ∈ Lsym(Z) (see Definition 2.2), then the Poisson random measure

η : Z×̂B(R+)→ R+ exists.

Some useful properties of symmetric Lévy measures are stated in the following remark.

Remark 3.1. (See also Linde [32, Proposition 5.4.5]) Let Z be a separable Banach space with

norm |·|, let Z be the Borel-σ algebra on Z and let Z ′ be the topological dual of Z. Let ν ∈ L(Z)

be a Lévy measure. Then the following holds true.

• For each δ > 0, ν{|x| > δ} <∞.

• sup|a|≤1
∫

|x|≤1 |〈x, a〉|
2 dν(x) <∞, where 〈a, x〉 := a(x), a ∈ Z ′.

• If σ ≤ ν, then σ is also a Lévy measure.

A typical example of Poisson random measure is provided by an α–stable Poisson random

measure, 0 < α < 2.

Definition 3.1. A probability measure µ ∈ P(E) is said to be stable iff for each a, b > 0 there

exists some c > 0 and an element z ∈ E, such that for all independent random variables X

and Y with law µ we have

L(aX + bY ) = L(cX + z).(8)

The measure µ is called strictly stable if for all a > 0 and b > 0 one can choose z = 0 in (8).

Moreover, µ is called α–stable iff (8) holds with

c = (aα + bα)
1
α .

Example 3.1. Let E be a separable Banach space and U = {x ∈ E | |x| ≤ 1}. Let σ :

B(∂U)→ R+ be an arbitrary finite measure and ν : B(E)→ R+ be defined by

ν(B) =

∫

R+

∫

∂U

χB(sz)σ(dz) s
−1−α ds, B ∈ B(E).
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Then ν : B(E)→ R+ is a Lévy measure. Let η be the corresponding Poisson random measure.

If E is of type p, p > α (for definition see the next Section), then the process L = (Lt)t≥0

defined by

Lt =

∫ t

0+

∫

E

z η(dz; ds), t ≥ 0,

is an E–valued, unique, α-stable symmetric Lévy-process. On the other hand it is known from

Linde [32, Theorem 6.2.8] that the Lévy measure of an α-stable random variable is given by its

distribution on ∂U , i.e. by the measure σ : B(∂U)→ R+.

3.2. M type p Banach spaces: a short account. A stochastic integral is defined with

respect to its integrator. If the integrator is of finite variation, then the integral is defined as a

Stieltjes integral in a pathwise sense. If the integrator is a square integrable martingale, Itô’s

extension procedure yields to an integral defined on all previsible square integrable processes.

Let Z and E be two separable Banach spaces with Borel σ algebras Z and E . Fix 1 ≤ p < 2. Let

η : Z×̂B(R+) → R+ be a Poisson random measure with characteristic measure ν ∈ Lsym(Z).

We will define an integral with respect to ν, i.e.
∫ t

0+

∫

E

h(s, z) η(dz; ds),(9)

with h : Ω×R+ → L(Z,E) is a càglàd predictable step function, such that
∫ T

0

∫

Z
|h(s, z)|p ν(dz)ds <

∞. The question which needs to be answered is under which conditions on the underlying Ba-

nach space E and on the integrator, the stochastic integral in (9) can be extended to the set

of all functions with finite Lp-mean. First, we consider the case where h is a deterministic

function, secondly we consider the case, where h is a random function.

Here and hereafter {εn}n∈IN denotes a sequence of {1,−1}-valued random variables such

that

P (εi = ±1) =
1

2
.

Definition 3.2. (Linde [32]) Let E be a Banach space and 0 < p ≤ 2 be fixed. Let x = {xi}n∈IN
be a sequence in E. A Banach space E is of type p (R-type p) iff x ∈ lp(E) implies that the

series
∞∑

i=1

εixi

is a.s. convergent in E.

Proposition 3.1. (see Linde [Proposition 3.5.1][32]) The Banach space E is of type p iff for

some (each) r ∈ (0,∞) there exists a constant C = C(E, p) > 0 such that for all sequences

x = {xi}n∈IN, for all sequences {εn}n∈IN and all N ∈ IN

{

E

∣
∣
∣
∣
∣

N∑

i=1

εixi

∣
∣
∣
∣
∣

r} 1
r

≤ C

{
N∑

i=1

|xi|
p

} 1
p

.
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Example 3.2. Let (M,M,P) be a probability space. Then Lp(M,M,P) is of type p, 1 ≤ p ≤ 2,

see Pisier [39, p.186].

Example 3.3. Let E be of type p, 0 < p ≤ 2. Then E is of type q, 0 < q ≤ p, see Linde [32,

Chapter 3, Theorem 3.5.2].

Example 3.4. Assume E is of type p. Then any closed subspace of E is also of type p (this

follows from Pisier [39, Theorem 4.5]).

Definition 3.3. (see Dettweiler [19]) Let 1 ≤ p ≤ 2 and let E be a separable Banach space.

An E-valued process X = (X(t))t≥0 is said to be of integrable p–variation iff for any T > 0

one can find a constant C(T ) such that for any partition 0 = t0 < t1 < · · · < tn = T one has
n∑

i=1

E |X(ti+1)−X(ti)|
p ≤ C(T ).

Example 3.5. Let E be a Hilbert space and (W (t))t≥0 be an E-valued Wiener process with

covariance operator Q. If Q is of trace class, then the Wiener process (W (t))t≥0 is of integrable

2– variation.

Example 3.6. Let E be a Hilbert space and M = (Mt)t≥0 be an E-valued stationary Lévy

process with bounded second moment. Then the Lévy–Khintchine formula implies that M is of

integrable 2–variation.

Example 3.7. Let E be a Hilbert space. Let ν ∈ Lsym(E) such that
∫

E
|z|2ν(dz) <∞. Then

one can construct a unique Poisson random measure η : B(E)×̂B([0, T ])→ R+ such that ν is

the characteristic measure of η. Moreover, the process Lt =
∫ t

0+

∫

E
z η(dz, ds) is of integrable

2-variation.

A Hilbert space is a Banach space of type 2. Let p ∈ (0, 2]. In case the underlying Banach

space E is of type p and the Lévy measure is p integrable, the Example 3.7 can be transferred

to E.

Example 3.8. (see Theorem 2.1 in Dettweiler [17], in the proof of the implication of (ii)⇒ (i)

on p. 129 of Proposition 2.3, [19] or Hamedani and Mandrekar [25]) Let E and Z be separable

Banach spaces, E of type p, p ∈ (1, 2]. Let ν ∈ Lsym(Z,B(Z)) and h ∈ L(Z,E), such that
∫

Z

|h(z)|pE ν(dz) <∞.

Let η be a Poisson random measure on B(Z)×̂B(R+) with characteristic measure ν. Then a

Lévy process L = (L(t))t≥0 exists such that

L(t)
d
=

∫ t

0+

∫

Z

h(z) η(dz, ds).

Moreover, L is a martingale and is of integrable p–variation.
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Remark 3.2. To be more precise, Dettweiler shows in his paper [17] the following: Let E be

a separable Banach space of type p, p ∈ (1, 2] with Borel σ–algebra E. Then there exists a

constant C = C(E, p) such that for each Poisson random measure η : E×̂B([0, T ])→ R+ with

characteristic measure ν ∈ Lsym(E) and each I ∈ B([0, T ]) we have

E|
∫

E

h(z)η(z, I)|p ≤ C

∫

E

|h(z)|pE ν(dz)λ(I),(10)

where λ denotes the Lebesgue measure. If E is not of type p, then the inequality above does

not hold necessarily.

Remark 3.3. Let E be a Banach spaces of type p, 1 ≤ p ≤ 2. In Example 3.2 we assumed

that the characteristic measure ν is symmetric. If we consider compensated Poisson random

measure, where the characteristic measure is an arbitrary Lévy measure, the inequality (10)

remains valid. In particular, it follows from the proof of Proposition 2.5 in Dettweiler [19]

that there exists a constant C = C(E, p) such that for each Poisson random measure η :

B(E)×̂B(R+)→ R+ with characteristic measure ν : B(E)→ R+ being a Lévy measure one has

E
∣
∣
∣
∣

∫ t

0

∫

E

h(z) (η − γ)(ds, dz)

∣
∣
∣
∣

p

≤ C

∫

E

|h(z)|p ν(dz),

where γ denotes the compensator of η. Hence, the process

t 7→

∫ t

0

∫

E

h(z) (η − γ)(ds, dz), t ≥ 0

is also of integrable p–variation.

If h is a deterministic function, E a Banach space of type p and the integrator of integrable

p variation, one can extend the stochastic integral to the class of all h : [0, T ]→ L(Z,E) such

that
∫ T

0

∫

Z
|h(s, z)|p ν(dz) ds < ∞, see e.g. Pisier [39, Proposition 4.3], Rosiński [41]. If h is

random, then the underlying Banach space has additionally to be UMD.

Definition 3.4. A Banach space is said to be UMD (Unconditional Martingale Differences) if

for each 1 < r <∞ there exists a constant C(E, r) <∞, such that for each E-valued martingale

M = (M0,M1, . . .), each {−1, 1}–valued sequence (ε0, ε1, . . .) and each positive integer n ∈ IN

E

∣
∣
∣
∣
∣

n∑

k=1

εk (Mk −Mk−1)

∣
∣
∣
∣
∣

r

E

≤ C(E, r) E |Mn −M0|
r
E .

Remark 3.4. Let 1 < p ≤ 2. If a Banach space E is UMD and of type p then E is of M type

p (see e.g. Brzeźniak [11]).

Definition 3.5. (see e.g. Pisier [39, Chapter 6]) Let 1 ≤ p <∞. A Banach space E is of M

type p, iff there exists a constant C = C(E; p), such that for each discrete E-valued martingale

M = (M1,M2, . . .) one has

sup
n≥1

E|Mn|
p
E ≤ C

∑

n≥1

E|Mn −Mn−1|
p
E .
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Example 3.9. Let O be a bounded domain. Then the space Lp(O) is of M type p∧ 2 (see e.g.

[48, Chapter 2]).

Example 3.10. Let 0 < p ≤ 2. Let E be of M type p and A : E → E an operator with domain

D(A). If A−1 is bounded, then D(A) is isomorphic to E and therefore of M type p (Brzeźniak

[10, p. 10]).

Example 3.11. (Brzeźniak [10, Appendix A, Theorem A.4]) Assume E1 and E2 are a Banach

space of M type p, where E2 is continuously and densely embedded in E1. Then for any

ϑ ∈ (0, 1) the complex interpolation space [E1, E2]ϑ and the real interpolation space (E1, E2)ϑ,p

are of M type p.

By means of this inequality one can extend the stochastic integral in pmean (see e.g. Chapter

3.3, or Woyczyński [48, Theorem 2.2], Dettweiler [19]).

To deal with moments of higher order, stronger inequalities are needed. In fact using the

techniques described in Burkholder [14] one can prove a generalized version of an inequality

of Burkholder type. In particular, let E be a Banach space of M type p, 1 ≤ p ≤ 2. Then it

can be shown, that there exists a constant C <∞, such that we have for all discrete E-valued

martingalesM = (M1,M2, . . .) and 1 ≤ r <∞ ( see e.g. Assuad [3], Brzeźniak [10, Proposition

2.1], Pisier [38, Remark 3.3 on page 346] and [39, Chapter 6])

E sup
n≥1

|Mn|
r
E ≤ CE




∑

n≥1

|Mn−1 −Mn|
p
E





r
p

.(11)

Remark 3.5. An interested reader can consult the following articles: Burkholder [13, 15],

Pisier [38, 39] and Woyczyński [48, 49] for the connection of Banach spaces of M type p and

their geometric properties. Brzeźniak [10], Dettweiler [19, 20, 17] Neidhardt [36] and Rüdiger

[42] for the connection between Banach spaces of M type p and stochastic integration. Linde

[32], and the articles Dettweiler [17, 18], Gine and Arujo [24], Hamedani and Mandrekar [25]

for the connection between Lévy processes and Banach spaces of type p.

3.3. The Stochastic Integral in M type p Banach spaces. In the following let p ∈ (1, 2]

be fixed. Let Z be a separable Banach space and E be a M type p Banach space. The Borel

σ algebras of Z and E are denoted by Z and E respectively.

As mentioned in the introduction the stochastic integral will first be defined on the set of

predictable and simple function. To be precise a process h : [0, T ] → L(Z,E) is said to be

simple predictable if h has a representation

h(s, z) =
n∑

i=1

1(ti−1,ti](s)Hi−1(z), s ≥ 0, z ∈ Z,(12)

where 0 = t0 < · · · < tn = T is a partition of [0, T ] consisting of stopping times, and

Hi ∈ L(Z,E), i = 0, . . . , n, are Fti-measurable random variables. The collection of simple
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predictable processes h : [0, T ]→ L(Z,E) is denoted by S. Let ID := ID([0, T ];E) be the Sko-

rohod space of all adapted càdlàg functions h : [0, T ]→ E, endowed by the Skorohod topology

(see Appendix A).

Let η : Z×̂B([0, T ]) → R+ be a Poisson random measure with characteristic measure ν ∈

Lsym(Z,Z). The stochastic integral with respect to η is a linear operator I : S → ID defined

by

I(h)(t) =

∫ t

0+

∫

Z

h(s, z)η(dz, ds) :=

n∑

i=1

∫

Z

Hi−1(z)η(dz × (ti−1 ∧ t, ti ∧ t]), t > 0,(13)

where h ∈ S has the representation (12).

The next step is to extend the stochastic integral to the set ILp(ν), where

ILp(ν) =

{

h : Ω× R+ → L(Z,E), h is a predictable

càglàd process such that

∫ t

0

∫

Z

E |h(ω, s, z)|p ν(dz) ds <∞
}

equipped with norm

|u|pILp(ν) :=

∫ t

0

∫

Z

E |h(ω, s, z)|p ν(dz).

Since ILp(ν) is separable, by standard arguments, one can show, that S ∩ ILp(ν) is dense in

ILp(ν). Let IDp the Skorohod space equipped with the following norm

|u|pIDp := E sup
0≤t≤T

|u(t)|p, u ∈ IDp.

Note, the Skorohod space ID([0, T ];E) topologized with uniform convergence is a complete

metric space, but not separable. Analysing the proof of completeness of Lp spaces over an

arbitrary measurable set, one can see that the space IDp is a complete normed space. By

means of the following proposition, it can be shown that the stochastic integral defined in (13)

is a continuous operator from S ∩ ILp(ν) into IDp (see e.g. Woyczyński [48, Theorem 2.2] or

Dettweiler [19]).

Proposition 3.2. Let 1 < p ≤ 2. Assume Z and E are separable Banach spaces, E is of M

type p. Let Z and E be the Borel σ–algebras. Then there exists some constant C = C(p,E) <

∞ such that for all Poisson random measures η on Z×̂B([0, T ]) with characteristic measure

ν ∈ Lsym(Z) and all functions h : Ω× [0, T ]→ L(Z,E) belonging to S with representation (12)
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we have

E sup
0<t≤T

∣
∣
∣
∣

∫ t

0+

∫

Z

h(σ, z) η(dz; dσ)

∣
∣
∣
∣

r

≤

C E
(∫ T

0

∫

Z

|h(s, z)|p η(dz; ds)

) r
p

, 0 < r <∞,

and

E sup
0<t≤T

∣
∣
∣
∣

∫ t

0+

∫

Z

h(σ, z) η(dz; dσ)

∣
∣
∣
∣

r

≤(14)

C

(∫ T

0

∫

Z

E |h(s, z)|p ν(dz) ds
) r

p

, 0 < r ≤ p.

Proof. Let h = {h(s, z), 0 ≤ s ≤ T, z ∈ Z} be a simple, predictable process written in the form

of (12). Now, the stochastic integral is defined by the Riemann integral (see (13))

∫ t

0+

∫

Z

h(s, z)η(dz, ds) =
n∑

i=1

∫

Z

Hi−1(z)η(dz × (ti−1 ∧ t, ti ∧ t]).

First, let us fix r ≤ p. The sequence {
∫

Z
Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t])}

n
i=0 is a sequence of

martingale differences. Since ν is symmetric and Hi−1 is Fti−1
–measurable and linear for

i = 0, . . . n, it follows that

E
∫

Z

Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t]) = 0.

Remark 3.2 implies

E
∣
∣
∣
∣

∫

Z

Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t])

∣
∣
∣
∣

p

=(15)

C (ti ∧ t− ti−1 ∧ t)

∫

Z

E|Hi−1(z)|
p ν(dz).

Thus, we can apply the generalized Burkholder inequality (11) to get

E sup
1≤j≤n

∣
∣
∣
∣
∣

j
∑

i=1

∫

Z

Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t])

∣
∣
∣
∣
∣

r

≤

C E

∣
∣
∣
∣
∣

n∑

i=1

∣
∣
∣
∣

∫

Z

Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t])

∣
∣
∣
∣

p
∣
∣
∣
∣
∣

r
p

.

Moreover, the process defined by

t 7→
n∑

i=1

∫

Z

Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t]), 0 ≤ t ≤ T,
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is a martingale. In fact the integrability conditions are given by (15). Further, let 0 ≤ s < t ≤ T

and let j ∈ {1, . . . , n} be this index for which tj ≤ s < tj+1 holds. Then

E

[
n∑

i=1

∫

Z

Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t]) | Fs

]

=

= E

[
j
∑

i=1

Hi−1

∫

Z

zη(dz; (ti−1, ti]) | Fs

]

+

E





n∑

i=j+1

∫

Z

Hi−1zη(dz; (ti−1 ∧ t, ti ∧ t]) | Fs



 .

Since for k ≤ j the random variable Hk is Ftj -measurable, Hj is linear and η is independently

scattered, we get

E

[
n∑

i=1

∫

Z

Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t]) | Fs

]

=

=

j
∑

i=1

Hi−1

∫

Z

zη(dz; (ti−1, ti]) +HjE
[∫

Z

zη(dz; (tj , s]) | Fs

]

+HjE
[∫

Z

zη(dz; (s, tj+1 ∧ t]) | Fs

]

+

E





n∑

i=j+2

∫

Z

zη(dz; (ti ∧ t, ti ∧ t]) | Fs



 .

Since η(dz; (ti−1 ∧ s, ti ∧ s]) is Fs-measurable one obtains

E

[
n∑

i=1

∫

Z

Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t]) | Fs

]

=

=

j+1
∑

i=1

Hi−1

∫

Z

zη(dz; (ti−1 ∧ s, ti ∧ s]) +

E





∫

Z

Hjzη(dz; (s, tj+1 ∧ t]) +
n∑

i=j+2

∫

Z

zη(dz; (ti ∨ s, ti ∧ t]) | Fs



 .

But ν is symmetric. Thus it follows

E

[
n∑

i=1

∫

Z

Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t]) | Fs

]

=

=
n∑

i=1

Hi−1

∫

Z

zη(dz; (ti−1 ∧ s, ti ∧ s]),
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and we can apply the Doob’s maximal inequality for martingales to get

E sup
0≤t≤T

∣
∣
∣
∣
∣

n∑

i=1

∫

Z

Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t])

∣
∣
∣
∣
∣

r

≤

C E

∣
∣
∣
∣
∣

n∑

i=1

∣
∣
∣
∣

∫

Z

Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t])

∣
∣
∣
∣

p
∣
∣
∣
∣
∣

r
p

.

The Jensen inequality yields

E sup
0≤t≤T

∣
∣
∣
∣
∣

n∑

i=1

∫

Z

Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t])

∣
∣
∣
∣
∣

r

≤

≤ C

(
n∑

i=1

E
∣
∣
∣
∣

∫

Z

Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t])

∣
∣
∣
∣

p
) r

p

.(16)

The tower property of the conditional expectation leads to

E sup
0≤t≤T

∣
∣
∣
∣
∣

n∑

i=1

∫

Z

Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t])

∣
∣
∣
∣
∣

r

≤

≤ C

(
n∑

i=1

E
[

E
[∣
∣
∣
∣

∫

Z

Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t])

∣
∣
∣
∣

p

| Fti−1

]])
r
p

.(17)

The random variable Hi−1 is Fti−1
-measurable. Therefore by Remark 3.2 we have

E
[∣
∣
∣
∣

∫

Z

Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t])

∣
∣
∣
∣

p

| Fti−1

]

=

∫

Z

|Hi−1(z)|
p ν(dz) (ti ∧ t− ti−1 ∧ t).(18)

Inserting (18) in equation (17) yields

E sup
0≤t≤T

∣
∣
∣
∣
∣

n∑

i=1

∫

Z

Hi−1(z)η(dz; (ti−1 ∧ t, ti ∧ t])

∣
∣
∣
∣
∣

r

≤

(
n∑

i=1

E
∣
∣
∣
∣

∫

Z

Hi(z)η(dz × (ti−1 ∧ t, ti ∧ t])

∣
∣
∣
∣

p
) r

p

≤

≤ C

(
n∑

i=1

∫

Z

(ti − ti−1) E
∫

Z

|Hi−1(z)|
pν(dz)

) r
p

,(19)

which can be written as
(∫ t

0

∫

Z

E |h(s, z)|p ν(dz) ds
) p

r

.

In case of r > p, we can only apply the martingale inequality (11) and have to stop before

equation (16). ¤
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By means of Proposition 3.2 the stochastic integral is a continuous operator from S∩ ILp(ν)

into IDp. The next point is to reassure, that S ∩ ILp(ν) is dense in ILp(ν). But in fact ILp(ν)

equipped with the predictable σ algebra

P := σ (h : [0, T ]× Z → E, h is (Ft)–adapted, and càdlàg)

is a measurable separable metric space and by a modification of the Proof of Proposition I.4.7,

Da Prato and Zabczyk [16] one can show that S∩ILp(ν) is dense in ILp(ν). Since IDp is complete,

there exists a bounded linear operator I : ILp(ν)→ IDp, which is an extension of the operator

introduced in (13). In the next Proposition we will show, that the inequalities in Proposition

3.2 are preserved.

Proposition 3.3. (see e.g. Dettweiler [19, Theorem 3.1]) Let 1 < p ≤ 2. Assume Z and E

are a separable Banach spaces, E is of M type p. Let Z and E be the Borel σ–algebras. Then

there exists some constant C = C(p,E) <∞ such that for all Poisson random measures η on

Z × B(R+) with characteristic measure ν ∈ Lsym(Z) and all functions h : Ω × R+ × Z → E

belonging to ILp(ν) we have

E sup
0<s≤t

∣
∣
∣
∣

∫ s

0+

∫

Z

h(σ, z) η(dz; dσ)

∣
∣
∣
∣

r

≤

C E
(∫ t

0

∫

Z

|h(s, z)|p η(dz; ds)

) r
p

, 0 < r <∞,

and

E sup
0<s≤t

∣
∣
∣
∣

∫ t

0+

∫

Z

h(σ, z) η(dz; dσ)

∣
∣
∣
∣

r

≤(20)

C

(∫ t

0

∫

Z

E |h(s, z)|p ν(dz) ds
) r

p

, 0 < r ≤ p.

Proof. To show that S∩ ILp(ν) is dense in ILp(ν), one can modify the Proof of Proposition I.4.7

of Da Prato and Zabczyk [16]. Thus there exists a sequence {hj(s, z) | j ∈ IN} in S ∩ ILp(ν),

such that ∫ T

0+

∫

Z

E
∣
∣hj(s, z)− h(s, z)

∣
∣
p
ν(dz) ds −→ 0 as j →∞,

where the step functions hj can be written as a sum of the following type

hj(s, z) =
nj∑

i=1

1
(tji−1,t

j
i ]
(s)Hj

i−1(z), s ≥ 0, z ∈ Z

where 0 = t
j
1 < · · · < t

j

nj
= T is a sequence of partitions of [0, T ], such that the maximal

diameter |πj | := max{tji − t
j
i−1} tends to zero as j → ∞ and H j

i : Z → E, i = 0, . . . , nj are

F
t
j
i
-measurable random variables. The stochastic integral for hj defined in (13) is given by

∫ t

0+

∫

Z

hj(s, z)η(dz, ds) =
nj∑

i=1

∫

Z

H
j
i−1(z)η(dz × (tji−1 ∧ t, t

j
i ∧ t]).
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Proposition 3.2 yields

E sup
0≤t≤T

∣
∣
∣
∣

∫ t

0+
hj(s, z)η(dz; ds)

∣
∣
∣
∣

r

≤ C

(∫ t

0

∫

Z

E |hj(s, z)|p ν(dz) ds
) p

r

.

Since

E sup
0≤t≤T

∣
∣
∣
∣

∫ t

0+
hj(s, z)η(dz; ds)

∣
∣
∣
∣

r

≤ C

(∫ t

0

∫

Z

E |hj(s, z)|p ν(dz) ds
) p

r

≤ C

(∫ t

0

∫

Z

E |h(s, z)|p ν(dz) ds
) p

r

it follows by the Lebesgue’s dominated convergence theorem, that for all t > 0
∫ t

0+
hj(s, z)η(dz; ds) −→

∫ t

0+
h(s, z)η(dz; ds) as j →∞

and

E sup
0≤t≤T

∣
∣
∣
∣

∫ t

0+
h(s, z)η(dz; ds)

∣
∣
∣
∣

p

≤ C

(∫ t

0

∫

Z

E |h(s, z)|p ν(dz) ds
) p

r

.

¤

The inequalities of Proposition (3.3) can be extended to higher order moments.

Corollary 3.1. Let 1 ≤ p ≤ 2. Let E and Z be two separable Banach spaces, E be of M type

p. Let Z and E be the Borel σ-algebras on Z and E. Let η be Poisson random measure on Z

with characteristic measure ν ∈ Lsym(Z,Z). Let h ∈ ILp(ν). Let q = pn for some n ∈ IN and

suppose, that

E
(∫ T

0

∫

Z

|h(s, z)|p ν(dz) ds

) q
p

< ∞,(21)

and
∫ T

0

∫

Z

E|h(s, z)|q ν(dz) ds < ∞(22)

holds. Then there exists some constant C <∞ such that

E sup
0<s≤t

∣
∣
∣
∣

∫ t

0+

∫

Z

h(s, z)η(dz; ds)

∣
∣
∣
∣

q

≤

C

n∑

l=1

(∫ t

0

∫

Z

E|h(s, z)|p
l

ν(dz) ds

)pn−l

.

Proof. The proof is a generalization of the proofs of Bass and Cranston [4, Lemma 5.2] or

Protter and Talay [40, Lemma 4.1]. By Proposition 3.3 and inequality (14) we have

E sup
0≤s≤t

∣
∣
∣
∣

∫ s

0+

∫

Z

h(r, z)η(dz; dr)

∣
∣
∣
∣

q

≤ C E
(∫ t

0+

∫

Z

|h(s, z)|p η(dz; ds)

) q
p

.
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Let us define

Xt :=

∫ t

0+

∫

Z

|h(s, z)|p η(dz; ds), t ≥ 0.

The process Xt is a real valued semimartingale and by condition (21) of finite variation. More-

over, it only has positive jumps, i.e. it is a subordinator. The associated random measure

ηX : B(R)× B(R+)→ R+ is given by (see Jacod and Shiryaev [27, Proposition 2.1.16])

ηX(ω; dt; dx) =
∑

s

1{∆Xs(ω)6=0}δ(s,∆Xs(ω))(dx; dt).

Let γX be the compensator of ηX , i.e. the unique predictable random measure on B(R)×B(R+),

such that for all A ∈ B(R) the process
∫ t

0+(η
X −γX)(A, ds) is a local martingale. Let us define

L(t)(0) :=

∫ t

0+

∫

R
z (ηX − γX)(dz; ds), t ≥ 0.

Since (21) holds, L(t)(0) is a real–valued martingale, only has positive jumps and is of finite

variation. Note, L
(0)
t has a characteristic function of the following form E exp

(

iξL
(0)
t

)

=

exp(ψt(ξ)), where

ψt(ξ) =

∫

R

(

eiξζ − 1− iξ
)

νXt (dξ),

where νt : B(R)→ R+. The uniqueness of the characteristic function gives for A ∈ B(R)

νXt (A) = ν {z ∈ E | h(t, z) ∈ A} .

Since η and ηX are Poisson random measures and by the uniqueness of the compensator we

infer that

γX(dt, ds) = νXt (ds)× dt.(23)

Since E is of M type p, it follows from Proposition (3.3) for some constant C <∞

E sup
0<s≤t

∣
∣
∣
∣

∫ t

0+

∫

Z

h(s; z)η(dz; ds)

∣
∣
∣
∣

pn

≤ C E
(∫ t

0+

∫

Z

|h(s; z)|p η(dz; ds)

)pn−1

.

Simple calculations leads to

E sup
0<s≤t

∣
∣
∣
∣

∫ t

0+

∫

Z

h(s; z)η(dz; ds)

∣
∣
∣
∣

pn

≤ C E
(∫ t

0+

∫

R
z ηX(dz; ds)

)pn−1

≤ C

(

E
(∫ t

0+

∫

R
z (ηX − γX)(dz; ds)

)pn−1

+ E
(∫ t

0+

∫

R
z γX(dz; ds)

)pn−1)

≤ C

(

E|L(t)(0)|p
n−1

+ E
(∫ t

0+

∫

R
z νXt (dz) ds

)pn−1)

≤ C

(

E|L(t)(0)|p
n−1

+ E
(∫ t

0+

∫

Z

|h(s; z)|p ν(dz)ds

)pn−1)

.
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In case n = 2, we have

E
∣
∣
∣L(t)(0)

∣
∣
∣

p

= E
∣
∣
∣
∣

∫ t

0+

∫

R
z (ηX − γX)(dz; ds)

∣
∣
∣
∣

p

= E
∫ t

0+

∫

R
|z|p ηX(dz; ds).

By the definition of the compensator, in particular since
∫ t

0+

(
ηX − γX

)
(A, ds) is a martingale,

we can continue

E
∣
∣
∣L(t)(0)

∣
∣
∣

p

≤ E
∫ t

0+

∫

R
|z|p γX(dz; ds)

= E
∫ t

0+

∫

R
|z|p νXt (dz) ds.

By the discussion above, i.e. relation (23) we have

E
∣
∣
∣L(t)(0)

∣
∣
∣

p

≤ E
∫ t

0+

∫

|z|p
2

ν(dz) ds.

Thus, the proposition is proven, provided n = 2. In case n > 2, we have to continue. In

particular, let

L(t)(r) :=

∫ t

0+

∫

R
zp

r

(ηX − γX)(dz; ds) for r = 1, . . . , n.

Since (21) and (22) holds, L(t)(r) is a real–valued martingale, has only positive jumps and is

of finite variation for r = 1, . . . , n. Moreover, since R is of M type 2, R is also of M type p for

all p ∈ [1, 2]. Using inequality (14) we have

E
∣
∣
∣L(t)(r)

∣
∣
∣

pm

≤ C E
(∫ t

0

∫

R
zp

r

(ηX − γX) (dz; ds)

)pm

≤ C E
(∫ t

0

∫

R
zp

r+1

ηX(dz; ds)

)pm−1

.
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Using simple calculations we get

E
∣
∣
∣L(t)(r)

∣
∣
∣

pm

≤

C E
(∫ t

0

∫

R
zp

r+1

(ηX − γX)(dz; ds) +

∫ t

0

∫

R
zp

r+1

γX(dz; ds)

)pm−1

≤ C1 E
(∫ t

0

∫

R
zp

r+1

(ηX − γX)(dz; ds)

)pm−1

+ C2 E
(∫ t

0

∫

R
zp

r+1

γX(dz; ds)

)pm−1

≤ C1 E
∣
∣
∣L(t)(r+1)

∣
∣
∣

pm−1

+ C2 E
(∫ t

0

∫

R
zp

r+1

νXt (dz) ds

)pm−1

≤ C1 E
∣
∣
∣L(t)(r+1)

∣
∣
∣

pm−1

+ C2E
(∫ t

0+

∫

E

|h(s; z)|p
r+2

ν(dz)ds

)pm−1

.

That means we have

E
∣
∣
∣L(t)(r)

∣
∣
∣

pm

≤

C1 E
∣
∣
∣L(t)(r+1)

∣
∣
∣

pm−1

+ C2E
(∫ t

0+

∫

E

|h(s; z)|p
r+2

ν(dz)ds

)pm−1

.(24)

Note, since R is of M type p, we have by Proposition (3.3)

E
∣
∣
∣L(t)(r)

∣
∣
∣

p

= E
∣
∣
∣
∣

∫ t

0+

∫

R
zp

r

(ηX − γX)(dz; ds)

∣
∣
∣
∣

p

≤ C E
∫ t

0+

∫

R
zp

r+1

ηX(dz; ds).(25)

Note, that R is also of type 1, that means of M type 1. Thus we have

E
∫ t

0+

∫

R
zp

r+1

ηX(dz; ds) ≤ E
∫ t

0+

∫

R
zp

r+1

νXt (dz) ds

≤

∫ t

0+

∫

R
E |h(s; z)|p

r+2

ν(dz) ds.(26)

Substitution of (26) to (25) gives

E
∣
∣
∣L(t)(r)

∣
∣
∣

p

≤ C E
∫ t

0+

∫

Z

|h(s, z)|p
r+2

ν(dz)ds

≤ C

∫ t

0

∫

Z

E |h(s, z)|p
r+2

ν(dz)ds.(27)
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Iteration of the calculation (24) and substitution of (27) leads to

E
∣
∣
∣L(t)(r)

∣
∣
∣

pm

≤

C0 E
∣
∣
∣L(t)(r+1)

∣
∣
∣

pm−2

+
2∑

i=1

CiE
(∫ t

0+

∫

E

|h(s; z)|p
r+i

ν(dz)ds

)pm−i+1

≤ C

m∑

k=1

E
(∫ t

0+

∫

Z

|h(s, z)|p
r+1+k

ν(z)ds

)m−k

Assumption (22) and interpolation yields

E
∣
∣
∣L(t)(r)

∣
∣
∣

pm

<∞.

¤

Remark 3.6. By Remark 3.3 it follows, that Proposition 3.3 and Proposition 3.1 remain valid

also if η is a compensated Poisson random measure with characteristic measure ν such that ν

is a Lévy measure on (Z, Z).

4. Proof of Existence and Uniqueness of Solutions

The proof of existence and uniqueness is based on the Banach fixed point theorem for

contractions (see e.g. Zeidler [50, Theorem 1.A, Chapter 1.1]). We will first prove part (a) and

then secondly sketch the proof of part (b) and (c).

4.1. Proof of Part (a) of Theorem 2.1. We denote by Vq,q(T ) the Banach space of all

V−δ-valued predictable processes u defined on the time interval [0, T ] equipped with the norm

|||u|||q,q =

[∫ T

0
E|u(s)|q ds

] 1
q

<∞, u ∈ Vq,q(T ).(28)

For p ≤ r <∞ and δ ∈ R let

Vr,δ :=
{

ϕ ∈ L0(Ω;Vδ), such that

ϕ is F0–measurable and E|ϕ|rδ <∞
}

,(29)

equipped with norm

‖ϕ‖r,δ := (E|ϕ|rδ)
1
r , ϕ ∈ Vr,δ.

Let δf and δg be given. We say the constants δf , δg, δ and γ satisfy the assumption

(A) iff δgq < 1 and δf < 1,

(B) iff (δg − γ)p < 1− 1
q
and δf − γ < 1− 1

q
,

(C) iff 0 ≤ γq < 1

(D) iff δ > max(δf − 1 + 1
q
, δg +

1
q
, 1
q
).



1518 ERIKA HAUSENBLAS

Furthermore, let

VID
q,q(T ) := Vq,q(T ) ∩ L

0 (Ω; ID([0, T ];V−δ)) .

Since V−δ is a Banach space, ID([0, T ];V−δ) is a metrizable topological space and the resulting

metric is complete (see e.g. [23, Theorem 5.6, Chapter 3]). Moreover, by Theorem 1.7, Chapter

3 in [23], and since V−δ is separable, L0 (Ω; ID([0, T ];V−δ)) is also a complete separable metric

space with respect to the Prohorov metric (for the definition see e.g. [23, Chapter 3.1] or the

Appendix, Chapter A.1). Further, the completion of V ID
q,q(T ) with respect to the norm given in

(28) is Vq,q(T ). Note, since ID([0, T ];V−δ) is not a topological vector space Vq,q(T ) ⊃ V
ID
q,q(T ) but

not necessarily Vq,q(T ) = V
ID
q,q(T ). Let Kϕ : VID

q,q(T )→ V ID
q,q(T ) be the following transformation

(Kϕu)(t) = Stϕ+

∫ t

0+
St−sf(u(s−)) ds+(30)

∫ t

0+

∫

Z

St−sg(u(s−); z) η(dz; dz)

:= Stϕ+K1u+K2u, t ∈ [0, T ], u ∈ V ID
q,q(T ).

The proof of existence and uniqueness of the solution under the assumptions (A), (B), (C) and

(D) is divided into the following steps:

(1) Firstly we will show that for all ϕ ∈ Vq,−γ the operator Kϕ maps V ID
q,q(T ) into V

ID
q,q(T ).

Thus, we show that for all ϕ ∈ Vq,−γ

(i) Kϕ maps V ID
q,q(T ) into Vq,q(T ).

(ii) Kϕ maps V ID
q,q(T ) into L

0 (Ω; ID([0, T ];V−δ)).

(2) Secondly, we will show that there exists a constant T̄ > 0 such that for all ϕ ∈ Vq,−γ

the operator Kϕ has a unique fixed point x? in Vq,q(T̄ ) and x
? ∈ L0(Ω; ID([0, T̄ ];V−δ).

This will be shown in the following two substeps:

(i) there exists constants T̄ > 0 and 0 < k < 1, such that for all ϕ ∈ Vq,−γ the

operator Kϕ : VID
q,q(T̄ )→ Vq,q(T̄ ) is Lipschitz continuous with respect to the norm

in Vq,q(T ) with Lipschitz constant k.

(ii) For all ϕ ∈ Vq,−γ the sequence
{
x(n)

}

n∈IN
defined by x(n) = Kϕx

(n−1), n ≥ 1 and

x(0)(t) = Stϕ, is tight in L
0(Ω; ID([0, T̄ ];V−δ).

Applying the Banach fixed point theorem (see e.g. Zeidler [50, Theorem 1.A]) for all

ϕ ∈ Vq,−γ there exists a unique x? ∈ Vq,q(T̄ ), such that Kϕx
? = x? and Kϕ

(n)y → x?

for all y ∈ Vq,q(T̄ ). From (2)-(ii), it follows x? ∈ L0(Ω; ID([0, T̄ ];V−δ), in particular

x? ∈ V ID
q,q(T̄ ).

(3) By step (2) there exists a unique fixed point u0 ∈ V ID
q,q(T̄ ) for the operator Ku0 . Using

the same argument as in step (2) on V ID
q,q(T̄ ), there exists a unique fixed point u1 ∈

VID
q,q(T̄ ) for Ku0(T̄ ) provided u0(T̄ ) ∈ Vq,−γ . The solution, i.e. the fixed point u1 :

[0, T̄ ] → V−δ, can be shifted to the time interval [T̄ , 2T̄ ] by defining a new function

ū1(t) := u1(t − T̄ ), t ∈ [T̄ , 2T̄ ]. This argument can be repeated a finite number of

times. Since T̄ does not depend on ϕ, we can find solutions u0, u1, . . ., um, respectively,
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on [0, T̄ ], [T̄ , 2T̄ ], . . . , [mT̄ , T ∧ (m + 1)T̄ ], respectively, provided ui−1(iT̄ ) ∈ Vq,−γ for

i = 1, . . . ,m. Finally, we have to glue together all the solutions.

Claim 4.1. Under Assumptions (A), (B) and (C) and for all ϕ ∈ Vq,−γ the operator Kϕ :

V ID
q,q → Vp,∞,−γ is bounded and Lipschitz continuous. In particular, there exists some constant

C1, C2 <∞, such that

|||Kϕu|||p,∞,−γ ≤

C1 |||u|||q,q, + C2 ‖ϕ‖p,−γ , u ∈ V ID
q,q(T ), ϕ ∈ Vp,−γ ,(31)

and there exists a constant C <∞, such that

|||Kϕu−Kϕv|||p,∞,−γ ≤

C |||u− v|||q,q,, u ∈ V ID
q,q(T ), ϕ ∈ Vp,−γ .(32)

Proof. Inequality (31) follows from a sequence of calculations:

E |Kϕu(t)|
p
−γ ≤ E|Stϕ|

p
−γ + E

∫ t

0
|St−sf(u(s−)) ds|

p
−γ

+ E
∣
∣
∣
∣

∫ t

0+

∫

Z

St−sg(u(s−); z) η(ds, dz)

∣
∣
∣
∣

p

−γ

The generalized Burkholder inequality implies

E |Kϕu(t)|
p
−γ ≤ C E|ϕ|p−γ + E

(∫ t

0+
|St−sf(u(s−)|−γ ds

)p

+ E
∫ t

0+

∫

Z

|St−sg(u(s−); z)|
p
−γ ν(dz) ds

≤ C E|ϕ|p−γ + E
(∫ t

0+
|St−s|L(V−δf ,V−γ)

|f(u(s−))|−δf
ds

)p

+ E
∫ t

0+

∫

Z

|St−s|
p
L(V−δg ,V−γ)

|g(u(s−); z)|p−δg
ν(dz) ds

≤ C E|ϕ|p−γ + E
(∫ t

0+
(t− s)−δf+γ |f(u(s−))|−δf

ds

)p

dt

+ E
∫ t

0+

∫

Z

(t− s)(−δg+γ)p |g(u(s−); z)|p−δg
ν(dz) ds.
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The Lipschitz continuity, the Hölder inequality and the Jensen inequality give

E |Kϕu(t)|
p ≤ C E|ϕ|p−γ + E

(∫ t

0+
(t− s)−δf+γ |u(s−)| ds

)p

+E
∫ t

0+
(t− s)(γ−δg)p |u(s−)|p ds

≤ C E|ϕ|p−γ + C tp(1−
1
r
−(δf−γ))

(

E
∫ t

0+
|u(s−)|r ds

) p
r

+ tp(1−
1
r
−(δg−γ)p)

(

E
∫ t

0+
|u(s−)|r ds

)

≤ C(t)|||u|||pr,r + C E|ϕ|p−γ ,

where r satisfies (δg − γ)p < 1− 1
r
and δf − γ < 1− 1

r
. Since q satisfies the assumptions above,

inequality (31) follows. Inequality (32) follows from similar calculation:

E |Kϕu(t)−Kϕv(t)|
p
−γ ≤ E

∫ t

0
|St−s (f(u(s−)− f(v(s−)) ds|

p
−γ

+ E
∣
∣
∣
∣

∫ t

0+

∫

Z

St−s (g(u(s−); z)− g(v(s−); z)) η(ds, dz)

∣
∣
∣
∣

p

−γ

≤ E
(∫ t

0+
|St−s (f(u(s−)− f(v(s−))|−γ ds

)p

+ E
∫ t

0+

∫

Z

|St−s (g(u(s−); z)− g(v(s−); z))|
p
−γ ν(dz) ds

≤ E
(∫ t

0+
|St−s|L(V−δf ,V−γ)

|f(u(s−)− f(v(s−)|−δf
ds

)p

+ E
∫ t

0+

∫

Z

|St−s|
p
L(V−δg ,V−γ)

|g(u(s−); z)− g(v(s−); z)|p−δg
ν(dz) ds

≤ E
(∫ t

0+
(t− s)−δf+γ |f(u(s−)− f(v(s−)|−δf

ds

)p

dt

+ E
∫ t

0+

∫

Z

(t− s)(−δg+γ)p |g(u(s−); z)− g(v(s−); z)|p−δg
ν(dz) ds.
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Again, the Lipschitz continuity, the Hölder inequality and the Jensen inequality give

E |Kϕu(t)|
p ≤ E

(∫ t

0+
(t− s)−δf+γ |u(s−)− v(s−)| ds

)p

+E
∫ t

0+
(t− s)(γ−δg)p |u(s−)− v(s−)|p ds

≤ C tp(1−
1
r
−(δf−γ))

(

E
∫ t

0+
|u(s−)− v(s−)|r ds

) p
r

+ tp(1−
1
r
−(δg−γ)p)

(

E
∫ t

0+
|u(s−)− v(s−)|r ds

)

≤ C(t)|||u− v|||pr,r,

where r satisfies (δg − γ)p < 1− 1
r
and δf − γ < 1− 1

r
. Since q satisfies the assumptions above,

(32) follows. ¤

Claim 4.2. Assume the conditions (A), (B), (C) and (D) are fulfilled. Then, there exists a

constant C1, C2, C3 <∞ such that for all ϕ ∈ Vq,−γ and all u ∈ V ID
q,q(T ) we have

E

[

sup
0≤t≤T

|Kϕu(t)|−δ

]

≤ C1 ‖φ‖q,−γ + C2 |||u|||p,p + C3 |||u|||q,q.

Proof. A short calculation shows,
∫ t

0

∫

Z

St−sg(u(s−); z)η(dz; ds) =

∫ t

0

∫

Z

g(u(s−); z)η(dz; ds)+

∫ t

0
St−sA

∫ s

0

∫

Z

g(u(r−); z)η(dz; dr) ds.

Thus, we have

E

[

sup
0≤t≤T

|Kϕu(t)|−δ

]

= E sup
0≤t≤T

|Stϕ|−δ +

E sup
0≤t≤T

∣
∣
∣
∣

∫ t

0
St−sf(u(s−)) ds

∣
∣
∣
∣
−δ

+ E sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

∫

Z

g(u(s−); z)η(dz; ds)

∣
∣
∣
∣
−δ

+ E sup
0≤t≤T

∣
∣
∣
∣

∫ t

0
St−sA

∫ s

0

∫

Z

g(u(r−); z)η(dz; dr) ds

∣
∣
∣
∣
−δ

=: I + II + III + IV.

Since γ < δ, we have for the first term

I ≤ C E sup
0≤t≤T

|ϕ|−δ ≤ E |ϕ|−γ .

The Minkowski inequality yields for ε = δ − δf

II ≤ E sup
0≤t≤T

∫ t

0
|St−sf(u(s−))|−δ ds

≤ E sup
0≤t≤T

∫ t

0
(t− s)−ε |f(u(s−))|−δ−ε ds.
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The Lipschitz property of f and the Hölder inequality lead to

II ≤ E sup
0≤t≤T

∫ t

0
(t− s)−ε |u(s−)|−δ−ε+δf

ds

≤ E sup
0≤t≤T

C T
1− 1

q
−ε

(∫ t

0
|u(s−)|q−δ−ε+δf

ds

) 1
q

≤ C T
1− 1

q
−εE

(∫ T

0
|u(s−)|q−δ−ε+δf

ds

) 1
q

.

The Jensen inequality and the fact that δ > δf − 1 + 1
q
give

II ≤ C T
1− 1

q
−ε

(

E
∫ T

0
|u(s−)|q−δ−ε+δf

ds

) 1
q

≤ C T
1− 1

q
−ε|||u|||q,q.

The Burkholder inequality gives for the third term

III ≤

(∫ T

0

∫

Z

E |g(u(s−); z)|p−δ ν(dz) ds

) 1
p

.

The Lipschitz property of g gives

III ≤ E
(∫ T

0
|u(s−; z)|p−δ+δg

ds

) 1
p

≤ |||u|||p,p.

Let ε = 1 + δg − δ. The Minkowski inequality gives for the fourth term

IV ≤ E sup
0≤t≤T

∫ t

0

∣
∣
∣
∣
St−sA

∫ s

0

∫

Z

g(u(r−); z)η(dz; dr)

∣
∣
∣
∣
−δ

ds

≤ E sup
0≤t≤T

∫ t

0
(t− s)−ε

∣
∣
∣
∣
A

∫ s

0

∫

Z

g(u(r−); z)η(dz; dr)

∣
∣
∣
∣
−δ−ε

ds.

The Hölder inequality gives for q′ = q
q−1

IV ≤

E sup
0≤t≤T

(∫ t

0
(t− s)−q′ε

) 1
q′
(∫ t

0

∣
∣
∣
∣

∫ s

0

∫

Z

g(u(r−); z)η(dz; dr)

∣
∣
∣
∣

q

−δ+1−ε

ds

) 1
q

.

The Jensen and the Burkholder inequality give

IV ≤

C T
1− 1

q
−εE

(∫ T

0

∣
∣
∣
∣

∫ s

0

∫

Z

g(u(r−); z)η(dz; dr)

∣
∣
∣
∣

q

−δ+1−ε

ds

) 1
q

≤ C T
1− 1

q
−ε

(∫ T

0

∫ s

0

∫

Z

E |g(u(r−); z)|q−δ+1−ε ν(dz)dr ds

) 1
q

.
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The Lipschitz property yields

IV ≤

C T 1−ε

(∫ T

0
E |u(r−)|q−δ+1+δg−ε dr ds

) 1
q

≤ C T 1−ε|||u|||q,q.

Collecting all together gives the assertion. ¤

Proof of step (1)-(i): In this section we will show, that under assumptions (A), (B) and (C)

and for all ϕ ∈ Vq,−γ the operator Kϕ maps V ID
q,q(T ) into Vq,q(T ). Note that for 0 < γ < 1

q

|||Stϕ|||
q
q,q =

∫ T

0
E|Stϕ|

q ≤

∫ T

0
|St|

q
L(V−γ ,E) dt |ϕ|

q
−γ .

Using Remark B.1 we have

|||Stϕ|||
q
q,q ≤

∫ T

0
C t−qγ dt |ϕ|q−γ

≤ C T 1−qγ E |ϕ|q−γ .

Furthermore we have

|||K1u|||
q
q,q ≤ E

[∫ T

0

∣
∣
∣
∣

∫ t

0+
St−sf(u(s−)) ds

∣
∣
∣
∣

q

dt

]

≤ E
∫ T

0

(∫ t

0+
|St−sf(u(s−))| ds

)q

dt

≤ E
∫ T

0

(∫ t

0+
|St−s|L(V−δf ,E) |f(u(s−))|−δf

ds

)q

dt

≤ E
∫ T

0

(∫ t

0+
(t− s)−δf |f(u(s−))|−δf

ds

)q

dt.(33)

Therefore, by the Young inequality we infer that

|||K1u|||
q
q,q ≤

(∫ T

0+
(T − t)−δf dt

)q

E
∫ T

0+
|f(u(t−))|q−δf

dt.(34)

Next, the Lipschitz condition of f , i.e. (2), implies that

|||K1u|||
q
q,q ≤

C T (1−δf )q

(1− δf )
1
q′

E
∫ T

0+
|u(t−)|q dt

≤
C T

1−δf

q′

(1− δf )q
|||u|||qq,q.(35)
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By Proposition 3.1 we get

|||K2u|||
q
q,q = E

∫ T

0

∣
∣
∣
∣

∫ t

0+

∫

Z

St−sg(u(s−); z) η(ds, dz)

∣
∣
∣
∣

q

dt

=

∫ T

0
E
∣
∣
∣
∣

∫ t

0+

∫

Z

St−sg(u(s−); z) η(ds, dz)

∣
∣
∣
∣

q

dt

≤ C

∫ T

0

n∑

l=1

(

E
∫ t

0+

∫

Z

|St−sg(u(s−); z)|
plν(dz) ds

)pn−l

dt

≤ C

∫ T

0

n∑

l=1

(

E
∫ t

0+

∫

Z

(t− s)−δgp
l

|g(u(s−); z)|p
l

−δg
ν(dz) ds

)pn−l

dt.(36)

By the Lipschitz condition of g, i.e. (4), we infer that

|||K2u|||
q
q,q ≤ C

∫ T

0

n∑

l=1

(

E
∫ t

0+
(t− s)−δgp

l

|u(s−))|p
l

ds

)pn−l

.(37)

Again, the Young inequality yields

|||K2u|||
q
q,q ≤ C

n∑

l=1

(∫ T

0
t−δgp

l

dt

)pn−l

E
∫ t

0
|u(s−)|qds.

Summing up, we have proved that the operator Kϕ maps Vq,q(T ) into Vq,q(T ).

Proof of step (1)-(ii). In order to show Kϕu belongs to ID([0,∞);V−δ), we will show, that

the set {Kϕu} satisfies the Aldou’s condition (see Definition A.2) and the compact containment

condition (see Definition A.3).

Proof that the Aldou’s condition is satisfied: We will show, that {Kϕu} satisfies the

assumptions of Theorem A.1 with β = p. In particular, we will show that there exists some

ρ > 0 such that for all t ∈ [0, T ] and all θ > 0 we have

E
[

|Kϕu(t+ θ)−Kϕu(t)|
p
−γ | Ft

]

≤ θρ|||1(t,t+θ]u|||
p
q,q,−γ +

C2θ
pδ|||1(0,t]Kϕu|||

p
p,∞,−γ , Vp,−γu ∈ V

ID
q,q, ϕ ∈ Vp,−γ .(38)

By (31) there exists some C1, C2 <∞ such that

|||1(0,t]Kϕu|||p,∞,−γ ≤ |||Kϕu|||p,∞,−γ ≤ C1 |||u|||q,q + C2 ‖φ‖p,−γ .

Therefore there exists some constant C <∞ such that C
(
θρ + θδ

)
is an upper bound for the

RHS of (38). Moreover C
(
θρ + θδ

)
→ 0 as θ → 0 and the assumptions of Lemma A.1 are

satisfied.
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Proof. To prove inequality (38), we first note that

Kϕu(t+ θ)−Kϕu(t) = (St+θ − St)ϕ+
∫ t+θ

0+
St+θ−σf(u(σ−)) dσ +

∫ t+θ

0+
St+θ−σg(u(σ−); z) η(dz; dσ)

−

∫ t

0+
St−σf(u(σ−)) dσ −

∫ t

0+
St−σg(u(σ−); z) η(dz; dσ)

= (Sθ − I)Stϕ+ (Sθ − I)

∫ t+θ

0+
St−σf(u(σ−)) dσ

+ (Sθ − I)

∫ t+θ

0+
St−σg(u(σ−); z) η(dz; dσ)

+

∫ t+θ

t+
St+θ−σf(u(σ−)) dσ +

∫ t+θ

t+
St+θ−σg(u(σ−); z) η(dz; dσ)

= (Sθ − I)Stϕ+ (Sθ − I) (Kϕu) (t+ θ)

+

∫ t+θ

t+
St+θ−σf(u(σ−)) dσ

︸ ︷︷ ︸

=:f1(t,θ)

+

∫ t+θ

t+
St+θ−σg(u(σ−); z) η(dz; dσ)

︸ ︷︷ ︸

=:f2(t,θ)

.

Hence Sθ − I =
∫ θ

0 ASr dr (see Pazy [37, Theorem 1.2.4-(b)]) and Remark B.1 we have

|(Sθ − I)x|−(γ+δ) ≤

∫ θ

0
|ASrx|−(γ+δ) dr

≤ C

∫ θ

0
r−1+δ |x|−γ dr ≤ C θδ |x|−γ .

Therefore

|(Sθ − I)Stϕ|−(γ+δ) ≤ C θδ |Stϕ|−γ ≤ C θδ |ϕ|−γ(39)

and

E |(Sθ − I) (Kϕu) (t+ θ)|p−(γ+δ) ≤ θpδE |(Kϕu) (t+ θ)|p−γ .(40)

Using the same calculations as in (33), (34) and (35) we obtain

E |f1(t, θ)|p−(γ+δ) = C E
∣
∣
∣
∣

∫ θ

0+
Sθ−σf(u(t+ σ−)) dσ

∣
∣
∣
∣

p

−(γ+δ)

≤

C E
(∫ θ

0+
(θ − σ)−(δf−(γ+δ)) |f(u(t+ σ−))|−δf

dσ

)p

≤ C θ
p
(

1− 1
q
−(δf−γ−δ)

)

×

{∫ θ

0
E |u(t+ σ)|q dσ

} p
q

.

Note, that

E |f2(t, θ)|p−(γ+δ) ≤ C E
∣
∣
∣
∣

∫ θ

0+

∫

Z

Sθ−σg(u((σ−) + t); z) η ◦ θt(dz; dσ)

∣
∣
∣
∣

p

−(γ+δ)

,
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where η ◦ θt(ω) := η(θt ◦ ω), and θt is the usual shift operator defined by θtω(s) := ω(t + s).

Following (36) and (37) we get

E |f2(t, θ)|p−(γ+δ) ≤ C θ
1− p

q
−p(δg−γ−δ)

{∫ θ

0
E |u(t+ σ)|q dσ

} p
q

.

¤

Proof that the compact containment condition is satisfied: We will show A.3 by

Lemma A.1. By Remark B.2 the space V−δ̃ is compactly embedded in V−δ for all δ̃ < δ. Let

δ̃ > 0 be chosen accordingly

δ > δ̃ > max(δf − 1 +
1

q
, δg +

1

q
,
1

q
).

Moreover, by Claim 4.2 there exists some constant C1, C2 <∞ such that

E

∣
∣
∣
∣
∣
sup

0≤t≤T

Kϕu(t)

∣
∣
∣
∣
∣
−δ̃

≤ C1|||u|||q,q + C2‖ϕ‖p,−γ , u ∈ V ID
q,q, ϕ ∈ Vp,−γ .

By Lemma A.1 the compact containment condition follows.

Proof of step (2)-(i) Next, we will show, that there exists some function C : [0, 1] → R+

such that

|||Kϕu−Kϕv|||
q
q,q ≤

C(T ) |||u− v|||qq,q, u, v ∈ V ID
q,q(T ), ϕ ∈ Vq,−γ ,(41)

and C(T )→ 0 as T → 0. Thus, we can find a T̄ , such that

C(T̄ ) < 1.

In particular, there exists a constant 0 < k < 1 such that for all ϕ ∈ Vq,−γ the operator

Kϕ : VID
q,q(T̄ )→ V ID

q,q(T̄ ) is Lipschitz continuous with constant k.

Proof. Similarly to calculations (33), (34) and (35) the Lipschitz continuity of f , i.e. (2), leads

to

|||K1u−K1v|||
q
q,q ≤ C(q, T ) |||u− v|||qq,q, u, v ∈ V ID

q,q(T ),
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where the constant C(q, T ) tends to zero as T → 0. Next we have

|||K2u−K2v|||
q
q,q = E

∫ T

0
|K2u(t)−K2v(t)|

q dt

≤ C

∫ T

0

∣
∣
∣
∣

∫ t

0

∫

Z

St−s (g(u(s−); z)− g(v(s−); z)) η(dz; ds)

∣
∣
∣
∣

q

dt

≤ C

∫ T

0
E

n∑

l=1

(∫ t

0+

∫

Z

|St−s (g(u(s−); z)− g(v(s−); z)) |
plν(dz) ds

)pn−l

dt

≤ C

∫ T

0
E

n∑

l=1

(∫ t

0+

∫

Z

(t− s)−δgp
l

|g(u(s−); z)− g(v(s−); z)|p
l

−δg
ν(dz) ds

)pn−l

dt

≤ C E
n∑

l=1

∫ T

0

(∫ t

0+

∫

Z

(t− s)−δgp
l

|u(s−)− v(s−)|p
l

h(z) ν(dz) ds

)pn−l

dt

≤ C E
n∑

l=1

∫ T

0

(∫ t

0+

∫

Z

(t− s)−δgp
l

|u(s−)− v(s−)|p
l

ν(dz) ds

)pn−l

dt.

Again, the Young inequality yields

|||K2u−K2v|||
q
q,q ≤

C T (1−δgq)q

(1− δgq)q
E
∫ T

0+
|u(s−)− v(s−)|q ds.

Summing up we have proved

|||Kϕu−Kϕv|||q,q ≤ C(T ) |||u− v|||q,q,

where C(T ) tends to zero as T → 0.

¤

Proof of step (2)-(ii) Let
{
u(n)

}

n≥0
be the sequence defined by u(n) := Kϕu

(n−1), n ≥ 1

and u(0)(t) = S(t)ϕ and let u? the fixed point of Kϕ. We have to show, that
{
u(n)

}

n≥1
is tight

in L0(Ω; ID([0, T̄ ];V−δ)). But first we will show the following.

• Under the assumptions (A) and (C) the set
{
u(n)

}

n≥0
is bounded in Vq,q(T̄ ). By (2)-(i)

we know, that Kϕ : Vq,q(T̄ ) → Vq,q(T̄ ) is a strict contraction. Therefore there exists a
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constant 0 < k < 1, such that

sup
n∈IN

|||u(n)|||q,q ≤
C T̄

1
q
−γ

1− k
‖ϕ‖q,−γ .

• If the assumptions (A), (B) and (C) are satisfied then it follows from (31) that

sup
n≥1

|||u(n)|||p,∞,−δ ≤ sup
n≥1

|||u(n)|||p,∞,−γ

≤ sup
n≥1

|||Kϕu
(n−1)|||p,∞,−γ

≤ C1 sup
n≥0

|||u(n)|||q,q + C2‖ϕ‖p,−γ .

• Since |||u(n)−u?|||q,q → 0 as n→∞ it follows from (32) that the sequence {Kϕu
(n)}n≥1

converges to Kϕu
? = u? in Vp,∞,−γ(T̄ ), i.e.

sup
0≤t≤T̄

E
∣
∣
∣u(n)(t)− u(t)

∣
∣
∣

p

−δ
→ 0

as n → ∞. Therefore, the Chebyscheff inequality shows, that for any finite set

{t1, . . . , tk} ⊂ [0, T̄ ], we have
(

u(n)(t1), . . . , u
(n)(tk)

)

→
(

u(t1), . . . , u(tk)
)

,

as n→∞.

By Theorem 3.7.8 of Ethier and Kurtz [23] it remains to show, that the set {u(n), n ∈ IN}

is tight in L0(Ω; ID([0, T̄ ];V−δ)). This implies that u(n) converges in distribution to u? and

u? ∈ L0(Ω; ID([0, T̄ ];V−δ)).

Proof that the Aldou’s condition is satisfied: Tracing the calculations in (1)-(ii), we see

that there exists some ρ > 0 such that for all n ∈ IN

E
[∣
∣
∣u(n)(t+ θ)− u(n)(t)

∣
∣
∣

p

−(γ+δ)
| F

(n)
t

]

≤

θρ|||1(t,t+θ]u
(n−1)|||pq,q,−γ + C2θ

pδ|||1(0,t]Kϕu
(n−1)|||pp,∞,−γ , 0 ≤ t ≤ T̄ .

But from the consideration before we know

sup
n≥1

|||u(n)|||q,q <∞

and

sup
n≥1

|||Kϕu
(n)|||p,∞,−γ <∞

Thus, there exists some constants C <∞ and ρ > 0 such that

E
[∣
∣
∣u(n)(t+ θ)− u(n)(t)

∣
∣
∣

p

−(γ+δ)
| F

(n)
t

]

≤ C
(

θρ + θpδ
)

, 0 ≤ t ≤ T̄ , n ∈ IN.

This proves that the assumptions of Lemma A.1 are satisfied.

Proof that the compact containment condition is satisfied: The embedding Vδ̃ ↪→ V−δ
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is compact for all δ̃ < δ (see Remark B.2). Moreover, by Claim 4.2 it follows

sup
n≥1

E| sup
0≤s≤T̄

u(n)(s)|−δ̃ ≤ C
(

|||u(n−1)|||qq,q + ‖ϕ‖q,−γ

)

n ∈ IN.

Since the set {u(n) | n ∈ IN} is bounded in Vq,q(T ), the compact containment condition follows.

Proof of step (3) Let T̄ be so small that C(T̄ ) < 1, where C : [0, 1] → R+ is the constant

from (41). Then for all ϕ ∈ Vq,−γ there exists a unique fixed point u? ∈ Vq,q(T̄ ) such that

Kϕu
? = u?. Let u0 be the fixed point of Ku0 in Vq,q(T̄ ). By (2)-(ii), the fixed point belongs to

VID
q,q(T̄ ). If

E|u0(T̄ )|q−γ <∞,(42)

then Step (2) can be repeated. But, by the following calculation we can show (42):

E|u0(T̄ )|q−γ ≤ C

(

|ST̄ϕ|
q
−γ

+ E

(
∫ T̄

0

∣
∣ST̄−sf(u

0(s−))
∣
∣
−γ

ds

)q

+

n∑

l=1

E

(
∫ T̄

0+

∫

Z

|ST̄−sg(u
0(s−); z)|p

l

−γ ν(dz; ds)

)pn−l )

.

The first summand is obviously finite, because ϕ ∈ Vq,−γ . The second summand is finite,

because of (B). In particular

E

(
∫ T̄

0

∣
∣ST̄−sf(u

0(s−))
∣
∣
−γ

ds

)q

≤

≤ C E

(
∫ T̄

0
(T̄ − s)−(δf−γ)

∣
∣f(u0(s−))

∣
∣
−δf

ds

)q

≤ C

(
∫ T̄

0
(T̄ − s)−(δf−γ)q′′ ds

) q

q′′
(

1 + E
∫ T̄

0

∣
∣u0(s−)

∣
∣
q
ds

)

≤ C(T̄ )
(
1 + |||u0|||qq,q

)
.

In the case of the third summand, we study only the worst case if l = n. By the Lipschitz

condition of g, i.e. (4), we have

E
∫ T1

0+

∫

Z

∣
∣ST̄−sg(u

0(s−); z)
∣
∣
q

−γ
ν(dz)ds =

∫ T̄

0

∫

Z

E
∣
∣ST̄−sg(u

0(s−); z)
∣
∣
q

−γ
ν(dz)ds

≤ C

∫ T̄

0
|ST̄−s|

q
L(V−δg ,V−γ)

E
∫

Z

|g(u0(s−); z)|q−δg
ν(dz) ds

≤ C

∫ T̄

0
|ST̄−s|

q
L(V−δg ,V−γ)

(
1 + E|u0(s−)|q

)
ds.
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Because of (A), we have γ ≥ max(δf − 1 + 1
q
, δg) and we can write

∫ T̄

0

∫

Z

E|ST̄−sg(u
0(s−); z)|q−γ ν(dz)ds ≤ C(T̄ )

(

1 +

∫ T̄

0
E|u0(s−)|q ds

)

.

Thus, we have

E|u0(T̄ )|q−γ ≤ C(T̄ )
(
1 + |||u0|||qq,q

)
.

Therefore, there exists a unique fixed point u? of Ku0(T̄ ) in V
ID
q,q(T̄ ). Let u1 := u?. Using the

same calculations as above we can show that E|u1(T̄ )|q−γ <∞. Hence, we can repeat the same

argument. Since T̄ only depends on δg, δf , p and q, we only need to repeat the procedure a

finite number of times. In particular, there exists a constant m, such that T ≤ T̄m. Let ui be

the unique fixed point of Kui−1(T̄ ) in V
ID
q,q(T̄ ). Let

u(t) := 1t=0ϕ+

(m−1)
∑

i=0

1(iT̄ ,(i+1)T̄ ](t)u
i(t− iT̄ ).

Since ui ∈ ID([(i − 1)T̄ , iT̄ ];V−δ) for all i = 1, . . .m − 1, it follows that u(t) ∈ ID([0, T ];V−δ).

Since Kui−1(T̄ )u
i = ui on [(i − 1)T̄ , iT̄ ] and ui(iT̄ ) = ui+1(0), it follows that Ku0u = u and

therefore that u is a solution of Problem (1).

4.2. Proof of Part (b) in Theorem 2.1. Tracing the proof of part a, part b can be shown.

Let us define the space for p < q <∞

Vp,q(T ) :=

{

u : Ω× [0, T ]→ E, u is an adapted process,

such that

∫ T

0
(E|u(s)|p)

q
p ds <∞

}

,

and for q =∞

Vp,∞(T ) :=

{

u : Ω× [0, T ]→ E, u is an adapted process, u(0) = ϕ,

such that sup
0≤s≤T

E|u(s)|q <∞

}

,

equipped with norm

|||u|||p,q :=







[∫ T

0 (E|u(s)|p)
q
p ds

] 1
q

if p < q <∞,

sup0≤s≤T [E|u(s)|q]
1
q if q =∞.

For p ≤ r < ∞ let Vr,−γ be given by definition (29). In the proof we will consider the case

q < ∞, the case q = ∞ is similar. To be precise Part (c) can be proven by tracing the proof

of part (b), setting q =∞ and γ = 0. Let δ > 0 be arbitrary. Let

VID
p,q(T ) := Vp,q(T ) ∩ L

0 (Ω; ID([0, T ];V−δ)) .
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For ϕ ∈ Vp,−γ let Kϕ : VID
p,q(T )→ V ID

p,q(T ) be the same operator as in (30), in particular

(Kϕu)(t) = Stϕ+

∫ t

0+
St−sf(u(s−)) ds+

∫ t

0+

∫

Z

St−sg(u(s−); z) η(dz; dz)

:= Stϕ+K1u+K2u, t ∈ [0, T ], u ∈ Vp,q(T ).

As before existence and uniqueness of the solution to (1) will be shown by fixed point argu-

ments. But first, we will introduce the conditions on δf , δσ, δ and γ.

(A) iff δgp < 1 and δf < 1,

(B) iff δgp < 1− 1
q
and δf < 1− 1

q
,

(C) iff γ < 1
q
,

(D) iff δ > max(δf − 1 + 1
q
, δg +

1
q
, 1
q
).

Analogously to part (a), the proof of part (b) will rely on the following steps:

(1) Firstly, we will show, that the operator Kϕ maps V ID
p,q(T ) into V

ID
p,q(T ), in particular we

will show that .

(i) Kϕ maps V ID
p,q(T ) into Vp,q(T ).

(ii) Kϕ maps V ID
q,q(T ) into L

0 (Ω; ID([0, T ];V−δ)).

(2) Secondly, we will show that there exists some constant T̄ > 0, such that for all

ϕ ∈ Vp,−γ the operator Kϕ has a unique fixed point x? in V̄ID
p,q(T̄ ) and x? belongs

to L0(Ω; ID([0, T̄ ];V−δ). This will be shown in the following two steps:

(i) there exists a constant T̄ > 0 and a constant 0 < k < 1, such that for all ϕ ∈ Vp,−γ

the operator Kϕ : Vp,q(T̄ )→ Vp,q(T̄ ) is Lipschitz continuous with constant k.

(ii) For all ϕ ∈ Vp,−γ the sequence
{
x(n)

}

n∈IN
, defined by x(n) = Kϕx

(n−1), n ≥ 1 and

x(0)(t) = Stϕ, is tight in L
0(Ω; ID([0, T̄ ];V−δ).

Applying the Banach fixed point theorem, there exists a unique x∗ ∈ Vp,q(T̄ ), such that

Kϕx
∗ = x∗ and Kϕ

(n)y → x∗ for all y ∈ Vq,q(T̄ ). From (2)-(ii), it follows that the fixed

point x∗ belongs to L0(Ω; ID([0, T̄ ];V−δ), i.e. to V
ID
p,q(T̄ ).

(3) Using the same arguments as in (a)-(3), step (2) can be repeated to get a solution on

the whole interval [0, T ].

Claim 4.3. Under assumptions (A), (B) and (C) and for all ϕ ∈ Vp,−γ the operator Kϕ :

V ID
p,q → Vp,∞,−γ is bounded and Lipschitz continuous. In particular, there exists some constant

C1, C2 <∞, such that

|||Kϕu|||p,∞,−γ ≤

C1 |||u|||p,q + C2 ‖ϕ‖p,−γ , u ∈ V ID
p,q(T ), ϕ ∈ Vp,−γ ,(43)
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and there exists a constant C <∞, such that

|||Kϕu−Kϕv|||p,∞,−γ ≤

C |||u− v|||p,q, u ∈ V ID
p,q(T ), ϕ ∈ Vp,−γ .(44)

Proof. Inequality (43) follows from the same sequence of calculations as (31). In particular,

E |Kϕu(t)|
p
−γ ≤ E|Stϕ|

p
−γ + E

∫ t

0
|St−sf(u(s−)) ds|

p
−γ

+ E
∣
∣
∣
∣

∫ t

0+

∫

Z

St−sg(u(s−); z) η(ds, dz)

∣
∣
∣
∣

p

−γ

≤ C E|ϕ|p−γ + E
(∫ t

0+
(t− s)−δf+γ |f(u(s−))|−δf

ds

)p

dt

+

∫ t

0+

∫

Z

(t− s)(−δg+γ)pE |g(u(s−); z)|p−δg
ν(dz) ds

≤ C E|ϕ|p−γ + E
(∫ t

0+
(t− s)−δf+γ |u(s−)| ds

)p

dt

+

∫ t

0+
(t− s)(−δg+γ)pE |u(s−)| ds.

The Hölder inequality gives

E |Kϕu(t)|
p ≤ C E|ϕ|p−γ +

(∫ t

0+
(t− s)−p′(δf−γ) ds

) p

p′
∫ t

0
E |u(s−)|p ds

+

∫ t

0
(t− s)(γ−δg)pE |u(s−)|p ds

≤ C E|ϕ|p−γ + C tp(1−
1
r
−(δf−γ))

(∫ t

0
(E |u(s−)|p)

q
p ds

) p
q

+ tp(1−
1
r
−(δg−γ)p)

(∫ t

0+
(E |u(s−)|p)

q
p ds

)

≤ C(t)|||u|||pq,q + C E|ϕ|p−γ ,

where q satisfies (δg − γ)p < 1 − 1
q
and δf − γ < 1 − 1

q
. Inequality (44) follows from similar

calculations. ¤

Claim 4.4. Assume the conditions (A), (B), (C) and (D) are fulfilled. Then, there exists a

constant C1, C2, C3 <∞ such that for all ϕ ∈ Vq,−γ and all u ∈ Vq,q(T ) we have

E

[

sup
0≤t≤T

|Kϕu(t)|−δ

]

≤ C1 ‖φ‖q,−γ + C2 |||u|||p,p + C3 |||u|||q,q.
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Proof. The proof is similar to the proof of Claim 4.2. We have

E

[

sup
0≤t≤T

|Kϕu(t)|−δ

]

= E sup
0≤t≤T

|Stϕ|−δ +

E sup
0≤t≤T

∣
∣
∣
∣

∫ t

0
St−sf(u(s−)) ds

∣
∣
∣
∣
−δ

+ E sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

∫

Z

g(u(s−); z)η(dz; ds)

∣
∣
∣
∣
−δ

+ E sup
0≤t≤T

∣
∣
∣
∣

∫ t

0
St−sA

∫ s

0

∫

Z

g(u(r−); z)η(dz; dr) ds

∣
∣
∣
∣
−δ

=: I + II + III + IV.

Since γ < δ, we have for the first term

I ≤ C E sup
0≤t≤T

|ϕ|−δ ≤ E |ϕ|−γ .

The Minkowski inequality yields for ε = δ − δf

II ≤ E sup
0≤t≤T

∫ t

0
|St−sf(u(s−))|−δ ds

≤ E sup
0≤t≤T

∫ t

0
(t− s)−ε |f(u(s−))|−δ−ε ds.

Let ε1, ε2 > 0 and ε1 + ε2 = ε. Then, the Lipschitz property of f and the Hölder inequality

lead to

II ≤ E sup
0≤t≤T

∫ t

0
(t− s)−ε |u(s−)|−δ−ε+δf

ds

≤ E sup
0≤t≤T

C T
1− 1

p
−ε1

(∫ t

0
(t− s)−ε1p |u(s−)|q−δ−ε+δf

ds

) 1
p

≤ C T
1− 1

p
−ε1E

(∫ T

0
(t− s)−ε1p |u(s−)|p−δ−ε+δf

ds

) 1
q

.

The Jensen inequality, the Hölder inequality and the fact that δ > δf − 1 + 1
q
give

II ≤ C T
1− 1

p
−ε1

(∫ T

0
(t− s)−ε1pE |u(s−)|q−δ−ε+δf

ds

) 1
p

≤ C T
1− 1

q
−ε

(∫ T

0

(

E |u(s−)|p−δ−ε+δf

) q
p
ds

) 1
q

≤ C T
1− 1

q
−ε |||u|||p,q.

The Burkholder inequality gives for the third term

III ≤

(∫ T

0

∫

Z

E |g(u(s−); z)|p−δ ν(dz) ds

) 1
p

.

The Lipschitz property of g gives

III ≤ E
(∫ T

0
|u(s−; z)|p−δ+δg

ds

) 1
p

≤ C |||u|||p,p ≤ C |||u|||p,q.
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Let ε = 1 + δg − δ. The Minkowski inequality gives for the fourth term

IV ≤ E sup
0≤t≤T

∫ t

0

∣
∣
∣
∣
St−sA

∫ s

0

∫

Z

g(u(r−); z)η(dz; dr)

∣
∣
∣
∣
−δ

ds

≤ E sup
0≤t≤T

∫ t

0
(t− s)−ε

∣
∣
∣
∣
A

∫ s

0

∫

Z

g(u(r−); z)η(dz; dr)

∣
∣
∣
∣
−δ−ε

ds

Let ε1, ε2 > 0 and ε1 + ε2 = ε. The Hölder inequality gives for p′ = p
p−1

IV ≤

E sup
0≤t≤T

(∫ t

0
(t− s)−p′ε1

) 1
q′
(∫ t

0
(t− s)−pε2

∣
∣
∣
∣

∫ s

0

∫

Z

g(u(r−); z)η(dz; dr)

∣
∣
∣
∣

p

−δ+1−ε

ds

) 1
p

.

The Jensen, the Burkholder inequality and the Lipschitz property of g give

IV ≤

C T
1− 1

p
−ε1E

(∫ T

0
(T − s)−pε2

∣
∣
∣
∣

∫ s

0

∫

Z

g(u(r−); z)η(dz; dr)

∣
∣
∣
∣

p

−δ+1−ε

ds

) 1
p

≤ C T
1− 1

p
−ε1

(∫ T

0
(T − s)−pε2

∫ s

0

∫

Z

E |g(u(r−); z)|p−δ+1−ε ν(dz)dr ds

) 1
p

.

≤ C T
1− 1

p
−ε1

(∫ T

0
(T − s)−pε2

∫ s

0
E |u(r−)|p−δ+1−ε+δg

dr ds

) 1
p

.

Again the Hölder inequality yields to

IV ≤

≤ C T
1− 1

q
−ε

(∫ T

0

∫ s

0

(

E |u(r−)|p−δ+1−ε+δg

) q
p
dr ds

) 1
q

≤ C |||u|||p,q.

Collecting all together gives the assertion. ¤

Proof of part (1)-(i): In this section we will show, that under conditions (A) and (C) and

for all ϕ ∈ Vp,−γ the operator Kϕ : VID
p,q(T ) → Vp,q(T ) is a bounded operator. Note we have

for 0 < γ < 1
q

|||Stϕ|||
q
p,q =

∫ T

0
[E|Stϕ|

p]
q
p ≤

∫ T

0
|St|

q
L(V−γ ,E) dt

[
E|ϕ|p−γ

] q
p .

Using Remark B.1 we have

|||Stϕ|||
q
p,q ≤

∫ T

0
C t−qγ dt

[
E|ϕ|p−γ

] q
p .

≤ C T 1−qγ
[
E|ϕ|p−γ

] q
p .(45)
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Let c1, c2 ≥ 0 such that c1 + c2 = 1 and p′ conjugate to p. Then we have by the Hölder

inequality

|||K1u|||
q
p,q ≤

∫ T

0

[

E
∣
∣
∣
∣

∫ t

0+
St−sf(u(s−)) ds

∣
∣
∣
∣

p]
q
p

dt

≤

∫ T

0

[

E
(∫ t

0+
|St−sf(u(s−))| ds

)p]
q
p

dt

≤

∫ T

0

[

E
(∫ t

0+
(t− s)−(c1+c2)δf |f(u(s−))|−δf

ds

)p]
p
q

dt

≤

∫ T

0

[(∫ t

0
(t− s)−c1p

′δf ds

) p

p′

E
(∫ t

0
(t− s)−c2δfp |f(u(s−))|p−δf

ds

)]
q
p

dt.

A second application of the Hölder inequality yields

|||K1u|||
q
p,q ≤

≤ C T
(1−c1δfp

′) q

p′

∫ T

0

[(∫ t

0
(t− s)−c2δfpE |f(u(s−))|p−δf

ds

)] q
p

dt.

Therefore, by the Young inequality we infer

|||K1u|||
q
p,q ≤

≤ C T
(1−c1δfp

′) q

p′

(∫ T

0
(T − s)−c2δfp ds

) q
p
(∫ T

0

[

E |f(u(s−))|p−δf

] q
p
ds

)

≤ C T

(
1
p′
+ 1
p
−(c1+c2)δf

)

q
(∫ T

0
[(1 + E |u(s−))|p)]

q
p ds

)

.

Next, the Lipschitz condition of f , i.e. (2), implies that

|||K1u|||
q
p,q ≤ ≤ C T (1−δf)q

(
|||u|||qp,q

)
.(46)

By Proposition 3.1 we get

|||K2u|||
q
p,q =

∫ T

0

[

E
∣
∣
∣
∣

∫ t

0+

∫

Z

St−sg(u(s−); z) η(ds, dz)

∣
∣
∣
∣

p]
q
p

dt

≤ C

∫ T

0

[∫ t

0

∫

Z

E|St−sg(u(s−); z)|
pν(dz) ds

] q
p

dt

Remark B.1 yields to

|||K2u|||
q
p,q ≤ C

∫ T

0

[∫ t

0
(t− s)−δgp

∫

Z

E|g(u(s−); z)|p−δg
ν(dz) ds

] q
p

dt.

Again, the Young inequality yields

|||K2u|||
q
p,q ≤ C

(∫ T

0
s−δgp ds

) q
p

(
∫ T

0

(∫

Z

E|g(u(s−); z)|p−δg
ν(dz)

) q
p

ds

)

.
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The Lipschitz condition of g, i.e. (4), leads to

|||K2u|||
q
p,q ≤ C T

(1−pδg)
q
p

(∫ T

0
(1 + E|u(s)|p)

q
p ds

)

≤ C T
(1−pδg)

q
p
(
1 + |||u|||qp,q

)
.(47)

Summing up, we have proved that the operator maps Vp,q(T ) into Vp,q(T ), i.e.

|||Kϕu|||p,q ≤ C1(T )|u0|−γ + C2(T )|||u|||q,q + C3(T ).(48)

Remark 4.1. Note, that using the Lipschitz conditions (2) and (4) the equation (48) can be

written as

|||Kϕu|||p,q ≤ C1 T
1
q
−γE|u0|−γ + C2 T

ρ|||u|||q,q.

where ρ = min(1− δf ,
1
p
− δg).

Proof of part (1)-(ii). Fix u ∈ V ID
p,q(T ). We have to show that Kϕu belongs to the

Skorohod space ID([0, T ];V−δ), in particular that {Kϕu} satisfies the Aldou’s condition A.2 and

the compact containment condition A.3 in Appendix A. Since V−δ̃ is compactly embedded in

V−δ for all δ̃ < δ, Claim (4.4) implies the compact containment condition. The Aldou’s

condition will be shown by proving the assumptions of Theorem A.1 with β = p. In particular,

we will prove that there exists some ρ > 0 such that for all 0 ≤ t ≤ T and all θ we have

E
[

|Kϕu(t+ θ)−Kϕu(t)|
p
−(γ+δ) | Ft

]

≤

θρ|||1(t,t+θ]u|||
p
p,q + C2θ

pδ|||1(0,t]Kϕu|||
p
p,∞.(49)

Since (43) holds, there exists some C < ∞ such that 2C
(
θρ + θδ

)
is an upper bound for the

RHS of (49). Moreover, 2C
(
θρ + θδ

)
→ 0 as θ → 0, the assumptions of Lemma A.1 are

satisfied.

To prove inequality in (49), we first note that for r < q such that 1 − δf ≤
1
r
and 1

p
− δg ≤

1
r

we have

Kϕu(t+ θ)−Kϕu(t) = (Sθ − I) (Kϕu) (t+ θ)

+

∫ t+θ

t

St+θ−σf(u(σ−)) dσ

︸ ︷︷ ︸

=:f1(t,θ)

+

∫ t+θ

t

St+θ−σg(u(σ−); z) η(dz; dσ)

︸ ︷︷ ︸

=:f2(t,θ)

.

Using the same calculation as for (40) we have

E |(Sθ − I) (Kϕu) (t+ θ)|p−(γ+δ) ≤ θpδE |(Kϕu) (t+ θ)|p−γ .
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Let c1, c2 ≥ 0, c1p
′(δf −γ) < 1 and p′ conjugate to p. Then, we obtain by the Hölder inequality

E |f1(t, θ)|p−(γ+δ) ≤

C E
(∫ θ

0
(θ − σ)−(δf−(γ+δ)) |f(u(t+ σ−))|−δf

dσ

)p

≤ C

(∫ θ

0
(θ − σ)−c1p

′(δf−(γ+δ)) dσ

) p

p′

×

(∫ θ

0
(θ − σ)−c2p(δf−(γ+δ)) E |f(u(t+ σ))|p−δf

dσ

)

.

The Hölder inequality yields for r′ conjugate to q
r

E |f1(t, θ)|p−(γ+δ) ≤ C θ
p( 1

p′
−c1(δf−(γ+δ)))

θ
1
r′
−c2p(δf−(γ+δ))

×

[∫ θ

0

(

E |f(u(t+ σ))|p−δf

) r
p
dσ

] p
r

.

The growth condition on f , i.e. (2) yields

E |f1(t, θ)|p−(γ+δ) ≤ C θp(1−
1
r
(δf−(γ+δ)))

[∫ θ

0
(1 + E |u(t+ σ)|p)

r
p dσ

] p
r

≤ C θp(1−
1
r
(δf−(γ+δ)))

[
1 + |||u1[t,t+θ]|||

p
p,r

]
.

Analogously to the proof of (a)-(1)-(ii) we have

E |f2(t, θ)|p−(γ+δ) ≤ C E
∣
∣
∣
∣

∫ θ

0

∫

Z

Sθ−σg(u((σ−) + t); z) η ◦ θt(dz; dσ)

∣
∣
∣
∣

p

−(γ+δ)

,

where η ◦ θt(ω) := η(θt ◦ ω), and θt is the usual shift operator defined by θtω(s) := ω(t + s).

Following the calculations of (b)-(1)-(i) we get

E |f2(t, θ)|p−(γ+δ) ≤ C θ
p
(

1
p
− 1
r
−(δg−(γ+δ))

)
[
1 + |||u1[t,t+θ]|||

p
p,r

]
.

Proof of part (2)-(i) Next, we will show that there exists some function C : [0, 1] → R+

such that

|||Kϕu−Kϕv|||p,q ≤ C(T ) |||u− v|||p,q, u, v ∈ V ID
p,q(T ), ϕ ∈ Vp,−γ

and C(T ) → 0 as T → 0. Thus, we can find a T̄ > 0 such that C(T̄ ) < 1. Thanks to remark

(4.1) we have

|||Kϕu|||p,q ≤ C1 T
1
q
−γ |ϕ|−γ + C2 T

ρ|||u|||q,q.

where ρ = min(1− δf ,
1
p
− δg) and the assertion follows.

Proof of part (2)-(ii) Let
{
u(n)

}

n≥0
be the sequence defined by u(n) := Kϕu

(n−1) and

u(0)(t) = S(t)ϕ and let u? the fixed point of Kϕ. We have to show, that
{
u(n)

}

n≥1
is tight in

L0(Ω; ID([0, T̄ ];V−(γ+δ))). But first we show the following:

• Under the assumptions (A) and (C), the set
{
u(n)

}

n≥0
is bounded in Vq,q(T̄ ).
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• If the assumptions (A), (B) and (C) are satisfied, then it follows from (43) that for all

ϕ ∈ Vp,−γ

sup
n≥1

|||u(n)|||p,∞,−δ ≤ sup
n≥1

|||u(n)|||p,∞,−γ

≤ sup
n≥0

|||Kϕu
(n)|||p,∞,−γ

≤ C sup
n≥0

|||u(n)|||p,q + ‖ϕ‖p,−γ .

• Since for all ϕ ∈ Vp,−γ we have |||u(n)−u?|||p,q → 0 as n→∞ it follows from (44) that

the sequence {Kϕu
(n)}n≥1 converges to Kϕu

? = u? in Vp,∞,−γ(T ), i.e.

sup
0≤t≤T

E
∣
∣
∣u(n)(t)− u(t)

∣
∣
∣

p

−δ
→ 0

as n → ∞. Therefore, the Chebyscheff inequality shows, that for any finite set

{t1, . . . , tk} ⊂ [0, T̄ ], we have
(

u(n)(t1), . . . , u
(n)(tk)

)

→
(

u(t1), . . . , u(tk)
)

,

as n→∞.

By Theorem 3.7.8 of Ethier and Kurtz [23] it remains to show, that the set {u(n), n ∈ IN}

is tight in L0(Ω; ID([0, T̄ ];V−γ−δ)). This implies that u(n) converges in distribution to u? and

u? ∈ L0(Ω; ID([0, T̄ ];V−γ−δ)). Proof that the Aldou’s condition is satisfied: Tracing the

calculation in (b)-(1)-(ii), we can see that there exists some ρ > 0 such that for all n ∈ IN

E
[∣
∣
∣u(n)(t+ θ)− u(n)(t)

∣
∣
∣

p

−(γ+δ)
| F

(n)
t

]

≤

θρ|||1(t,t+θ]u
(n−1)|||pp,q + C2θ

pδ|||1(0,t]Kϕu
(n−1)|||pp,∞,−γ ,

But (43) implies, that there exists some constant C < ∞ such that the RHS is bounded

by C
(
θρ + θpδ

)
. Therefore, the assumptions of Lemma A.1 are satisfied. Proof that the

compact containment condition is satisfied: In order to prove the compact containment

condition we use again the fact that the embedding Vδ̃ ↪→ V−δ is compact for all δ̃ < δ (see

Remark B.2). Claim 4.4 implies

sup
n≥1

E| sup
0≤s≤T̄

u(n)(s)|−δ̃ ≤ C
(

|||u(n−1)|||qq,q + ‖ϕ‖q,−γ

)

n ∈ IN.

Since the set {u(n) | n ∈ IN} is bounded in Vq,q(T ), i.e. there exists some C < ∞ such that

|||u(n)|||q,q ≤ C, the compact containment condition follows.

Proof of part (3) This part can be shown by the same consideration as in (a)-(3).

5. A.s. Regularity Results - Proof of Remark 2.2

Let Z be a separable Banach space, Z the Borel-σ algebra and η : Z×̂B(R+) → R+ a

Poisson random measure on Z × R+ with characteristic measure ν : Z → R+ ∈ Lsym(Z). Let

Nt(A), A ∈ Z, be the counting process defined on page 1503. Let (Ω,F ,P) be a complete
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probability space and (Ft)t≥0 be the right continuous filtration induced by η. That means, the

smallest filtration, such that the counting measure Nt(A) is Ft-measurable for all s ≤ t ≤ T

and A ∈ Z. Let Z0 = {z ∈ Z | |z| ≤ 1},

F0
t := σ (Ns(A); A ⊂ Z0, 0 ≤ s ≤ t) ,

and

FC
t := σ (Ns(A); A ⊂ Z \ Z0, 0 ≤ s ≤ t) .

Since for A,B ∈ Z, A ∩ B = ∅, the random variables η(A × (s1, s2]) and η(A × (s1, s2]) are

independent for all 0 < s1 ≤ s2 ≤ T , the two filtration F0
t and FC

t are independent. Let us

define the two probability spaces (Ω0,F0, {Ft}t,P0) and (ΩC ,FC , {F
C
t }t,PC), where Ω0 := Ω,

ΩC := Ω, F0 := ∧tF
0
t , FC := ∧tF

C
t , P0( · ) := P( · |FC), and PC( · ) := P( · |F0). From the

independence of F0 and FC it follows, that P is the product of P0 and PC .

Let E be a separable Banach space of M type p, 1 < p ≤ 2. Further we assume that the

mapping g and f satisfies the hypothesis of Theorem 2.1-(c) with δf and δg. We consider the

following SPDE






u(t) dt = (Au(t) + f(u(t−))) dt
+
∫

Z0 g(u(t−); z)η(dz; dt), t ≥ 0
u(0) = u0 ∈ E,

(50)

Given δ > 0, by Theorem 2.1–(c) it follows that Problem (50) has a unique solution u(1)

belonging to

L0
(
Ω0; ID((0, T ];V−δ)

)

such that sup0≤s≤T E|u(s)|p <∞. Let τ1 be the following FC
t –stopping time

τ1 := inf
t>0
{Nt(Z \ Z0) > 0}

and τ̄1 = τ1∧T . Note, τ1 is an exponential distributed random variable over (ΩC ,FC ,PC) with

parameter Cν := ν(Z \ Z0), independent from (Ω0,F0,P0). Let ū
(1)(t) = u(1)(t) for 0 ≤ t < τ̄1

and u(1)(t) = 0 for t ≥ τ̄1. Next, E|u(1)(τ̄1)|p can be written as

E|u(1)(τ̄1)| = E
(

E
[

|u(1)(s)|p | τ̄1 = s
])

.

Since τ1 is independent from (Ω0;F0;P0) we have

E|u(1)(τ̄1)| =

∫ τ̄1

0
PC (τ̄1 = s) E0 |u

(1)(s)|p ds

=

∫ T

0
Cνe

−sCν ds sup
0≤s≤T

E0|u
(1)(s)|p + e−TCνE0 |u(1)(T )|p,(51)

where E0 denotes the expectation with respect to the measure P0. The underlying Poisson

random measure is time homogeneous, therefore we can introduce the shift operator. We

assume that a quadruple

T = (Ω,F ,P, ϑ) ,
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is given where (Ω,F ,P, ) is a probability space and ϑ : R×Ω 3 (t, ω) 7→ ϑtω ∈ Ω is a measurable

map such that for all t, s ∈ R, ϑt+s = ϑt ◦ ϑs. Let u
(2) be a solution to







du(t) = (Au(t) + f(u(t−))) dt+
∫

Z0 g(z;u(t−)) (η ◦ ϑτ̄1) (dz; dt), t ≥ 0,

u(0) = u(1)(τ̄1−) +
∫

Z
g(z;u(1)(τ̄1−)) η(dz; {τ̄1}).

(52)

By the calculation (51) the assumptions of Theorem 2.1-(c) are satisfied. Therefore the solution

u(2) exists, is unique and belongs to

L0(Ω0; ID([0, T − τ̄1];V−δ)).

Let τ2 be the FC
t –stopping time

τ2 := inf
t>τ1

{Nt(Z \ Z0) > 1}

and τ̄2 = τ2 ∧ T . Let us define ū
(2) by

ū(2)(t) :=

{
ū(1)(t), for 0 ≤ t < τ̄1,

u(2)(t− τ̄1), for τ̄1 ≤ t < τ̄2.

Obviously, we have ū(2) ∈ L0(Ω0; ID([0, τ̄2);V−δ)). Repeating the step and taking into account

that ν(Z \ Z0) <∞, we get a countable set of stopping times {τ̄n | n ∈ IN}, where

τn := inf
t>τn−1

{Nt(Z \ Z0) > n− 1}

and τ̄n = τn ∧ T . Moreover, for each n we can define the process ū(n) ∈ ID([0, τ̄n, Vδ) by

ū(n)(t) :=

{
ū(n−1)(t), for 0 ≤ t < τ̄n−1,

u(n)(t− τn−1), for τ̄n−1 ≤ t < τ̄n,

where u(n) is the solution to the Problem






du(t) = (Au(t) + f(u(t−))) dt+
∫

Z0 g(z;u(t−))
(
η ◦ ϑτ̄n−1

)
(dz; dt), t ≥ 0,

u(0) = u(n−1)(τ̄n−1−) +
∫

Z
g(z;u(n−1)(τ̄n−1−)) η(dz; {τ̄n−1}).

We have to show, that limn→∞ ū(n) exists and belongs to L0 (Ω; ID([0, T );V−δ)). This can be

done by the amalgamation procedure of Elworthy [21, Chapter III.6]. The family of stopping

times is ordered by its natural order. To be precise τ̄n ≤ τ̄m holds a.s. as n ≤ m. The stopping

time T is an upper bound of the family of stopping times, i.e. τ̄n ≤ T and P(T − τ̄n ≥ δ)→ 0

as n → ∞, because ν(Z \ Z0) < ∞. Moreover, for each n ∈ IN, we have an adapted process

ū(n) belonging to L0(ID([0, τn);V−δ)). By Elworthy [21, Chapter III, Lemma 6B, p. 43], the

process ū : [0, T ) → V−δ exists and ū|[0,τn) = ū(n) for all n ∈ IN. Moreover, tracing the proof

of Elworthy [21, Chapter III, Lemma 6B, p. 43] one can show, that a version of the process ū

exists, such that the version belongs to L0(ID([0, T );V−δ)).
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Appendix A. The Skorohod Space

For an introduction to the Skorohod space we refer to Ethier and Kurtz [23] and Jacod and

Shiryaev [27]. The results stated in this chapter are taken from Ethier and Kurtz [23].

Let X be a separable Banach space. The space ID([0, T ];X) denotes the space of all right

continuous functions x : [0, T ] → X with left limits. Since ID([0, T ];X) is complete but

not separable in the uniform topology, we endow ID([0, T ];X) with the Skorohod topology,

which is characterized as follows: a sequence {x(n) | n ∈ IN} ⊂ ID([0, T ];X) converges to

x ∈ ID([0, T ];X) iff there is a sequence {λn}n∈IN ⊂ Λ :=
{
λ : R → R, λ(0) = 0, λ(T ) = T, and

λ is strictly increasing
}
, such that

• sup0≤s≤T |λn(s)− s| → 0 as n→∞.

• sup0≤s≤T |x
(n) ◦ λn(s)− x(s)| → 0 as n→∞.

The Skorohod topology is metrizable and the resulting metric space is separable and complete.

Nevertheless, ID([0, T ];X) is not a topological vector space (see Jacod and Shiryaev [27, Remark

VI.1.22]).

Let {x(n) | n ∈ IN} be a sequence of processes defined on the filtered probability space

(Ω(n),F (n),
(

F
(n)
t

)

0≤t≤T
,P(n)), such that x(n) ∈ ID([0, T ];X) for all n ∈ IN. Let L0(Ω; ID([0, T ];X))

be the space of all random variables x : Ω → ID([0, T ];X) topologized by convergence in dis-

tribution. Note, if the underlying metric space is separable, convergence in distribution is

equivalent to convergence in the Prohorov metric.

Definition A.1. Let (S, d) be a metric space, S denoting the Borel σ algebra of S and P(S)

is the family of Borel probability measures on S. The Prohorov ρ metric on P(S) is given by

ρ(P,Q) := inf {ε > 0 : P (F ) ≤ Q(F ε) + ε for all F ∈ C} ,

where C is the collection of closed subsets of S and

F ε =

{

x ∈ S : inf
y∈F

d(x, y) < ε

}

.

Now, under which conditions does the sequence {x(n) | n ∈ IN}, x(n) ∈ L0(Ω(n); ID([0, T ];X))

converge in law to a limit x ∈ L0(Ω; ID([0, T ];X))? By Theorem 3.7.8–(b) of Ethier and Kurtz

[23] it remains to be shown that

• {x(n) | n ∈ IN} is tight in L0(Ω; ID([0, T ];X)),

• there exists a dense set D ⊂ [0, T ] such that for any finite set {t1, . . . , tk} ⊂ D we have

(
x(n)(t1), . . . , x

(n)(tk)
)
→
(
x(t1), . . . , x(tk)

)

in distribution as n→∞.

If X is finite dimensional, then tightness of the sequence {x(n) | n ∈ IN} can be shown by the

Aldou’s condition.
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Definition A.2. Let {x(n) | n ∈ IN} be a sequence of stochastic processes with sample paths

belonging to ID([0, T ];R) and x(n) ∈ L0(Ω(n),F (n),P(n)), n ∈ IN. Let (F
(n)
t ) be the natural

filtration induced by x(n), n ∈ IN. We say the sequence {x(n) | n ∈ IN} satisfies the Aldou’s

condition, iff for all ε > 0 and δ > 0 there exist θ > 0 and n0 ∈ IN such that for any family

{τn}n∈IN, where τn is a (F
(n)
t )–stopping time on Ω(n) with τn ≤ T , we have

P(n)
(

|x(n)τn − x
(n)
(τn+h)∧T | ≥ δ

)

≤ ε, 0 < h ≤ θ, n ≥ n0.

Note, in the definition above, only τn, n ∈ IN are stopping times, θ is a constant. In case of

E being infinite dimensional we have to add to the Aldou’s condition a compact containment

condition (see e.g. Ethier and Kurtz [23, Chapter 3]) .

Definition A.3. Let {x(n) | n ∈ IN} be a sequence of stochastic processes with sample paths

belonging to ID([0, T ];R) and x(n) ∈ L0(Ω(n),F (n),P(n)), n ∈ IN. Let (F
(n)
t ) be the natural

filtration induced by x(n), n ∈ IN. We say this sequence {x(n) | n ∈ IN} satisfies the compact

containment condition, iff for each ε > 0 and every rational t > 0, there exists a compact

subset Kε,t ⊂ X, such that

P(n)
(

x(n)(s) ∈ Kε,t ∀ s ∈ [0, t]
)

≥ 1− ε, n ∈ IN.

Let X be a separable Banach space with norm | · |. The Aldou’s condition is often difficult

to verify directly. Thus, to show that {x(n) | n ∈ IN} satisfies the Aldou’s condition A.2, one

can show certain integrability conditions given the Lemma below (see Ethier and Kurtz [23,

Chapter 3.8]).

Theorem A.1. (see Ethier and Kurtz [23, Theorem 8.6, Remark 8.7 in Chapter 3]) Let X be a

separable Banach space and let {x(n) | n ∈ IN} be a sequence of stochastic processes with sample

paths in ID([0, T ];X), such that x(n) ∈ L0(Ω(n),F (n),P(n)), n ∈ IN. Let (F
(n)
t ) be the natural

filtration induced by x(n), n ∈ IN. Then {x(n) | n ∈ IN} satisfies the Aldou’s condition, if there

exists an p > 0 and a family
{
f(n)(δ) : 0 < δ < 1, n ∈ IN

}
of nonnegative random variables,

such that for all t ∈ [0, T ] and h ∈ (0, δ]

• E
[∣
∣x(n)(t+ h)− x(n)(t)

∣
∣
p
| F

(n)
t

]

≤ E
[

f(n)(δ) | F
(n)
t

]

,

• supn∈IN E
[

f(n)(δ) | F
(n)
t

]

→ 0 as δ → 0.

Similarly, the following lemma gives an integrability condition which implies A.3.

Lemma A.1. Let {x(n) | n ∈ IN} be a sequence of stochastic processes with sample path in

ID([0, T ];R), such that x(n) ∈ L0(Ω(n),F (n),P(n)), n ∈ IN. Let Γ be a subspace of E with

norm | · |Γ, such that the embedding Γ ↪→ E is compact (see Remark B.2). Then the compact

containment condition A.3 is satisfied, if some p > 0 exists, such that

sup
n∈IN

E(n) sup
0≤t≤T

∣
∣
∣x(n)(t)

∣
∣
∣

p

Γ
≤ C <∞.
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Appendix B. Analytic semigroups and fractional powers of operators

For an introduction to analytic semigroups we refer to Engel and Nagel [22] or Pazy [37],

for interpolation theory e.g. the lecture notes of Lunardi [33].

B.1. Analytic Semigroups. An important subclass of semigroups are so–called analytic

semigroups. For any ω ∈ R and θ ∈ (0, π) let

Σθ,ω = {λ ∈ C \ {ω} | | arg(λ− ω)| ≤ θ} .

Definition B.1. (Engel and Nagel [22, Definition II.4.2]) A closed linear operator (A,D(A))

with dense domain D(A) in a Banach space E is called sectorial if there exists a 0 < δ ≤ π
2

and some ω ∈ R such that the sector Σ π
2
+δ,ω is contained in the resolvent set ρ(A) and if for

each ε ∈ (0, δ) there exists Mε ≥ 1 such that

|R(λ : A)| ≤
Mε

|λ− ω|
∀0 6= λ ∈ Σ̄π

2
+δ−ε,ω,

where R(λ : A) := (λ−A)−1 denotes the resolvent of the operator A. If (A,D(A)) is sectorial

with angle δ and ω ∈ R, we say (A,D(A)) ∈ H(ω, δ).

For sectorial operators and appropriate paths γ in the complex plane, the associated semi-

group can defined via the Cauchy integral formula.

Definition B.2. (Engel and Nagel [22, Definition II.4.2]) Let (A,D(A)) be a sectorial operator

of angle δ. Define T (0) := I and operators T (z), for z ∈ σδ, by

T (z) :=
1

2πi

∫

γ

R(λ;A) dλ,

where γ is any piecewise smooth curve in Σ π
2
+δ going from ∞e−i(π

2
+δ′) to ∞ei(

π
2
+δ′) for some

δ′ ∈ (| arg(z)|, δ)).

It can be shown (see e.g. [22, Proposition II.4.3] or [37, Theorem 2.5.2]), that the in Definition

B.1 defined semigroup of an sectorial operator is analytic.

Definition B.3. (Engel and Nagel [22, Definition II.4.5]) A family of operators (T (z))z∈Σδ∪{0} ⊂

L(E) is called an analytic semigroup if:

(i) T (0) = I and T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ Σδ.

(ii) The map z → T (z) is analytic in Σδ.

(iii) limz→0,z∈Σδ′ T (z)x = x for all x ∈ E and 0 < δ′ < δ.

B.2. Fractional Power of Operators. For a sectorial operatorA, where (A,D(A)) ∈ H(0, δ),

0 < δ < π
2 arbitrary and α > 0 one can define fractional powers of the operator.

Definition B.4. Let σ ⊂ C be an open sector, such that R+ ⊂ Σ ⊂ ρ(A). For α > 0 the

bounded linear operator (−A)α is defined by

(−A)α :=
1

2πi

∫

γ

λ−αR(λ,A)dλ,
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where the path γ is a piecewise smooth part Σ \R+ going from ∞e−iδ to ∞eiδ for some δ > 0.

Definition B.5. Let A be a sectorial operator. For every α > 0 we define

Aα = ((−A)−α)−1.

For α = 0, Aα = I.

In order to study regularity property of solution of some Cauchy problem it is convenient

to introduce several scales of subspaces of E, e.g. domain of fractional powers of operators. In

particular, if α ≥ 0, then Vα := D((−A)α) equipped with norm | · |α := |(I −A)α · |. Let V−n,

n ∈ IN be the completion of E with respect to the norm | · |−n := |(−A)−n · |. If α < 0 such

that α = −n + β for some n ∈ IN and β ∈ (0, 1], then Vα := {x ∈ V−n | |(I − A)βx|−n < ∞}

equipped with norm | · | := |(I −A)β · |−n.

Remark B.1. In the following we will use certain interpolation inequalities. In particular let E

be a separable Banach space, A be a operator generating an analytic semigroup (exp(−ωt)St)t≥0

of contraction on E. Then there exists a constant C <∞, such that we have (see e.g. (see e.g.

[22, Theorem II.4.6] or Pazy [37, Theorem 2.6.3])

|(−A)αS(t)x|α ≤ C exp(ωt) t−α, α ≥ 0.

Remark B.2. (See Bergh and Löfström [5, Corollary 3.8.2]) Let E be a separable Banach

space and A : E → E a sectorial operator. If the embedding V1 = D(A) ↪→ E is compact, then

for any δ ∈ (0, 1) the embedding Vδ ↪→ E is compact as well.

I would like to thank the anonymous referee for his carefull proof reading and helpful re-

marks.
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