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Abstract

The question considered in this paper is which sequences of p-integrable random variables
can be represented as conditional expectations of a fixed random variable with respect to a given
sequence of σ-fields. For finite families of σ-fields, explicit inequality equivalent to solvability
is stated; sufficient conditions are given for finite and infinite families of σ-fields, and explicit
expansions are presented.

1 Introduction

We analyze which sequences of random variables {Xj} can be represented as conditional expecta-
tions

E(Z|Fj) = Xj. (1)

of a p-integrable random variable Z with respect to a given sequence (Fj) of σ-fields. The martingale
theory answers this question for families of increasing σ-fields (Fj). We are interested in other cases
which include σ-fields generated by independent, or Markov dependent (see [3]), random variables.
In particular, given a random sequence ξj and p-integrable random variables Xj = fj(ξj), we
analyze when there exists Z ∈ Lp such that

Xj = E(Z|ξj). (2)

This is motivated by our previous results for independent random variables and by the alternating
conditional expectations (ACE) algorithm of Breiman & Friedman [4]. In [4] the authors are
interested in the L2-best additive prediction Z of a random variable Y based on the finite number
of the predictor variables ξ1, . . . , ξd. The solution (ACE) is based on the fact that the best additive
predictor Z = φ1(ξ1) + . . .+ φd(ξd) satisfies the conditional moment constraints (2).

Relation (1) defines an inverse problem, and shares many characteristics of other inverse prob-
lems, c. f. Groetsch [9]. Accordingly, our methods partially rely on (non-constructive) functional
analysis. We give sufficient conditions for the solvability of (1) in terms of maximal correlations.
We also show that (2) has solution for finite d < ∞, if the joint density of ξ1, . . . , ξd with respect
to the product of marginals is bounded away from zero and EXi = EXj.

1Partially supported by C. P. Taft Memorial Fund and Office of Naval Research Grant N00014-93-0043.
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We are interested in both finite, and infinite sequences, extending our previous results in [5, 6].
In this paper we concentrate on the p-integrable case with 1 < p < ∞. The extremes p = 1 or
p =∞ seem to require different assumptions. For infinite sequences of independent r. v. all three
cases 1 < p <∞, p = 1, and p =∞ are completely solved in [6]. For finite sequences of dependent
σ-fields, Kellerer [10] and Strassen [16] can be quoted in connection with conditional expectations
problem for bounded random variables (p = ∞) case. For pairs of σ-fields the case 1 < p < ∞ is
solved in [5].

2 Notation and results

For 2 ≤ d ≤ ∞, let {Fj}1≤j≤d be a given family of σ-fields. By L0
p(F) we denote the Banach

space of all p-integrable F -measurable centered random variables, 1 ≤ p ≤ ∞. By Ej we denote
the conditional expectation with respect to Fj. For d < ∞ by

⊕d
j=1 Lp(Fj) we denote the set of

sums Z = Z1 + . . .+ Zd, where Zj ∈ Lp(Fj).
We shall analyze the following problems.

• For all consistent Xj ∈ Lp find Z ∈ Lp satisfying (1) and such that

E|Z|p is minimum. (3)

• For all consistent Xj ∈ Lp find additive Z ∈ Lp satisfying (1); additive means that

Z =
d∑
j=1

Zj , where Zj ∈ Lp(Fj). (4)

(for d =∞ the series in (4) is assumed to converge absolutely in Lp)

The above statements do not spell out the consistency conditions which will be explicit in the
theorems.

Remark 2.1 If (1) can be solved, then there exists a minimal solution Z. This can be easily
recovered from the Komlós law of large numbers [11].

2.1 Maximal correlations

Maximal correlation coefficients play a prominent role below; for another use see also [4, Section
5]. The following maximal correlation coefficient is defined in [5]. Let

ρ̃(F , G) = sup {corr(X, Y ) : X ∈ L2(F), Y ∈ L2(G), E(X|F ∩ G) = 0}.

Notice that ρ̃(F , G) = 0 for independent F , G but also for increasing σ-fields F ⊂ G. If the
intersection F ∩ G is trivial, ρ̃ coincides with the usual maximal correlation coefficient, defined in
general by

ρ(F , G) = sup
X∈L2(F),Y ∈L2(G)

corr(X, Y ). (5)

Given d ≤ ∞, σ-fields {Fj}j≤d, and a finite subset T ⊂ I := {1, 2, . . . , d} put

FT = σ(Fj : j ∈ T ).
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Define pairwise maximal correlation r by

r = sup
i6=j

ρ(Fi,Fj)

and global maximal correlation
R = sup

T∩S=∅
ρ(FT ,FS).

For p = 2 a version of R based on additive r. v. will also play a role. Let

R` = sup

corr(U, V ) : U =
∑
j∈T

Xj, V =
∑
j∈S

Xj, Xj ∈ L2(Fj), T ∩ S = ∅

 .
Clearly, r ≤ R` ≤ R. All three coefficients coincide for two σ-fields d = 2 case. One can easily

see that R` = 0 and R = 1 can happen already for d = 3.

2.2 Main results

In Section 2.4 we present complete solution of (1) for the two σ-fields case. For general families
of σ-fields, there seems to be little hope to get existence and uniqueness results as precise as for
d = 2. As Logan & Shepp [12] point out, complications arise even in relatively simple situations.
One source of difficulties is the possibility of linear dependence between vectors in L0

p(Fj). Suitable
assumptions on maximal correlation coefficients exclude this possibility.

The following result extends [6, Corollary 1] to infinite sequences of dependent families of σ-
fields.

Theorem 2.1 (i) Fix 1 < p < ∞ and suppose R < 1. Then equation (1) is solvable for Z for all
Xj ∈ L0

p(Fj) such that

E(
∑
j

|Xj|2)p/2 <∞,

and the solution is unique.
(ii) If R` < 1 then for all Xj ∈ L0

2(Fj) such that
∑
j EX

2
j < ∞ there exists a unique additive

solution Z to (1), and it satisfies

E|Z|2 ≤ 1 +R`
1−R`

∑
j

E|Xj|2.

If one is not interested in sharp moment estimates for Z and only finite families d < ∞ are
of interest, then one can iterate Theorem 2.11 for a pair of σ-fields, relaxing the assumption that
R < 1. By Lemma 3.2, iterated Theorem 2.11 yields the following.

Theorem 2.2 If d <∞,
ρ? = max

1≤j≤d
ρ(F{1,...,j},Fj+1) < 1, (6)

and 1 < p <∞, then equation (1) has an additive solution Z to (1) for all Xj ∈ L0
p(Fj).
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The following criterion for solvability of the additive version of (1) uses the pairwise maximal
correlation r and gives explicit alternative to ACE. For d = 2 the assumptions are close to [5],
except that we assume p = 2 and (implicitly) linear independence.

Theorem 2.3 If d < ∞, r < 1
d−1 , and p = 2, then for all Xj ∈ L2(Fj) with EXi = EXj there

exists a unique Z ∈ L2 such that (1) and (4) hold.
Moreover, the solution is given by the explicit series expansion

Z = EX1

+
∞∑
k=0

(−1)k
∑
i1∈I

∑
i2∈I\i1

. . .
∑

ik∈I\ik−1

Ei1 . . .Eik
∑

j∈I\ik
(Xj −EXj)

(7)

(with the convention
∑
j∈∅Xj = 0).

Furthermore,

V ar(Z) ≤ 1

1− r(d− 1)

d∑
j=1

V ar(Xj).

Results in [4, Proposition 5.2] can be recovered from maximal correlation methods as follows.
For finite families of σ-fields, Lemma 3.2 states inequality (12) which is equivalent to solvability
of (1). This inequality is verified in Lemma 3.5 under the assumptions motivated by Breiman &
Friedman [4].

Corollary 2.4 ([4], Proposition 5.2) If d < ∞, vector spaces L0
2(Fj) are linearly independent,

and for all 1 ≤ j, k ≤ d, k 6= j, the operators

Ej : L0
2(Fk)→ L0

2(Fj)

are compact, then for all square integrable X1, . . . , Xd with equal means, there exists a unique
additive solution Z to (1).

2.3 Conditioning with respect to random variables

We now state sufficient conditions for solvability of (1) in terms of joint distributions for finite
families d <∞ of σ-fields generated by random variables Fj = σ(ξj).

We begin with the density criterion that gives explicit estimate for R, and was motivated by [15].
By Lemma 3.2, it implies that (1) has a unique additive solution Z for all 1 < p < ∞. Although
it applies both to discrete and continuous distributions (typically, the density in the statement is
with respect to the product of marginals), it is clear that the result is far from being optimal.

Theorem 2.5 Suppose there is a product probability measure µ = µ1 ⊗ . . . ⊗ µd such that the
distribution of ξ1, . . . , ξd on IRd is absolutely continuous with respect to µ and its density f is
bounded away from zero and infinity, 0 < b ≤ f(x1, . . . , xd) ≤ B <∞. Then

R ≤ 1− b

B2
.

Next we give sufficient conditions in terms of bivariate densities only. The result follows from
[14, page 106, Exercise 15] and Corollary 2.4 and is stated for completeness only.
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Proposition 2.6 ([4]) Suppose d <∞ and for every pair of i 6= j the density fi,j of the distribu-
tion of (ξi, ξj) with respect to the product measure µi,j = µi ⊗ µj of the marginals exists and

max
i6=j

∫ ∫
f2
i,j(x, y)dµi(x)dµj(y) <∞. (8)

If vector spaces L0
2(Fj) are linearly independent p = 2, then R` < 1. In particular, (1) has a unique

additive solution Z for all square integrable X1, . . . , Xd with equal means.

In general, linear independence is difficult to verify (vide [12], where it fails). The following
consequence of Proposition 2.6 gives a relevant “density criterion”.

Corollary 2.7 Suppose the density f of the distribution of ξ1, . . . , ξd (d < ∞) with respect to the
product of marginals µ = µ1 ⊗ . . .⊗ µd exists. If f is strictly positive, i.e.,

µ({(x1, . . . , xd) : f(x1, . . . , xd) = 0}) = 0

and
∫
f2dµ < ∞ then there exists an additive solution to (1) for all Xj ∈ L2(Fj) such that

EXi = EXj.

In relation to Theorem 2.5, one should note that the lower bound on the density is of more relevance.
(On the other hand, in Theorem 2.5 we use the density with respect to arbitrary product measure
rather than the product of marginals.)

Proposition 2.8 Let f be the density of the absolute continuous part of the distribution of ξ1, . . . , ξd
(d < ∞) with respect to the product of marginals µ = µ1 ⊗ . . .⊗ µd. If f is bounded away from
zero, i.e., there is b > 0 such that µ({(x1, . . . , xd) : f(x1, . . . , xd) ≥ b}) = 1, then (12) holds for all
1 < q < ∞. In particular, for 1 < p <∞ and Xj ∈ Lp(Fj) such that EXi = EXj there exists an
additive solution to (1).

2.4 Results for two σ-fields

This case is rather completely settled. Most of the results occurred in various guises in the literature.
They are collected below for completeness, and to point out what to aim for in the more general
case.

The following shows that for d = 2 there is at most one solution of (1) and (4). (Clearly, there
is no Z if X1, X2 are not consistent, e.g., if EX1 6= EX2.)

Proposition 2.9 Given Xj ∈ Lp(Fj), 1 ≤ p ≤ ∞, there exists at most one Z = Z1 +Z2 +Z′ ∈ L1

such that (1) holds, Zj ∈ Lp(Fj), and E(Zj|F1 ∩ F2) = 0.

Since best additive approximations satisfy (1), uniqueness allows to consider the inverse problem
(1) instead. This is well known, c.f., [8].

Corollary 2.10 If p = 2 and the best additive approximation Z = Z1 +Z2 +Z′ of Y ∈ L2 (i.e., Z
minimizing E (Y −E(Y |F1 ∩ F2)− (Z1 + Z2))2) exists, then it is given by the solution to (1).

The following result points out the role of maximal correlation and comes from [5].
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Theorem 2.11 ([5]) Suppose 1 < p <∞ is fixed. The following conditions are equivalent:

1. There exists a minimal solution to (1) for all consistent X1, X2 in Lp(F1), Lp(F2) respectively;

2. There exists an additive solution to (1) for all consistent X1, X2 in Lp(F1), Lp(F2) respec-
tively;

3. ρ̃ < 1.

The consistency condition is

E{X1|F1 ∩ F2} = E{X2|F1 ∩ F2}.

Furthermore, if E(Z|F1 ∩ F2) = 0, the minimum norm in (3) is bounded by

E|Z|2 ≤ 1

1− ρ̃(EX2
1 + EX2

2)

and the bound is sharp.
The solution Z is given by the follwoing series expansion which converges in Lp

Z = E(X1|F1 ∩ F2) +
∞∑
k=0

(E2E1)k(X2 − E2X1) +
∞∑
k=0

(E1E2)k(X1 − E1X2). (9)

Remark 2.2 Formula (9) resembles the expansion for the orthogonal projection of L2 onto the
closure of (L2(F1)⊕ L2(F2)) (see [1]).

Z = E{Y |F1 ∩ F2}+
∞∑
k=1

(
E1(E2E1)k + E2(E1E2)k − (E1E2)k − (E2E1)k

)
Y. (10)

3 Proofs

The following uniqueness result is proved in [4] for the square-integrable case p = 2 (the new part
is 1 < p < 2).

Lemma 3.1 (i) If L0
p(Fj) are linearly independent, p ≥ 2, and d < ∞, then for every {Xj} in

Lp(Fj), there is at most one solution of (1) in the additive class (4).
(ii) If inequality (12) holds with q = 2, then for every {Xj} in Lp(Fj), p ≥ 2, there is at most one
solution of (1) in the additive class (4).
(iii) Fix 1 < p <∞. If there are constants c, C such that for all centered {Xj} ∈ Lq(Fj) inequality

cE(
d∑
j=1

X2
j )q/2 ≤ E|

d∑
j=1

Xj|q ≤ CE(
d∑
j=1

X2
j )q/2 (11)

holds for q = p and for the conjugate exponent q = p
p−1 , then for every {Xj} in Lp(Fj) there is at

most one solution of (1) in the additive class (4).
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Proof of Lemma 3.1. The case p = 2 goes as follows. Suppose Z = Z1 + Z2 + . . . has Ej(Z) = 0
for all j. Then EZ2 =

∑
j EZZj =

∑
j E(ZjEj(Z)) = 0. This implies that Zj = 0 for all j either

by linear independence, or by (12).
The second part uses the existence part of the proof of Theorem 2.1. Take Z =

∑
j Zj (Lp-

convergent series) such that Ej(Z) = 0. Then by (11)

‖Z‖p ≤ C(E(
∑
j

Z2
j )p/2)1/p = C

∑
j

E(ZjXj),

where E(
∑
j X

2
j )q/2 = 1, 1/p+ 1/q = 1 and Xj ∈ L0

q(Fj). The latter holds because the conjugate
space to L0

q(`2(Fj)) is L0
p(`2(Fj)). The existence part of the proof of Theorem 2.1 implies that

there is Z̃ ∈ Lq such that Ej(Z̃) = Xj and Z̃ =
∑
j Z̃j with Z̃j ∈ L0

q(Fj). Therefore∑
j

E(ZjXj) =
∑
j

E(ZjZ̃) = E(ZZ̃) = E(Z
∑
j

Z̃j) =
∑
j

E(Z̃jEj(Z)) = 0.

This shows E|Z|p = 0 and by the left hand side of (11) we have Zj = 0 a.s. for all j. 2

Proof of Proposition 2.9. Clearly Z′ = E{Z|F1∩F2} is uniquely determined by Z and without
loosing generality we may assume Z′ = 0. Suppose that Z = Z1 + Z2 satisfies EjZ = 0. Then
Z1 = TZ1, where T = E1E2. Using this iteratively, by “alternierende Verfahren” (see [13]) we get
Z1 = (E1E2)kZ1 → E(Z1|F1 ∩ F2) = 0. By symmetry, Z2 = 0 and the proof of uniqueness follows.
2

Proof of Corollary 2.10. Without loss of generality we may assume E(Y |F1 ∩ F2) = 0. For
optimal Z = Z1 + Z2 we have

min = E (Y − (Z1 + Z2))2

= E (Y − (E1(Y )− E1(Z2) + Z2))2 + E (E1(Y )− E1(Z))2

≥ min +E (E1(Y )− E1(Z))2 .

Since the same analysis applies to E2, the optimal Z has to satisfy (1). By Theorem 2.9, there is
only one such Z, so this one has to be the optimal one.2

Proof of Theorem 2.11. Let L0
p denote the null space of the linear operator E(·|F1∩F2) on Lp.

If E(Yj|F1 ∩ F2) = 0 we have

E(Y1 + Y2)2 ≥ EY 2
1 +EY 2

2 − 2ρ̃(EY 2
1 EY

2
2 )1/2 ≥ (1− ρ̃)(EY 2

1 + EY 2
2 ).

Therefore the linear operator
T : L0

2 → L0
2(F1)×L0

2(F2)

given by T (Y ) = (E1(Y ), E2(Y )) is onto and the norm of its left inverse is bounded by (1− ρ̃)−1/2.
This proves the bound EZ2 ≤ (EX2

1 + EX2
2)/(1− ρ̃).

Because of the explicit formula for Z, it is clear that 3⇒2; implication 2⇒1 holds by general
principles (see Remark 2.1). The equivalence 1⇔3 is in [5]. 2

Remark 2.1 says that if for a given sequence {Xj} equation (1) is solvable in the additive class
(4), then there exists also a minimal solution (3). The following shows that for finite families of σ-
fields the solvability of both problems is actually equivalent, at least when constraints EXi = EXj

are the only ones to be used.
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Lemma 3.2 Fix 1 < p <∞ and suppose d <∞. The following conditions are equivalent
(i) Equation (1) has an additive (4) solution Z for all Xj ∈ L0

p(Fj);
(ii) Equation (1) has a minimal (3) solution Z for all Xj ∈ L0

p(Fj);
(iii) There exists δ = δ(q) > 0 such that for all Xj ∈ L0

q(Fj)

E|
∑
j

Xj|q ≥ δq
∑
j

E|Xj|q, (12)

where 1/p+ 1/q = 1.
Moreover, if inequality (12) holds, then there exists an additive solution Z to (1) with

E|Z|p ≤ 1

δp

∑
j

E|Xj|p.

Remark 3.1 If in addition L0
q(Fj) are linearly independent, then the following equivalent condition

can be added:
(iv) L0

q(F1)⊕ . . .⊕ L0
q(Fd) is a closed subspace of Lq(FI).

Proof of Lemma 3.2. (iii)⇒(i) Consider the linear bounded operator T : Lp → `p(L
0
p(Fj))

defined by Z 7→ (E(Z|Fj) : j = 1, . . . , d). The conjugate operator T ? : `q → Lq is given by
(Xj) 7→

∑d
j=1 Xj.

Coercivity criterion for T being onto, see [14, Theorem 4.15], is

‖T ?(Xj)‖Lq ≥ δ‖(Xj)‖`q ,

which is (12). Therefore (i) follows.
The left-inverse operator has `p → Lp operator norm ‖T−1‖ ≤ 1/δ, which gives the estimate of

the norm of Z as claimed.
(i)⇒(ii) If there is additive solution, then Xj are consistent and Remark 2.1 implies that there

is a solution with the minimal Lp-norm.
(ii)⇒(iii) If for every sequence Xj there exist Z such that (1) holds, then the linear operator

T : L0
p → L0

p(F1)× . . .× L0
p(Fd) given by Z 7→ (Ej(Z)) is onto. Therefore the conjugate operator

satisfies
‖T ?(X1, . . . , Xd)‖q ≥ δ‖(X1, . . . , Xd)‖`q(Lq(Fj))

and inequality (12) follows, see [14, Theorem 4.15].
2

Proof of Remark 3.1. (iv)⇒(iii) If L0
q(F1) ⊕ . . .⊕ L0

q(Fd) is a closed subspace of Lq(FI) then
(12) holds. Indeed, by linear independence, the linear operator (X1 + . . .+Xd) 7→ (X1, . . . , Xd) is
an injection of the Banach space L0

q(F1)⊕ . . .⊕ L0
q(Fd) with `q norm into L0

q(F1)× . . .× L0
q(Fd).

Since the range is closed, the open mapping theorem ([14, Theorem 2.11]) implies (12).
(iii)⇒(iv) is trivial. 2

Proof of Theorem 2.1. From the proof of Bryc & Smoleński [7, (7)] we have the left hand side
of the inequality

cE|
d∑
j=1

εjXj|q ≤ E|
d∑
j=1

Xj|q ≤ CE|
d∑
j=1

εjXj|q.
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The right hand side is stated as [7, (7)].
By the Khinchin inequality this implies (11). ( Note that a more careful analysis gives explicit

estimates for the constants involved.)
For q = 2 the above is replaced by

1− R`
1 + R`

d∑
j=1

EX2
j ≤ E|

d∑
j=1

Xj|2 ≤
1 +R`
1−R`

d∑
j=1

EX2
j ,

which is stated in [2, Lemma 1].
Existence of the solution follows now from functional analysis. Consider the bounded linear

(c.f. (11)) operator T : L0
p → L0

p(`2(Fj)) defined by Z 7→ (E(Z|Fj) : j = 1, 2, . . .). The conjugate
operator T ? : L0

q(`2)→ L0
q is given by (Xj) 7→

∑∞
j=1 Xj.

Coercivity criterion for T being onto, see [14, Theorem 4.15], is

‖T ?(Xj)‖Lq ≥ δ‖(Xj)‖Lq(`2),

which follows from (11). Therefore the existence of a solution to (1) follows and the minimal
solution exists by Remark 2.1.

For p = 2 inequalities (11) show that L0
2(`2) = `2

(
L0

2(Fj)
)
3 (Xj) generates the L2 convergent

series
∑
j Xj. Denote by H the set of random variables represented by such series. By (11) H

is closed and since the orthogonal projection onto H shrinks the norm, the minimal solution to
(1) has to be in H , thus it is additive (4). The left-inverse operator has `2 → L2 operator norm
‖T−1‖ ≤ (1−R`

1+R`
)1/2, which gives the estimate for the norm of Z as claimed.

The uniqueness follows from (11) by Lemma 3.1.2

Proof of Theorem 2.2. Use Theorem 2.11 to produce recurrently
F1,2-measurable Z1 such that E1(Z1) = X1, E2(Z1) = X2;
F1,2,3-measurable Z2 such that E1,2(Z2) = Z1, E3(Z2) = X3;
...
F1,...,d-measurable Zd such that E1,...,d−1(Zd) = Zd−1, Ed(Zd) = Xd.
This shows that for all d < ∞ there is a solution to (1), and hence a minimal solution exists.
Therefore, by Lemma 3.2 there exists an additive solution (4).

The fact that inequality (12) holds with q = 2 and δ = (1− ρ?)d/2 follows recurrently from

E(
k∑
j=1

Xj +Xk+1)2 ≥ (1− ρ?)(E(
k∑
j=1

Xj)
2 + EX2

k+1).

For d <∞ inequality (12) implies (11), which by Lemma 3.1 implies uniqueness. 2

Proof of Theorem 2.3.
To verify that the series (7) converges, notice that for j 6= ik

‖Ei1 ...Eik‖L0
2(Fj)→L0

2
≤ rk.

Therefore
‖
∑
k

(−1)k
∑
i1∈I

∑
i2∈I\i1

. . .
∑

ik∈I\ik−1

Ei1 . . .Eik
∑
j∈I\ik

(Xj − EXj)‖2
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≤ 2d
∑
k

(d− 1)krk max
j
‖Xj‖2.

Clearly, (4) holds true. We check now that Z defined by (7) satisfies (1). To this end, without
loss of generality we assume EXj = 0 and we verify (1) for j = 1 only. Splitting the sum (7) we
get

E1(Z) =
∞∑
k=0

(−1)k
∑
i2∈I\1

. . .
∑

ik∈I\ik−1

E1Ei2 . . .Eik
∑

j∈I\ik

(Xj − EXj)

+
∞∑
k=0

(−1)k
∑
i1∈I\1

∑
i2∈I\i1

. . .
∑

ik∈I\ik−1

E1Ei1 . . .Eik
∑

j∈I\ik
(Xj − EXj).

The 0-th term of the first series is X1 and the k-th term of the first series cancels the (k− 1) term
of the second series. Therefore E1(Z) = X1.

To prove the uniqueness, it suffices to notice that r < 1
d−1 implies linear independence. Alter-

natively, suppose that both Z = Z1 + . . .+ Zd and Z′ = Z1
′ + . . .+ Zd

′ have the same conditional
moments E1. Then ‖Z1 − Z1

′‖2 = ‖E1(Z2 + . . .+ Zd)− E1(Z2
′ + . . .+ Zd

′)‖ ≤ r∑d
j=2 ‖Zj − Zj ′‖2,

and the similar estimate holds for all other components. Therefore
∑d
j=1 ‖Zj − Zj

′‖2 ≤ r(d −
1)
∑d
j=1 ‖Zj − Zj ′‖2. Since r < 1/(d− 1), this implies that the sum vanishes, proving uniqueness.

To prove the variance estimate notice that r < 1/(d − 1) implies (12) with p = 2 and δ2 =
1− r(d− 1). Indeed,

E|
d∑
j=1

Xj|2 ≥
d∑
j=1

EX2
j − r

∑
j 6=k

(EX2
jEX

2
k)1/2.

The estimate now follows from the elementary inequality

1

d− 1

d∑
j=1

d∑
k=1,k 6=j

akaj ≤
1

d− 1

d∑
j=1

d∑
k=1,k 6=j

1

2
(a2
k + a2

j ) =
d∑
j=1

a2
j ,

valid for arbitrary numbers a1, . . . , ad. 2

Proof of Theorem 2.5. Take U ∈ L2(FS), V ∈ L2(FT ) with disjoint S, T ⊂ I and such that
EU = EV = 0, EU2 = EV 2 = 1, EUV = ρ. Then

E(U − V )2 = 2− 2ρ ≥ 2
b

B2
.

Indeed, we have

E(U − V )2 =
∫

IRd
(U(x)− V (x))2f(x)dµ(x) ≥ b

∫
IRd

(U(x)− V (x))2dµ(x)

= b

∫
IRd

∫
IRd

(U(x)− V (y))2dµ(y)dµ(x)

≥ b

B2

∫
IRd

∫
IRd

(U(x)− V (y))2f(y)dµ(y)f(x)dµ(x) =
2b

B2
.

2

Since the above analysis can also be carried through for E(U + V )2, we get the following.
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Corollary 3.3 (c.f.[15] Lemma 1) Under the assumption of Theorem 2.5, for Vj ∈ L0
2(Fj) we

have

E|V1 + . . .+ Vd|2 ≥
b

2B2 − b(EV 2
1 + . . .+ EV 2

d )

Lemma 3.4 Let f be the density of the absolute continuous part of the distribution of ξ1, . . . , ξd
(d < ∞) with respect to the product of marginals µ = µ1 ⊗ . . .⊗ µd. If f is strictly positive, i.e.,
µ({(x1, . . . , xd) : f(x1, . . . , xd) = 0}) = 0, then vector spaces L0

2(Fj) are linearly independent.

Proof of Lemma 3.4. Suppose X1 = X1(ξ1), . . . , Xd = Xd(ξd) ∈ L0
2 are non-zero. Denote by µ

the product of marginal measures on IRd and let

Aε = {(x1, . . . , xd) : f(x1, . . . , xd) > ε}.

Choose ε > 0 such that ∫
Acε

|
∑

Xj|2dµ <
1

2

∑
EX2

j .

Then

E|
∑

Xj|2 ≥
∫
Aε

|
∑

Xj(xj)|2f(x1, . . . , xd)dµ

≥ ε
∫
Aε
|
∑

Xj|2dµ ≥
ε

2

∑
EX2

j > 0.

This proves linear independence of Xj.
2

Proof of Proposition 2.8. This follows the proof of Proposition 3.4 with ε = b. Namely,

E|
∑

Xj|q ≥ b
∫

IRd
|
∑

Xj|qdµ ≥ cE(
∑

X2
j )q/2.

The last inequality holds by the Marcinkiewicz-Zygmund inequality, because under µ random vari-
ables Xj are independent and centered. 2

Lemma 3.5 If d <∞, vector spaces L0
2(Fj) are linearly independent, and for all 1 ≤ j ≤ d, k 6= j,

the operators EjEk : L0
2(Fk) → L0

2(Fj) are compact, then R` < 1; hence inequality (12) holds for
q = 2.

Proof of Lemma 3.5. The proof is similar to the proof of Proposition 2.9 with T = PSPQ, where
S,Q are disjoint and PQ denotes the orthogonal projection onto the L2-closure of

⊕
j∈QL

0
2(Fj);

operator T is compact, compare [4, Proposition 5.3]. Details are omitted. 2

4 Example

The following simple example illustrates sharpness of some moment estimates.
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Example 4.1 Let d < ∞. Suppose X1, . . . , Xd are square-integrable, centered and have linear
regressions, i.e., there are constants ai,j such that E(Xi|Xj) = ai,jXj for all i, j (for example, this
holds true for (X1, . . . , Xd) with elliptically contoured distributions, or when all Xj are two-valued).
Let C = [Ci,j] be their covariance matrix. Clearly, if either R` < 1 or r < 1/(d− 1), then C is non
degenerate.

Explicit solutions illustrating Theorems 2.11, 2.1, and 2.3 are then possible:

It is easy to check that Z =
∑d
j=1 θjXj, where

 θ1
...
θd

 = C−1

 1
...
1

, satisfies E(Z|Xj) = Xj for all

j, and Z has additive form. In the special case when corr(Xi, Xj) = ρ does not depend on i 6= j,

Z =
1

1 + (d− 1)ρ
(X1 + . . .+Xd).

It is easy to see directly from

E(X1 + . . .+Xd)
2 = d+ d(d− 1)ρ ≥ 1−R

1 +R

that

(d− 1)ρ ≥ − 2R

1 +R
> −1,

provided R` < 1. Therefore Z is well defined.
In particular, for d = 2 we have Z = 1

1+ρ(X1 +X2), which points out the sharpness of estimates

for EZ2 in Theorem 2.11 when ρ < 0.
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