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Abstract
In this article we consider the sample covariance matrix formed from a sequence of indepen-
dent and identically distributed random vectors from the generalized domain of attraction of
the multivariate normal law. We show that this sample covariance matrix, appropriately nor-
malized by a nonrandom sequence of linear operators, converges in probability to the identity
matrix.
1. Introduction:
Let X, X1, X2 · · · be iid Rd valued random vectors with L(X) full. The condition of fullness
is the multivariate analogue of nondegeneracy and will be in force throughout this article.
It means that L(X) is not concentrated on any d − 1 dimensional hyperplane. Equivalently,
〈X, θ〉 is nondegenerate for every θ. Here 〈 , 〉 denotes the inner product.
Throughout this article all vectors in Rd are assumed to be column vectors. For any matrix, A,
At denotes its transpose. Let X̄n = 1

n

∑n
i=1 Xi. We denote and define the sample covariance

matrix by Cn = 1
n

∑n
i=1(Xi − X̄n)(Xi − X̄n)t. That Cn has a unique nonnegative symmetric

square root, denoted above by C
1/2
n , follows from the fact that 〈Cnθ, θ〉 =

∑n
i=1〈Xi−X̄n, θ〉2 ≥

0, so that Cn is nonnegative. Also, Cn is clearly symmetric. However, there is no guarantee
that Cn is invertible with probability one.
In [3] we describe two ways to circumvent the problem of lack of invertibility of Cn. One such
approach is to define

Bn =
{

Cn if Cn is invertible
I otherwise

(1.3)

The success of this approach relies on the fact that if L(X) is in the Generalized Domain of
Attraction of the Normal Law (see (1.6) below for the definition), then P (Cn = Bn) → 1. (See
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[3], Lemma 5.) In light of this, we will assume without loss of generality that Cn is invertible.
L(X) is said to be in the Generalized Domain of Attraction (GDOA) of the Normal Law if
there exist matrices An and vectors vn such that

An

n∑
i=1

Xi − vn ⇒ N(0, I). (1.6)

One construction of An is such that An is invertible, symmetric and diagonalizable. See Hahn
and Klass [2].
The main result is Theorem 1 below. This result was shown in Sepanski [5]. However, there
the proof was based on a highly technical comparison of the eigenvalues and eigenvectors of
Cn and An. There the proof was essentially real valued. The purpose of this note is to give a
more efficient proof that is operator theoretic and multivariate in nature. For more details, we
refer the interested reader to the original article. In particular, Sepanski [5] contains a more
complete list of references.

2. Results
Theorem 1: If the law of X is in the generalized domain of attraction of the multivariate
normal law, then √

nAnC1/2
n → I in pr.

Proof: Let Pn(ω) denote the empirical measure. That is, Pn(ω)(A) = 1
n

∑n
i=1 I[Xi(ω) ∈ A].

Here I is the indicator function. For each ω ∈ Ω let X∗
1 , · · ·X∗

n be iid with law Pn(ω).
Sepanski [4], Theorem 2, shows that under the hypothesis of GDOA,

An

n∑
j=1

X∗
j − nµ ⇒ N(0, I) in pr.

Sepanski [3], Theorem 1, shows that under the hypothesis of GDOA,

(nCn)−1/2
n∑

j=1

X∗
j − nµ ⇒ N(0, I) in pr.

These two results, together with the multivariate Convergence of Types theorem of Billingsley
[1], imply that

(nCn)−1/2 = BnRnAn, (1)

where Bn → I in pr., and Rn are (random) orthogonal. The proof of Theorem 1 is thereby
reduced to showing that Rn → I in pr. However, convergence in probability is equivalent to
every subsequence having a further subsequence which converges almost surely. This reduces
the proof to a pointwise result about the behavior of the linear operators.
Write An = QnDnQt

n where Qn is orthogonal and Dn is diagonal with nonincreasing diagonal
entries. Let Pn = QnRnQt

n and Kn = QnBnQt
n.

‖Kn − I‖ = ‖Qt
nBnQn − Qt

nQn‖ ≤ ‖Bn − I‖ → 0

By the same token, Rn → I if and only if Pn → I. Also, (nCn)−1/2 is positive and symmetric
and therefore so are BnRnAn and KnPnDn. The proof of Theorem 1 is reduced to the following
lemma.
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Lemma 2: Let Pn be orthogonal. Let Dn = diag(λn1, · · · , λnd) be diagonal such that λn1 ≥
λn2 ≥ · · · ≥ λnd > 0. Suppose Kn → I. If KnPnDn is positive and symmetric for every n,
then Pn → I.

Proof: Given a subsequence of Pn we show that there is a further subsequence along which
Pn → I. Let En = λ−1

n1 Dn. This is a diagonal matrix of all positive entries that are bounded
above by 1. Therefore, given any subsequence, there is a further subsequence along which
Kn → I, Pn → P, and En → E. Necessarily, P is orthogonal and E is diagonal with entries in
[0, 1]. Furthermore, E has at least one diagonal entry that is 1 and its entries are nonincreasing.
Since KnPnEn is symmetric, nonnegative and Kn → I, we have that PE = EP t, and PE is
nonnegative. Now, (PE)2 = (PE)tPE = EP−1PE = E2. Hence, since PE and E are both
nonnegative, PE = E. If E is invertible, then P = I and we are done. Suppose E is not

invertible. Write E =
(

E(1) 0
0 0

)
where E(1) is an m × m invertible diagonal matrix with

m < d. Next, write P =
(

P(1) P(2)

P(3) P(4)

)
where P(1) is an m × m matrix. Since PE = E, we

have (
P(1)E(1) 0
P(3)E(1) 0

)
=

(
E(1) 0
0 0

)
.

From P(1)E(1) = E(1) and the invertibility of E(1), we have that P(1) = Im. Similarly, from

P(3)E(1) = 0 we have that P(3) = 0. Therefore, P =
(

Im P(2)

0 P(4)

)
. Next, multiplying PP t, and

P tP, and equating the (1, 1) entries we have that Im + P(2)P
t
(2) = Im. From this we conclude

that P(2)P
t
(2) = 0, and therefore also, P(2) = 0. We have that,

P =
(

I 0
0 P(4)

)
.

The proof continues inductively. Let K(n4), P(n4), E(n4) be the (2,2) block of Kn, Pn, En

respectively. P(n4) may not be orthogonal, but P(4) is. Apply the previous argument to(
K(n4)P(n4)P

t
(4)

)
P(4)E(n4). Note that K(n4)P(n4)P

t
(4) → IP(4)P

t
(4) = I, so that we may apply

the argument with K(n4)P(n4)P
t
(4) as the new Kn in the induction step. Since the matrices are

all finite dimensional, the argument will eventually terminate.
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