A NECESSARY AND SUFFICIENT CONDITION FOR THE Λ-COALESCENT TO COME DOWN FROM INFINITY.

JASON SCHWEINSBERG
Department of Statistics, University of California
367 Evans Hall \# 3860, Berkeley, CA 94720-3860.
email: jason@stat.berkeley.edu

submitted August 18, 1999; accepted in final form January 10, 2000.
AMS 1991 Subject classification: 60J75, (60G09)
coalescent, Kochen-Stone Lemma

Abstract

Let Π_{∞} be the standard Λ-coalescent of Pitman, which is defined so that $\Pi_{\infty}(0)$ is the partition of the positive integers into singletons, and, if Π_{n} denotes the restriction of Π_{∞} to $\{1, \ldots, n\}$, then whenever $\Pi_{n}(t)$ has b blocks, each k-tuple of blocks is merging to form a single block at the rate $\lambda_{b, k}$, where

$$
\lambda_{b, k}=\int_{0}^{1} x^{k-2}(1-x)^{b-k} \Lambda(d x)
$$

for some finite measure Λ. We give a necessary and sufficient condition for the Λ-coalescent to "come down from infinity", which means that the partition $\Pi_{\infty}(t)$ almost surely consists of only finitely many blocks for all $t>0$. We then show how this result applies to some particular families of Λ-coalescents.

1 Introduction

Let Λ be a finite measure on the Borel subsets of $[0,1]$. Let Π_{∞} be the standard Λ-coalescent, which is defined in [4] and also studied in [5]. Then Π_{∞} is a Markov process whose state space is the set of partitions of the positive integers. For each positive integer n, let Π_{n} denote the restriction of Π_{∞} to $\{1, \ldots, n\}$. When $\Pi_{n}(t)$ has b blocks, each k-tuple of blocks is merging to form a single block at the rate $\lambda_{b, k}$, where

$$
\begin{equation*}
\lambda_{b, k}=\int_{0}^{1} x^{k-2}(1-x)^{b-k} \Lambda(d x) . \tag{1}
\end{equation*}
$$

Note that this rate does not depend on n or the sizes of the blocks. For $b=2,3, \ldots$, define

$$
\lambda_{b}=\sum_{k=2}^{b}\binom{b}{k} \lambda_{b, k},
$$

which is the total rate at which mergers are occurring. Also define

$$
\begin{equation*}
\gamma_{b}=\sum_{k=2}^{b}(k-1)\binom{b}{k} \lambda_{b, k} \tag{2}
\end{equation*}
$$

which is the rate at which the number of blocks is decreasing because merging k blocks into one decreases the number of blocks by $k-1$. For $n=1,2, \ldots, \infty$, let $\# \Pi_{n}(t)$ denote the number of blocks in the partition $\Pi_{n}(t)$. Then let $T_{n}=\inf \left\{t: \# \Pi_{n}(t)=1\right\}$. As stated in (31) of [4], we have

$$
\begin{equation*}
0=T_{1}<T_{2} \leq T_{3} \leq \ldots \uparrow T_{\infty} \leq \infty \tag{3}
\end{equation*}
$$

We say the Λ-coalescent comes down from infinity if $P\left(\# \Pi_{\infty}(t)<\infty\right)=1$ for all $t>0$, and we say it stays infinite if $P\left(\# \Pi_{\infty}(t)=\infty\right)=1$ for all $t>0$. If Λ has no atom at 1 , then Proposition 23 of [4] states that the Λ-coalescent must either come down from infinity, in which case $T_{\infty}<\infty$ almost surely, or stay infinite, in which case $T_{\infty}=\infty$ almost surely. We assume hereafter, without further mention, that Λ has no atom at 1. Example 20 of [4] provides a simple description of a Λ-coalescent in which Λ has an atom at 1 in terms of the coalescent with the atom at 1 removed.
In section 3.6 of [4], Pitman shows that the Λ-coalescent comes down from infinity if Λ has an atom at zero. It follows from Lemma 25 of [4] that the Λ-coalescent stays infinite if $\int_{0}^{1} x^{-1} \Lambda(d x)<\infty$. Results in [1] imply that the Λ-coalescent stays infinite if Λ is the uniform distribution on $[0,1]$. Also, results in section 5 of [5] imply that if $\Lambda(d x)=(1-\alpha) x^{-\alpha} d x$ for some $\alpha \in(0,1)$, then the Λ-coalescent comes down from infinity.
Proposition 23 of [4] gives a necessary and sufficient condition, involving a recursion, for the Λ-coalescent to come down from infinity. The main goal of this paper is to give a simpler necessary and sufficient condition, which is stated in Theorem 1 below. This condition is much easier to check in examples than the condition given in [4].

Theorem 1 The Λ-coalescent comes down from infinity if and only if

$$
\begin{equation*}
\sum_{b=2}^{\infty} \gamma_{b}^{-1}<\infty \tag{4}
\end{equation*}
$$

We will prove this theorem in section 2 .
The condition (4) can be expressed in other ways. For example, let

$$
\begin{equation*}
\eta_{b}=\sum_{k=2}^{b} k\binom{b}{k} \lambda_{b, k} \tag{5}
\end{equation*}
$$

Clearly $1 \leq k /(k-1) \leq 2$ for all $k \geq 2$, so $\gamma_{b} \leq \eta_{b} \leq 2 \gamma_{b}$ for all $b \geq 2$. Therefore, we obtain the following corollary.

Corollary 2 The Λ-coalescent comes down from infinity if and only if

$$
\begin{equation*}
\sum_{b=2}^{\infty} \eta_{b}^{-1}<\infty \tag{6}
\end{equation*}
$$

The formulation of the condition given in Theorem 1 seems more natural conceptually, because of the interpretation of γ_{b} as the rate at which the number of blocks is decreasing, and is easier to use for the proof. However, the formulation in Corollary 2 is more convenient for the calculations in section 3 , where we give examples of measures Λ for which the Λ-coalescent comes down from infinity and other examples of measures Λ for which the Λ-coalescent stays infinite.

2 Proof of the necessary and sufficient condition

In this section, we prove Theorem 1, which follows immediately from Lemmas 6 and 9 below. We begin by collecting facts about the γ_{b} and the η_{b}.

Lemma 3 We have

$$
\begin{equation*}
\gamma_{b}=\int_{0}^{1}\left(b x-1+(1-x)^{b}\right) x^{-2} \Lambda(d x) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{b}=b \int_{0}^{1}\left(1-(1-x)^{b-1}\right) x^{-1} \Lambda(d x)=b \sum_{k=0}^{b-2} \int_{0}^{1}(1-x)^{k} \Lambda(d x) \tag{8}
\end{equation*}
$$

Also, the sequence $\left(\gamma_{b}\right)_{b=2}^{\infty}$ is increasing.
Proof. From the identities

$$
\sum_{k=0}^{b}\binom{b}{k} x^{k}(1-x)^{b-k}=1
$$

and

$$
\sum_{k=0}^{b} k\binom{b}{k} x^{k}(1-x)^{b-k}=b x
$$

it follows that

$$
\begin{equation*}
\sum_{k=2}^{b}(k-1)\binom{b}{k} x^{k-2}(1-x)^{b-k}=\left(b x-1+(1-x)^{b}\right) x^{-2} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=2}^{b} k\binom{b}{k} x^{k-2}(1-x)^{b-k}=b\left(1-(1-x)^{b-1}\right) x^{-1}=b \sum_{k=0}^{b-2}(1-x)^{k} \tag{10}
\end{equation*}
$$

Then (7) and (8) follow by integrating (9) and (10) with respect to $\Lambda(d x)$. Therefore,

$$
\gamma_{b+1}-\gamma_{b}=\int_{0}^{1}\left(x+(1-x)^{b+1}-(1-x)^{b}\right) x^{-2} \Lambda(d x)=\int_{0}^{1}\left(1-(1-x)^{b}\right) x^{-1} \Lambda(d x) \geq 0
$$

which implies that $\left(\gamma_{b}\right)_{b=2}^{\infty}$ is increasing.
The next step is to show that if the Λ-coalescent comes down from infinity, then it does so in finite expected time. We will need the lemma below, which we take from page 78 of [3].

Lemma 4 (Kochen-Stone Lemma). Let $\left(A_{n}\right)_{n=1}^{\infty}$ be events such that $\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty$. Let A be the event that infinitely many of the A_{n} occur. Then,

$$
P(A) \geq \limsup _{n \rightarrow \infty} \frac{\left[\sum_{m=1}^{n} P\left(A_{m}\right)\right]^{2}}{\sum_{k=1}^{n} \sum_{m=1}^{n} P\left(A_{k} \cap A_{m}\right)}
$$

Proposition 5 The Λ-coalescent comes down from infinity if and only if $E\left[T_{\infty}\right]<\infty$.
Proof. If $E\left[T_{\infty}\right]<\infty$, then clearly $T_{\infty}<\infty$ almost surely, which means the Λ-coalescent comes down from infinity. We now prove the converse. For $m \geq 2$, let A_{m} be the event that m is not in same block as 1 at time T_{m-1}, which, up to a null set, is the same as the event $\left\{T_{m}>T_{m-1}\right\}$. On the event A_{m}, the partition $\Pi_{m}\left(T_{m-1}\right)$ has two blocks, one of which is $\{1, \ldots, m-1\}$ and the other of which is $\{m\}$. The expected time, after T_{m-1}, that it takes for these two blocks to merge is $\lambda_{2,2}^{-1}$. Therefore, using (3) and the Monotone Convergence Theorem to get the first equality, we have

$$
\begin{equation*}
E\left[T_{\infty}\right]=\lim _{n \rightarrow \infty} E\left[T_{n}\right]=\lim _{n \rightarrow \infty} \sum_{m=2}^{n} E\left[T_{m}-T_{m-1}\right]=\lim _{n \rightarrow \infty} \sum_{m=2}^{n} \lambda_{2,2}^{-1} P\left(A_{m}\right)=\lambda_{2,2}^{-1} \sum_{m=2}^{\infty} P\left(A_{m}\right) . \tag{11}
\end{equation*}
$$

Suppose $E\left[T_{\infty}\right]=\infty$. Then by (11), $\sum_{m=2}^{\infty} P\left(A_{m}\right)=\infty$. Let $\left\{B_{1, k}, B_{2, k}, \ldots,\right\}$ be the blocks of $\Pi_{\infty}\left(T_{k}\right)$ in order of their smallest elements. Let $l_{i, k}$ be the smallest element of $B_{i, k}$. Note that $B_{i, k}$ and $l_{i, k}$ are undefined if $\Pi_{\infty}\left(T_{k}\right)$ has fewer than i blocks. Also note that if $m>k$, then unless $m=l_{i, k}$ for some $i \geq 2$, the event A_{m} can not occur. If $m=l_{i, k}$, then the event A_{m} only occurs if, at time T_{m-1}, the block $B_{i, k}$ is separate from the cluster containing the blocks $B_{1, k}, \ldots, B_{i-1, k}$. Let $\mathcal{F}_{T_{k}}=\left\{A \in \mathcal{F}_{\infty}: A \cap\left\{T_{k} \leq t\right\} \in \mathcal{F}_{t}\right\}$, where $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is the smallest complete, right-continuous filtration with respect to which $\left(\Pi_{\infty}(t)\right)_{t \geq 0}$ is adapted and $\mathcal{F}_{\infty}=\sigma\left(\bigcup_{t \geq 0} \mathcal{F}_{t}\right)$. Conditionally on $\mathcal{F}_{T_{k}}$, if $m=l_{i, k}$ then the probability that $B_{i, k}$ is separate from $B_{1, k}, \ldots, B_{i-1, k}$ at time T_{m-1} is the same as the unconditional probability that $\{i\}$ is separate from the block containing $\{1,2, \ldots, i-1\}$ at time T_{i-1}, which is $P\left(A_{i}\right)$. Note that here we are using the strong Markov property of $\left(\Pi_{\infty}(t)\right)_{t \geq 0}$, which is asserted in Theorem 1 of [4]. We have

$$
\begin{aligned}
\sum_{m=k+1}^{n} P\left(A_{k} \cap A_{m}\right) & =E\left[\sum_{m=k+1}^{n} P\left(A_{k} \cap A_{m} \mid \mathcal{F}_{T_{k}}\right)\right]=E\left[\sum_{m=k+1}^{n} 1_{A_{k}} P\left(A_{m} \mid \mathcal{F}_{T_{k}}\right)\right] \\
& =E\left[1_{A_{k}} \sum_{i=2}^{\# \Pi_{n}\left(T_{k}\right)} P\left(A_{l_{i, k}} \mid \mathcal{F}_{T_{k}}\right)\right] \leq E\left[1_{A_{k}} \sum_{i=2}^{n} P\left(A_{i}\right)\right]=P\left(A_{k}\right) \sum_{i=2}^{n} P\left(A_{i}\right)
\end{aligned}
$$

Thus, for all n,

$$
\begin{aligned}
\sum_{k=2}^{n} \sum_{m=2}^{n} P\left(A_{k} \cap A_{m}\right) & =2 \sum_{k=2}^{n} \sum_{m=k+1}^{n} P\left(A_{k} \cap A_{m}\right)+\sum_{m=2}^{n} P\left(A_{m}\right) \\
& \leq 2 \sum_{k=2}^{n}\left(P\left(A_{k}\right) \sum_{i=2}^{n} P\left(A_{i}\right)\right)+\sum_{m=2}^{n} P\left(A_{m}\right) \\
& =2\left(\sum_{m=2}^{n} P\left(A_{m}\right)\right)^{2}+\sum_{m=2}^{n} P\left(A_{m}\right)
\end{aligned}
$$

Since $\sum_{m=2}^{\infty} P\left(A_{m}\right)=\infty$, we have $\left(\sum_{m=2}^{n} P\left(A_{m}\right)\right) /\left(\sum_{m=2}^{n} P\left(A_{m}\right)\right)^{2} \rightarrow 0$ as $n \rightarrow \infty$. Thus,

$$
\limsup _{n \rightarrow \infty} \frac{\left[\sum_{m=2}^{n} P\left(A_{m}\right)\right]^{2}}{\sum_{k=2}^{n} \sum_{m=2}^{n} P\left(A_{k} \cap A_{m}\right)} \geq \limsup _{n \rightarrow \infty} \frac{\left[\sum_{m=2}^{n} P\left(A_{m}\right)\right]^{2}}{2\left[\sum_{m=2}^{n} P\left(A_{m}\right)\right]^{2}+\sum_{m=2}^{n} P\left(A_{m}\right)}=\frac{1}{2}
$$

By the Kochen-Stone Lemma, with probability at least $1 / 2$ infinitely many of the A_{n} occur. If infinitely many of the A_{n} occur, then $\# \Pi_{\infty}\left(T_{2}\right)=\infty$. We have $T_{2}>0$ by (3). Therefore, $P\left(\# \Pi_{\infty}(t)=\infty\right)>0$ for some $t>0$, which means $P\left(\# \Pi_{\infty}(t)=\infty\right)=1$ for all $t>0$. Hence, the Λ-coalescent stays infinite.

Thus, to determine whether the Λ-coalescent comes down from infinity, it suffices to determine whether $E\left[T_{\infty}\right]<\infty$. Since $\left(E\left[T_{n}\right]\right)_{n=1}^{\infty} \uparrow E\left[T_{\infty}\right]$ by (3) and the Monotone Convergence Theorem, the Λ-coalescent comes down from infinity if and only if $\left(E\left[T_{n}\right]\right)_{n=1}^{\infty}$ is bounded.
Lemma 6 If $\sum_{b=2}^{\infty} \gamma_{b}^{-1}<\infty$, then the Λ-coalescent comes down from infinity.
Proof. Fix $n<\infty$, and recursively define times $R_{0}, R_{1}, \ldots, R_{n-1}$ by:

$$
\begin{array}{lr}
R_{0}=0 & \\
R_{i}=\inf \left\{t: \# \Pi_{n}(t)<\# \Pi_{n}\left(R_{i-1}\right)\right\} & \text { if } i \geq 1 \text { and } \# \Pi_{n}\left(R_{i-1}\right)>1 \\
R_{i}=R_{i-1} & \text { if } i \geq 1 \text { and } \# \Pi_{n}\left(R_{i-1}\right)=1
\end{array}
$$

Note that $R_{n-1}=T_{n}$. For $i=0,1, \ldots, n-1$, let $N_{i}=\# \Pi_{n}\left(R_{i}\right)$. For $i=1,2, \ldots, n-1$, define $L_{i}=R_{i}-R_{i-1}$ and $J_{i}=N_{i-1}-N_{i}$. We have $E\left[L_{i} \mid N_{i-1}\right]=\lambda_{N_{i-1}}^{-1}$ on the set $\left\{N_{i-1}>1\right\}$. Also, $E\left[J_{i} \mid N_{i-1}\right]=\gamma_{N_{i-1}} \lambda_{N_{i-1}}^{-1}$ on $\left\{N_{i-1}>1\right\}$ because

$$
P\left(J_{i}=k-1 \mid N_{i-1}=b\right)=\binom{b}{k} \frac{\lambda_{b, k}}{\lambda_{b}}
$$

for all $b>1$. Thus,

$$
\begin{aligned}
E\left[T_{n}\right] & =E\left[R_{n-1}\right]=E\left[\sum_{i=1}^{n-1} L_{i}\right]=\sum_{i=1}^{n-1} E\left[E\left[L_{i} \mid N_{i-1}\right]\right]=\sum_{i=1}^{n-1} E\left[\lambda_{N_{i-1}}^{-1} 1_{\left\{N_{i-1}>1\right\}}\right] \\
& =\sum_{i=1}^{n-1} E\left[\gamma_{N_{i-1}}^{-1} E\left[J_{i} \mid N_{i-1}\right] 1_{\left\{N_{i-1}>1\right\}}\right]=\sum_{i=1}^{n-1} E\left[E\left[\gamma_{N_{i-1}}^{-1} J_{i} 1_{\left\{N_{i-1}>1\right\}} \mid N_{i-1}\right]\right]
\end{aligned}
$$

Since $J_{i}=0$ on $\left\{N_{i-1}=1\right\}$, we have

$$
\begin{equation*}
E\left[T_{n}\right]=\sum_{i=1}^{n-1} E\left[E\left[\gamma_{N_{i-1}}^{-1} J_{i} \mid N_{i-1}\right]\right]=\sum_{i=1}^{n-1} E\left[\gamma_{N_{i-1}}^{-1} J_{i}\right]=E\left[\sum_{i=1}^{n-1} \gamma_{N_{i-1}}^{-1} J_{i}\right]=E\left[\sum_{i=1}^{n-1} \sum_{j=0}^{J_{i}-1} \gamma_{N_{i-1}}^{-1}\right] \tag{12}
\end{equation*}
$$

Since $\left(\gamma_{b}\right)_{b=2}^{\infty}$ is increasing by Lemma 3, we have

$$
E\left[T_{n}\right] \leq E\left[\sum_{i=1}^{n-1} \sum_{j=0}^{J_{i}-1} \gamma_{N_{i-1}-j}^{-1}\right]=E\left[\sum_{b=2}^{n} \gamma_{b}^{-1}\right]<\sum_{b=2}^{\infty} \gamma_{b}^{-1}
$$

Thus, if $\sum_{b=2}^{\infty} \gamma_{b}^{-1}<\infty$, then $\left(E\left[T_{n}\right]\right)_{n=1}^{\infty}$ is bounded, which proves the lemma.
We now work towards the converse of Lemma 6, which we first prove in the special case that Λ has no mass in $(1 / 2,1]$.

Lemma 7 Suppose Λ is concentrated on $[0,1 / 2]$, and suppose $\sum_{b=2}^{\infty} \gamma_{b}^{-1}=\infty$. Then, the Λ-coalescent stays infinite.
Proof. Fix positive integers b and l such that $b>2^{l}$. Consider a Λ-coalescent with b blocks. Let $R_{b, 1}$ be the total rate of all collisions that would take the coalescent down to 2^{l} or fewer blocks. Let $R_{b, 2}$ be the total rate of all collisions that would take the coalescent down to between $2^{l-1}+1$ and 2^{l} blocks. We have

$$
\begin{equation*}
R_{b, 1}=\sum_{k=b-2^{l}+1}^{b}\binom{b}{k} \lambda_{b, k}=\sum_{i=0}^{2^{l}-1}\binom{b}{b-i} \lambda_{b, b-i}=\sum_{i=0}^{2^{l}-1}\binom{b}{i} \int_{0}^{1 / 2} x^{b-i-2}(1-x)^{i} \Lambda(d x) . \tag{13}
\end{equation*}
$$

Likewise,

$$
\begin{equation*}
R_{b, 2}=\sum_{k=b-2^{l}+1}^{b-2^{l-1}}\binom{b}{k} \lambda_{b, k}=\sum_{i=2^{l-1}}^{2^{l}-1}\binom{b}{i} \int_{0}^{1 / 2} x^{b-i-2}(1-x)^{i} \Lambda(d x) \tag{14}
\end{equation*}
$$

If $0 \leq j \leq 2^{l-1}-1$, then

$$
\begin{equation*}
\binom{b}{j} \leq\binom{ b}{2^{l}-1-j} \tag{15}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
x^{b-j-2}(1-x)^{j} \leq x^{b-\left(2^{l}-1-j\right)-2}(1-x)^{2^{l}-1-j} \tag{16}
\end{equation*}
$$

for all $x \in[0,1 / 2]$, because the ratio of the right-hand side to the left-hand side in (16) is $((1-x) / x)^{2^{l}-2 j-1} \geq 1$. Equations (13)-(16) imply that $R_{b, 1}-R_{b, 2} \leq R_{b, 2}$, and so $R_{b, 2} / R_{b, 1} \geq$ $1 / 2$.
Let Π_{n} be a standard Λ-coalescent restricted to $\{1, \ldots, n\}$. For l such that $2^{l} \leq n$, let D_{l} be the event that $2^{l-1}+1 \leq \# \Pi_{n}(t) \leq 2^{l}$ for some t. By conditioning on the value of N_{K-1}, where $K=\inf \left\{i: N_{i} \leq 2^{l}\right\}$, we see from the above calculation that $P\left(D_{l}\right) \geq 1 / 2$.
Suppose $n=2^{m}$. For $j=2,3, \ldots, n$, let $L_{n}(j)=\min \left\{s \geq j: \# \Pi_{n}(t)=s\right.$ for some $\left.t\right\}$. If $N_{i-1} \geq j>N_{i}$, or equivalently if $N_{i}+J_{i} \geq j>N_{i}$, then $L_{n}(j)=N_{i-1}$. Therefore, using (12) for the first equality, we have

$$
E\left[T_{n}\right]=\sum_{i=1}^{n-1} E\left[\gamma_{N_{i-1}}^{-1} J_{i}\right]=\sum_{j=2}^{n} E\left[\gamma_{L_{n}(j)}^{-1}\right]=\sum_{l=1}^{m} \sum_{j=2^{l-1}+1}^{2^{l}} E\left[\gamma_{L_{n}(j)}^{-1}\right]
$$

Since $\left(\gamma_{b}\right)_{b=2}^{\infty}$ is increasing by Lemma 3 and $L_{n}(j) \leq 2^{l+1}$ on D_{l+1} when $j \leq 2^{l}$, we have

$$
\begin{aligned}
E\left[T_{n}\right] & \geq \sum_{l=1}^{m-1} \sum_{j=2^{l-1}+1}^{2^{l}} E\left[\gamma_{L_{n}(j)}^{-1}\right] \geq \sum_{l=1}^{m-1} \sum_{j=2^{l-1}+1}^{2^{l}} P\left(D_{l+1}\right) \gamma_{2^{l+1}}^{-1} \\
& \geq \frac{1}{2} \sum_{l=1}^{m-1} 2^{l-1} \gamma_{2^{l+1}}^{-1}=\frac{1}{8} \sum_{l=1}^{m-1} 2^{l+1} \gamma_{2^{l+1}}^{-1}
\end{aligned}
$$

Therefore, using the monotonicity of the sequence $\left(T_{n}\right)_{n=1}^{\infty}$ for the first equality, we have

$$
\lim _{n \rightarrow \infty} E\left[T_{n}\right]=\lim _{m \rightarrow \infty} E\left[T_{2^{m}}\right] \geq \lim _{m \rightarrow \infty} \frac{1}{8} \sum_{l=1}^{m-1} 2^{l+1} \gamma_{2^{l+1}}^{-1} \geq \frac{1}{8} \sum_{l=4}^{\infty} \gamma_{l}^{-1}=\infty
$$

Hence, the Λ-coalescent stays infinite.

Lemma 8 Fix $a>0$. Let Λ_{1} be the restriction of Λ to $[0, a]$. Suppose the Λ_{1}-coalescent stays infinite. Then, the Λ-coalescent stays infinite.

Proof. Let Λ_{2} be the restriction of Λ to $(a, 1]$. Then $\Lambda=\Lambda_{1}+\Lambda_{2}$. We consider a Poisson process construction of the Λ-coalescent, as given in the discussion preceding Corollary 3 of [4]. This construction is valid as long as Λ has no atom at zero. Here, Λ_{2} clearly has no atom at zero, and Λ_{1} has no atom at zero because, as stated in the discussion following Proposition 23 of [4], the Λ_{1}-coalescent comes down from infinity if Λ_{1} has an atom at zero. Let N_{1} and N_{2} be independent Poisson point processes on $(0, \infty) \times\{0,1\}^{\infty}$ such that N_{i} has intensity $d t L_{i}(d \xi)$ for $i=1,2$, where

$$
L_{i}(A)=\int_{0}^{1} x^{-2} P_{x}(A) \Lambda_{i}(d x)
$$

for all product measurable $A \subset\{0,1\}^{\infty}$ and P_{x} is the law of a sequence $\xi=\left(\xi_{i}\right)_{i=1}^{\infty}$ of independent Bernoulli random variables, each of which takes on the value 1 with probability x. Let N be the Poisson point process consisting of all of the points of N_{1} and N_{2}, so that N has intensity $d t L(d \xi)$, where

$$
L(A)=L_{1}(A)+L_{2}(A)=\int_{0}^{1} x^{-2} P_{x}(A) \Lambda(d x)
$$

for all product measurable A.
We now define, for each n, a coalescent Markov chain Π_{n}. We define $\Pi_{n}(0)$ to be the partition of $\{1, \ldots, n\}$ consisting of n singletons. We allow Π_{n} possibly to jump at the times t of points (t, ξ) of N such that $\sum_{i=1}^{n} \xi_{i} \geq 2$. For such t, if $\Pi_{n}(t-)$ consists of the blocks B_{1}, \ldots, B_{b}, then $\Pi_{n}(t)$ is defined by merging all of the blocks B_{i} such that $\xi_{i}=1$. By Corollary 3 of [4], these processes Π_{n} determine a unique coalescent process Π_{∞} whose restriction to $\{1, \ldots, n\}$ is Π_{n} for all n, and Π_{∞} is a standard Λ-coalescent. For $i=1,2$, define $\Pi_{n}^{(i)}$ analogously, only allowing jumps at times t of points (t, ξ) of N_{i}. These processes give rise to a Λ_{1}-coalescent $\Pi_{\infty}^{(1)}$ and a Λ_{2}-coalescent $\Pi_{\infty}^{(2)}$.
Note that

$$
\int_{0}^{1} x^{-2} \Lambda_{2}(d x)=\int_{a}^{1} x^{-2} \Lambda_{2}(d x) \leq a^{-2} \Lambda_{2}([0,1])<\infty
$$

which, as stated in section 2.1 of [4], means that the Λ_{2}-coalescent holds in its initial state for an exponential time of rate at most $a^{-2} \Lambda_{2}([0,1])$. Therefore, given $t>0$, there is some probability $p>0$ that there are no points (s, ξ) in N_{2} with $s \leq t$. Therefore, with probability at least p, we have $\Pi_{\infty}(t)=\Pi_{\infty}^{(1)}(t)$. However, since the Λ_{1}-coalescent stays infinite, we have $\# \Pi_{\infty}^{(1)}(t)=\infty$ almost surely. Thus, $\# \Pi_{\infty}(t)=\infty$ with probability at least p, which by Proposition 23 of [4] implies that the Λ-coalescent stays infinite.

Lemma 9 If $\sum_{b=2}^{\infty} \gamma_{b}^{-1}=\infty$, then the Λ-coalescent stays infinite.
Proof. Let Λ_{1} be the restriction of Λ to $[0,1 / 2]$, and let Λ_{2} be the restriction of Λ to $(1 / 2,1]$. Then, $\Lambda=\Lambda_{1}+\Lambda_{2}$. For $i=1,2$, let $\gamma_{b}^{(i)}$ be the quantity for the Λ_{i}-coalescent analogous to that defined by (2) for the Λ-coalescent. From (1) and (2), we see that $\gamma_{b}^{(1)} \leq \gamma_{b}$ for all b, so $\sum_{b=2}^{\infty}\left(\gamma_{b}^{(1)}\right)^{-1}=\infty$. By Lemma 7, the Λ_{1}-coalescent stays infinite. It now follows from Lemma 8 that the Λ-coalescent stays infinite.

3 Consequences for some families of Λ-coalescents

In this section, we use Corollary 2 to determine whether the Λ-coalescent comes down from infinity for particular families of measures Λ. We begin with the following lemma. Note that if Λ_{1} and Λ_{2} are probability measures, then the hypothesis is equivalent to the condition that a random variable with distribution Λ_{1} is stochastically smaller than a random variable with distribution Λ_{2}.

Lemma 10 Suppose $\Lambda_{1}([0, x]) \geq \Lambda_{2}([0, x])$ for all $x \in[0,1]$. If the Λ_{1}-coalescent stays infinite, then the Λ_{2}-coalescent stays infinite. If the Λ_{2}-coalescent comes down from infinity, then the Λ_{1}-coalescent comes down from infinity.

Proof. For $i=1,2$, define $\eta_{b}^{(i)}$ for the Λ_{i}-coalescent as in (5). For $x \in[0,1]$, let

$$
g(x)=b \sum_{k=0}^{b-2}(1-x)^{k}
$$

Then $g^{\prime}(x)<0$ for all $x \in(0,1)$. Following a similar derivation on page 43 of [2], we apply Fubini's Theorem and Lemma 3 to get

$$
\begin{aligned}
\int_{0}^{1} g^{\prime}(y) \Lambda_{i}([0, y]) d y & =\int_{0}^{1} g^{\prime}(y)\left(\int_{0}^{1} 1_{[0, y]}(x) \Lambda_{i}(d x)\right) d y \\
& =\int_{0}^{1}\left(\int_{0}^{1} g^{\prime}(y) 1_{[0, y]}(x) d y\right) \Lambda_{i}(d x)=\int_{0}^{1}\left(\int_{x}^{1} g^{\prime}(y) d y\right) \Lambda_{i}(d x) \\
& =\int_{0}^{1}(g(1)-g(x)) \Lambda_{i}(d x)=b \Lambda_{i}([0,1])-\eta_{b}^{(i)}
\end{aligned}
$$

Therefore,

$$
\eta_{b}^{(i)}=b \Lambda_{i}([0,1])+\int_{0}^{1}\left|g^{\prime}(y)\right| \Lambda_{i}([0, y]) d y
$$

It follows from the assumptions on Λ_{1} and Λ_{2} that $\eta_{b}^{(1)} \geq \eta_{b}^{(2)}$ for all $b \geq 2$. An application of Corollary 2 completes the proof.

Corollary 2 can be interpreted to mean that the Λ-coalescent stays infinite whenever the η_{b} don't grow too rapidly as $b \rightarrow \infty$. Lemma 25 of [4] shows that the Λ-coalescent stays infinite when $\int_{0}^{1} x^{-1} \Lambda(d x)<\infty$. This condition is equivalent to the condition that the η_{b} don't grow faster than $O(b)$, because by Lemma 3,

$$
\lim _{b \rightarrow \infty} b^{-1} \eta_{b}=\sum_{k=0}^{\infty} \int_{0}^{1}(1-x)^{k} \Lambda(d x)=\int_{0}^{1} x^{-1} \Lambda(d x)
$$

In Proposition 11 below, we exhibit another collection of measures Λ for which the Λ-coalescent stays infinite. Some of the measures do not satisfy the condition $\int_{0}^{1} x^{-1} \Lambda(d x)<\infty$.

Proposition 11 Suppose there exist $\epsilon>0$ and $M<\infty$ such that $\Lambda([0, \delta]) \leq M \delta$ for all $\delta \in[0, \epsilon]$. Then the Λ-coalescent stays infinite.

Proof. Let Λ_{1} be the restriction of Λ to $[0, \epsilon]$. By Lemma 8, it suffices to prove that the Λ_{1-} coalescent stays infinite. Let U be the uniform distribution on $[0,1]$. As mentioned in section 3.6 of [4], it is a consequence of results in [1] that the U-coalescent stays infinite. Multiplying U by the constant M multiplies all of the γ_{b} by M. Therefore, the $M U$-coalescent also stays infinite. Since

$$
\Lambda_{1}([0, x]) \leq M x=(M U)([0, x])
$$

for all $x \in[0,1]$, it follows from Lemma 10 that the Λ_{1}-coalescent stays infinite.
Remark. Define η_{b}^{u} for the $M U$-coalescent as in (5). We can also show that the $M U$-coalescent stays infinite by using Lemma 3 to calculate

$$
\eta_{b}^{u}=M b \sum_{k=0}^{b-2} \int_{0}^{1}(1-x)^{k} d x=M b \sum_{k=0}^{b-2} \frac{1}{k+1} \leq C b \log b
$$

for some $C<\infty$ not depending on b. Thus,

$$
\sum_{b=2}^{\infty}\left(\eta_{b}^{u}\right)^{-1} \geq \frac{1}{C} \sum_{b=2}^{\infty} \frac{1}{b \log b} \geq \frac{1}{C} \int_{2}^{\infty} \frac{1}{x \log x} d x=\infty
$$

where the integral diverges because $\log (\log x)$ is an antiderivative of $1 / x \log x$.
There also exist measures Λ with densities that approach infinity as $x \rightarrow 0$ for which the Λ-coalescent stays infinite, as the following example shows.

Example 12 Suppose, for some $\epsilon<1 / e, \Lambda$ has a Radon-Nikodym derivative f with respect to Lebesgue measure given by $f(x)=\log (\log (1 / x))$ when $x \in(0, \epsilon)$ and $f(x)=0$ otherwise. Then there exists a constant $C_{1}<\infty$ such that for all $k>1 / \epsilon$, we have

$$
\begin{aligned}
\int_{0}^{1}(1-x)^{k} \Lambda(d x) & =\sum_{n=1}^{\infty} \int_{k^{-(n+1)}}^{k^{-n}}(1-x)^{k} \log (\log (1 / x)) d x+\int_{k^{-1}}^{\epsilon}(1-x)^{k} \log (\log (1 / x)) d x \\
& \leq \sum_{n=1}^{\infty} k^{-n} \log \left(\log k^{n+1}\right)+\log (\log k) \int_{0}^{1}(1-x)^{k} d x \\
& =\sum_{n=1}^{\infty} k^{-n} \log (\log k)+\sum_{n=1}^{\infty} k^{-n} \log (n+1)+(k+1)^{-1} \log (\log k) \\
& \leq C_{1} k^{-1}(1+\log (\log k))
\end{aligned}
$$

Let N be the smallest integer such that $N \geq 1+1 / \epsilon$. Then there exist constants C_{2} and C_{3} not depending on b such that for $b \geq N+2$, we have

$$
\begin{aligned}
b^{-1} \eta_{b} & \leq C_{2}+C_{1} \sum_{k=N}^{b-2} k^{-1}(1+\log (\log k)) \leq C_{2}+C_{1} \int_{e}^{b} x^{-1}(1+\log (\log x)) d x \\
& =C_{2}+C_{1}(\log b)(\log (\log b)) \leq C_{3}(\log b)(\log (\log b))
\end{aligned}
$$

Thus,

$$
\sum_{b=2}^{\infty} \eta_{b}^{-1} \geq \sum_{b=N+2}^{\infty} \eta_{b}^{-1} \geq \frac{1}{C_{3}} \int_{N+2}^{\infty} \frac{1}{x(\log x)(\log (\log x))} d x=\infty
$$

where the divergence of the integral can be seen after substituting $u=\log (x)$. By Corollary 2 , the Λ-coalescent stays infinite.

We now exhibit a family of measures Λ for which the Λ-coalescent comes down from infinity. The family is slightly larger than that studied in section 5 of [5].

Proposition 13 Suppose there exist $\epsilon>0, M>0$, and $\alpha \in(0,1)$ such that $\Lambda([0, \delta]) \geq M \delta^{\alpha}$ for all $\delta \in[0, \epsilon]$. Then the Λ-coalescent comes down from infinity.

Proof. By Lemma 10, it suffices to prove the result when $\Lambda([0, \delta])=M \delta^{\alpha}$ for all $\delta \in[0, \epsilon]$ and $\Lambda((\epsilon, 1])=0$. We may therefore assume that the Radon-Nikodym derivative of Λ with respect to Lebesgue measure is given by $M \alpha x^{\alpha-1}$ on $[0, \epsilon]$ and 0 on $(\epsilon, 1]$. We then have

$$
\int_{0}^{1}(1-x)^{k} \Lambda(d x)=M \alpha \int_{0}^{1} x^{\alpha-1}(1-x)^{k} d x=M \alpha B(\alpha, k+1)=\frac{M \alpha \Gamma(\alpha) \Gamma(k+1)}{\Gamma(k+1+\alpha)}
$$

where B denotes the beta function. By Stirling's formula, $\Gamma(k+1) / \Gamma(k+1+\alpha) \sim k^{-\alpha}$, where \sim denotes asymptotic equivalence as $k \rightarrow \infty$. Therefore, there exists a constant $C_{1}>0$ such that $\int_{0}^{1}(1-x)^{k} \Lambda(d x) \geq C_{1} k^{-\alpha}$ for all $k \geq 1$. Then, for some $C_{2}>0$, we have

$$
\eta_{b}=b \sum_{k=0}^{b-2} \int_{0}^{1}(1-x)^{k} \Lambda(d x) \geq b \Lambda([0,1])+C_{1} b \sum_{k=1}^{b-2} k^{-\alpha} \geq C_{2} b^{2-\alpha}
$$

for all $b \geq 2$. Thus, $\sum_{b=1}^{\infty} \eta_{b}^{-1}<\infty$, so the Λ-coalescent comes down from infinity.
The following example shows that the result above is not sharp.
Example 14 Suppose the Radon-Nikodym derivative of Λ with respect to Lebesgue measure on $[0,1]$ is given by $f(x)=\log (1 / x)$. For $k \geq 1$, we have

$$
\begin{aligned}
\int_{0}^{1}(1-x)^{k} \log (1 / x) d x & \geq \int_{0}^{k^{-1}}(1-x)^{k} \log (1 / x) d x \\
& \geq\left(1-\frac{1}{k}\right)^{k} \int_{0}^{k^{-1}} \log (1 / x) d x \\
& =\left(1-\frac{1}{k}\right)^{k} k^{-1}(1-\log (1 / k)) \geq \frac{C_{1} \log k}{k}
\end{aligned}
$$

for some constant $C_{1}>0$. It follows that for all $b \geq 2$,

$$
\eta_{b} \geq b+C_{1} b \sum_{k=1}^{b-2} \frac{\log k}{k} \geq C_{2} b(\log b)^{2}
$$

for some $C_{2}>0$. We can see by substituting $u=\log x$ that

$$
\int_{2}^{\infty} \frac{1}{x(\log x)^{2}} d x<\infty
$$

Therefore, $\sum_{b=2}^{\infty} \eta_{b}^{-1}<\infty$, and the Λ-coalescent comes down from infinity.
Example 15 Suppose Λ has the beta density $f(x)=B(\alpha, \beta)^{-1} x^{\alpha-1}(1-x)^{\beta-1}$ with respect to Lebesgue measure on $[0,1]$, where $\alpha>0$ and $\beta>0$. If $\alpha \in(0,1)$, then Λ satisfies the hypotheses of Proposition 13. If $\alpha \geq 1$, then Λ satisfies the hypotheses of Proposition 11. Thus, the Λ-coalescent comes down from infinity if and only if $\alpha<1$.

Acknowledgments

The author thanks Jim Pitman for suggesting this problem and making detailed comments on earlier drafts of this work. He also thanks Serik Sagitov and a referee for their comments.

References

[1] E. Bolthausen and A.-S. Sznitman. On Ruelle's probability cascades and an abstract cavity method. Comm. Math. Phys., 197(2):247-276, 1998.
[2] R. Durrett. Probability: Theory and Examples. 2nd ed. Duxbury Press, Belmont, CA, 1996.
[3] B. Fristedt and L. Gray. A Modern Approach to Probability Theory. Birkhauser, Boston, 1997.
[4] J. Pitman. Coalescents with multiple collisions. Technical Report 495, Dept. Statistics, U.C. Berkeley, 1999. Availavle via http://www.stat.berkeley.edu/users/pitman. To appear in Ann. Probab.
[5] S. Sagitov. The general coalescent with asynchronous mergers of ancestral lines. Available via http://www.math.chalmers.se/Math/Research/Preprints. To appear in J. Appl. Prob., December 1999.

