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Abstract
Let Π∞ be the standard Λ-coalescent of Pitman, which is defined so that Π∞(0) is the partition
of the positive integers into singletons, and, if Πn denotes the restriction of Π∞ to {1, . . . , n},
then whenever Πn(t) has b blocks, each k-tuple of blocks is merging to form a single block at
the rate λb,k, where

λb,k =
∫ 1

0

xk−2(1 − x)b−k Λ(dx)

for some finite measure Λ. We give a necessary and sufficient condition for the Λ-coalescent
to “come down from infinity”, which means that the partition Π∞(t) almost surely consists of
only finitely many blocks for all t > 0. We then show how this result applies to some particular
families of Λ-coalescents.

1 Introduction

Let Λ be a finite measure on the Borel subsets of [0, 1]. Let Π∞ be the standard Λ-coalescent,
which is defined in [4] and also studied in [5]. Then Π∞ is a Markov process whose state space
is the set of partitions of the positive integers. For each positive integer n, let Πn denote the
restriction of Π∞ to {1, . . . , n}. When Πn(t) has b blocks, each k-tuple of blocks is merging to
form a single block at the rate λb,k, where

λb,k =
∫ 1

0

xk−2(1 − x)b−k Λ(dx). (1)

Note that this rate does not depend on n or the sizes of the blocks. For b = 2, 3, . . ., define

λb =
b∑

k=2

(
b
k

)
λb,k,
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which is the total rate at which mergers are occurring. Also define

γb =
b∑

k=2

(k − 1)
(

b
k

)
λb,k, (2)

which is the rate at which the number of blocks is decreasing because merging k blocks into
one decreases the number of blocks by k − 1. For n = 1, 2, . . . ,∞, let #Πn(t) denote the
number of blocks in the partition Πn(t). Then let Tn = inf{t : #Πn(t) = 1}. As stated in (31)
of [4], we have

0 = T1 < T2 ≤ T3 ≤ . . . ↑ T∞ ≤ ∞. (3)

We say the Λ-coalescent comes down from infinity if P (#Π∞(t) < ∞) = 1 for all t > 0, and
we say it stays infinite if P (#Π∞(t) = ∞) = 1 for all t > 0. If Λ has no atom at 1, then
Proposition 23 of [4] states that the Λ-coalescent must either come down from infinity, in which
case T∞ < ∞ almost surely, or stay infinite, in which case T∞ = ∞ almost surely. We assume
hereafter, without further mention, that Λ has no atom at 1. Example 20 of [4] provides a
simple description of a Λ-coalescent in which Λ has an atom at 1 in terms of the coalescent
with the atom at 1 removed.
In section 3.6 of [4], Pitman shows that the Λ-coalescent comes down from infinity if Λ has
an atom at zero. It follows from Lemma 25 of [4] that the Λ-coalescent stays infinite if∫ 1

0 x−1 Λ(dx) < ∞. Results in [1] imply that the Λ-coalescent stays infinite if Λ is the uniform
distribution on [0, 1]. Also, results in section 5 of [5] imply that if Λ(dx) = (1 − α)x−αdx for
some α ∈ (0, 1), then the Λ-coalescent comes down from infinity.
Proposition 23 of [4] gives a necessary and sufficient condition, involving a recursion, for the
Λ-coalescent to come down from infinity. The main goal of this paper is to give a simpler
necessary and sufficient condition, which is stated in Theorem 1 below. This condition is
much easier to check in examples than the condition given in [4].

Theorem 1 The Λ-coalescent comes down from infinity if and only if

∞∑
b=2

γ−1
b < ∞. (4)

We will prove this theorem in section 2.
The condition (4) can be expressed in other ways. For example, let

ηb =
b∑

k=2

k

(
b
k

)
λb,k. (5)

Clearly 1 ≤ k/(k − 1) ≤ 2 for all k ≥ 2, so γb ≤ ηb ≤ 2γb for all b ≥ 2. Therefore, we obtain
the following corollary.

Corollary 2 The Λ-coalescent comes down from infinity if and only if

∞∑
b=2

η−1
b < ∞. (6)
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The formulation of the condition given in Theorem 1 seems more natural conceptually, because
of the interpretation of γb as the rate at which the number of blocks is decreasing, and is easier
to use for the proof. However, the formulation in Corollary 2 is more convenient for the
calculations in section 3, where we give examples of measures Λ for which the Λ-coalescent
comes down from infinity and other examples of measures Λ for which the Λ-coalescent stays
infinite.

2 Proof of the necessary and sufficient condition

In this section, we prove Theorem 1, which follows immediately from Lemmas 6 and 9 below.
We begin by collecting facts about the γb and the ηb.

Lemma 3 We have

γb =
∫ 1

0

(bx − 1 + (1 − x)b)x−2 Λ(dx) (7)

and

ηb = b

∫ 1

0

(1 − (1 − x)b−1)x−1 Λ(dx) = b
b−2∑
k=0

∫ 1

0

(1 − x)k Λ(dx). (8)

Also, the sequence (γb)∞b=2 is increasing.

Proof. From the identities
b∑

k=0

(
b
k

)
xk(1 − x)b−k = 1

and
b∑

k=0

k

(
b
k

)
xk(1 − x)b−k = bx,

it follows that

b∑
k=2

(k − 1)
(

b
k

)
xk−2(1 − x)b−k = (bx − 1 + (1 − x)b)x−2 (9)

and
b∑

k=2

k

(
b
k

)
xk−2(1 − x)b−k = b(1 − (1 − x)b−1)x−1 = b

b−2∑
k=0

(1 − x)k. (10)

Then (7) and (8) follow by integrating (9) and (10) with respect to Λ(dx). Therefore,

γb+1 − γb =
∫ 1

0

(x + (1 − x)b+1 − (1 − x)b)x−2 Λ(dx) =
∫ 1

0

(1 − (1 − x)b)x−1 Λ(dx) ≥ 0,

which implies that (γb)∞b=2 is increasing. �

The next step is to show that if the Λ-coalescent comes down from infinity, then it does so in
finite expected time. We will need the lemma below, which we take from page 78 of [3].
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Lemma 4 (Kochen-Stone Lemma). Let (An)∞n=1 be events such that
∑∞

n=1 P (An) = ∞.
Let A be the event that infinitely many of the An occur. Then,

P (A) ≥ lim sup
n→∞

[
∑n

m=1 P (Am)]2∑n
k=1

∑n
m=1 P (Ak ∩ Am)

.

Proposition 5 The Λ-coalescent comes down from infinity if and only if E[T∞] < ∞.

Proof. If E[T∞] < ∞, then clearly T∞ < ∞ almost surely, which means the Λ-coalescent
comes down from infinity. We now prove the converse. For m ≥ 2, let Am be the event that
m is not in same block as 1 at time Tm−1, which, up to a null set, is the same as the event
{Tm > Tm−1}. On the event Am, the partition Πm(Tm−1) has two blocks, one of which is
{1, . . . , m − 1} and the other of which is {m}. The expected time, after Tm−1, that it takes
for these two blocks to merge is λ−1

2,2. Therefore, using (3) and the Monotone Convergence
Theorem to get the first equality, we have

E[T∞] = lim
n→∞E[Tn] = lim

n→∞

n∑
m=2

E[Tm − Tm−1] = lim
n→∞

n∑
m=2

λ−1
2,2P (Am) = λ−1

2,2

∞∑
m=2

P (Am).

(11)
Suppose E[T∞] = ∞. Then by (11),

∑∞
m=2 P (Am) = ∞. Let {B1,k, B2,k, . . . , } be the blocks

of Π∞(Tk) in order of their smallest elements. Let li,k be the smallest element of Bi,k. Note
that Bi,k and li,k are undefined if Π∞(Tk) has fewer than i blocks. Also note that if m > k,
then unless m = li,k for some i ≥ 2, the event Am can not occur. If m = li,k, then the event
Am only occurs if, at time Tm−1, the block Bi,k is separate from the cluster containing the
blocks B1,k, . . . , Bi−1,k. Let FTk

= {A ∈ F∞ : A ∩ {Tk ≤ t} ∈ Ft}, where (Ft)t≥0 is the
smallest complete, right-continuous filtration with respect to which (Π∞(t))t≥0 is adapted and
F∞ = σ(

⋃
t≥0 Ft). Conditionally on FTk

, if m = li,k then the probability that Bi,k is separate
from B1,k, . . . , Bi−1,k at time Tm−1 is the same as the unconditional probability that {i} is
separate from the block containing {1, 2, . . . , i − 1} at time Ti−1, which is P (Ai). Note that
here we are using the strong Markov property of (Π∞(t))t≥0, which is asserted in Theorem 1
of [4]. We have

n∑
m=k+1

P (Ak ∩ Am) = E

[ n∑
m=k+1

P (Ak ∩ Am|FTk
)
]

= E

[ n∑
m=k+1

1Ak
P (Am|FTk

)
]

= E

[
1Ak

#Πn(Tk)∑
i=2

P (Ali,k
|FTk

)
]
≤ E

[
1Ak

n∑
i=2

P (Ai)
]

= P (Ak)
n∑

i=2

P (Ai).

Thus, for all n,

n∑
k=2

n∑
m=2

P (Ak ∩ Am) = 2
n∑

k=2

n∑
m=k+1

P (Ak ∩ Am) +
n∑

m=2

P (Am)

≤ 2
n∑

k=2

(
P (Ak)

n∑
i=2

P (Ai)
)

+
n∑

m=2

P (Am)

= 2
( n∑

m=2

P (Am)
)2

+
n∑

m=2

P (Am).
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Since
∑∞

m=2 P (Am) = ∞, we have (
∑n

m=2 P (Am))/ (
∑n

m=2 P (Am))2 → 0 as n → ∞. Thus,

lim sup
n→∞

[
∑n

m=2 P (Am)]2∑n
k=2

∑n
m=2 P (Ak ∩ Am)

≥ lim sup
n→∞

[
∑n

m=2 P (Am)]2

2[
∑n

m=2 P (Am)]2 +
∑n

m=2 P (Am)
=

1
2
.

By the Kochen-Stone Lemma, with probability at least 1/2 infinitely many of the An occur.
If infinitely many of the An occur, then #Π∞(T2) = ∞. We have T2 > 0 by (3). Therefore,
P (#Π∞(t) = ∞) > 0 for some t > 0, which means P (#Π∞(t) = ∞) = 1 for all t > 0. Hence,
the Λ-coalescent stays infinite. �

Thus, to determine whether the Λ-coalescent comes down from infinity, it suffices to determine
whether E[T∞] < ∞. Since (E[Tn])∞n=1 ↑ E[T∞] by (3) and the Monotone Convergence
Theorem, the Λ-coalescent comes down from infinity if and only if (E[Tn])∞n=1 is bounded.

Lemma 6 If
∑∞

b=2 γ−1
b < ∞, then the Λ-coalescent comes down from infinity.

Proof. Fix n < ∞, and recursively define times R0, R1, . . . , Rn−1 by:

R0 = 0
Ri = inf{t : #Πn(t) < #Πn(Ri−1)} if i ≥ 1 and #Πn(Ri−1) > 1.
Ri = Ri−1 if i ≥ 1 and #Πn(Ri−1) = 1.

Note that Rn−1 = Tn. For i = 0, 1, . . . , n−1, let Ni = #Πn(Ri). For i = 1, 2, . . . , n−1, define
Li = Ri − Ri−1 and Ji = Ni−1 − Ni. We have E[Li|Ni−1] = λ−1

Ni−1
on the set {Ni−1 > 1}.

Also, E[Ji|Ni−1] = γNi−1λ
−1
Ni−1

on {Ni−1 > 1} because

P (Ji = k − 1|Ni−1 = b) =
(

b
k

)
λb,k

λb

for all b > 1. Thus,

E[Tn] = E[Rn−1] = E

[ n−1∑
i=1

Li

]
=

n−1∑
i=1

E[E[Li|Ni−1]] =
n−1∑
i=1

E[λ−1
Ni−1

1{Ni−1>1}]

=
n−1∑
i=1

E[γ−1
Ni−1

E[Ji|Ni−1]1{Ni−1>1}] =
n−1∑
i=1

E[E[γ−1
Ni−1

Ji1{Ni−1>1}|Ni−1]].

Since Ji = 0 on {Ni−1 = 1}, we have

E[Tn] =
n−1∑
i=1

E[E[γ−1
Ni−1

Ji|Ni−1]] =
n−1∑
i=1

E[γ−1
Ni−1

Ji] = E

[ n−1∑
i=1

γ−1
Ni−1

Ji

]
= E

[ n−1∑
i=1

Ji−1∑
j=0

γ−1
Ni−1

]
.

(12)
Since (γb)∞b=2 is increasing by Lemma 3, we have

E[Tn] ≤ E

[ n−1∑
i=1

Ji−1∑
j=0

γ−1
Ni−1−j

]
= E

[ n∑
b=2

γ−1
b

]
<

∞∑
b=2

γ−1
b .

Thus, if
∑∞

b=2 γ−1
b < ∞, then (E[Tn])∞n=1 is bounded, which proves the lemma. �

We now work towards the converse of Lemma 6, which we first prove in the special case that
Λ has no mass in (1/2, 1].
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Lemma 7 Suppose Λ is concentrated on [0, 1/2], and suppose
∑∞

b=2 γ−1
b = ∞. Then, the

Λ-coalescent stays infinite.

Proof. Fix positive integers b and l such that b > 2l. Consider a Λ-coalescent with b blocks.
Let Rb,1 be the total rate of all collisions that would take the coalescent down to 2l or fewer
blocks. Let Rb,2 be the total rate of all collisions that would take the coalescent down to
between 2l−1 + 1 and 2l blocks. We have

Rb,1 =
b∑

k=b−2l+1

(
b
k

)
λb,k =

2l−1∑
i=0

(
b

b − i

)
λb,b−i =

2l−1∑
i=0

(
b
i

) ∫ 1/2

0

xb−i−2(1−x)i Λ(dx). (13)

Likewise,

Rb,2 =
b−2l−1∑

k=b−2l+1

(
b
k

)
λb,k =

2l−1∑
i=2l−1

(
b
i

) ∫ 1/2

0

xb−i−2(1 − x)i Λ(dx). (14)

If 0 ≤ j ≤ 2l−1 − 1, then (
b
j

)
≤

(
b

2l − 1 − j

)
. (15)

Also, we have
xb−j−2(1 − x)j ≤ xb−(2l−1−j)−2(1 − x)2

l−1−j (16)

for all x ∈ [0, 1/2], because the ratio of the right-hand side to the left-hand side in (16) is
((1−x)/x)2

l−2j−1 ≥ 1. Equations (13)-(16) imply that Rb,1−Rb,2 ≤ Rb,2, and so Rb,2/Rb,1 ≥
1/2.
Let Πn be a standard Λ-coalescent restricted to {1, . . . , n}. For l such that 2l ≤ n, let Dl be
the event that 2l−1 + 1 ≤ #Πn(t) ≤ 2l for some t. By conditioning on the value of NK−1,
where K = inf{i : Ni ≤ 2l}, we see from the above calculation that P (Dl) ≥ 1/2.
Suppose n = 2m. For j = 2, 3, . . . , n, let Ln(j) = min{s ≥ j : #Πn(t) = s for some t}. If
Ni−1 ≥ j > Ni, or equivalently if Ni + Ji ≥ j > Ni, then Ln(j) = Ni−1. Therefore, using (12)
for the first equality, we have

E[Tn] =
n−1∑
i=1

E[γ−1
Ni−1

Ji] =
n∑

j=2

E[γ−1
Ln(j)] =

m∑
l=1

2l∑
j=2l−1+1

E[γ−1
Ln(j)].

Since (γb)∞b=2 is increasing by Lemma 3 and Ln(j) ≤ 2l+1 on Dl+1 when j ≤ 2l, we have

E[Tn] ≥
m−1∑
l=1

2l∑
j=2l−1+1

E[γ−1
Ln(j)] ≥

m−1∑
l=1

2l∑
j=2l−1+1

P (Dl+1)γ−1
2l+1

≥ 1
2

m−1∑
l=1

2l−1γ−1
2l+1 =

1
8

m−1∑
l=1

2l+1γ−1
2l+1 .

Therefore, using the monotonicity of the sequence (Tn)∞n=1 for the first equality, we have

lim
n→∞ E[Tn] = lim

m→∞E[T2m ] ≥ lim
m→∞

1
8

m−1∑
l=1

2l+1γ−1
2l+1 ≥ 1

8

∞∑
l=4

γ−1
l = ∞.

Hence, the Λ-coalescent stays infinite. �
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Lemma 8 Fix a > 0. Let Λ1 be the restriction of Λ to [0, a]. Suppose the Λ1-coalescent stays
infinite. Then, the Λ-coalescent stays infinite.

Proof. Let Λ2 be the restriction of Λ to (a, 1]. Then Λ = Λ1 + Λ2. We consider a Poisson
process construction of the Λ-coalescent, as given in the discussion preceding Corollary 3 of
[4]. This construction is valid as long as Λ has no atom at zero. Here, Λ2 clearly has no atom
at zero, and Λ1 has no atom at zero because, as stated in the discussion following Proposition
23 of [4], the Λ1-coalescent comes down from infinity if Λ1 has an atom at zero. Let N1 and
N2 be independent Poisson point processes on (0,∞) × {0, 1}∞ such that Ni has intensity
dt Li(dξ) for i = 1, 2, where

Li(A) =
∫ 1

0

x−2Px(A) Λi(dx)

for all product measurable A ⊂ {0, 1}∞ and Px is the law of a sequence ξ = (ξi)∞i=1 of
independent Bernoulli random variables, each of which takes on the value 1 with probability
x. Let N be the Poisson point process consisting of all of the points of N1 and N2, so that N
has intensity dt L(dξ), where

L(A) = L1(A) + L2(A) =
∫ 1

0

x−2Px(A) Λ(dx)

for all product measurable A.
We now define, for each n, a coalescent Markov chain Πn. We define Πn(0) to be the partition
of {1, . . . , n} consisting of n singletons. We allow Πn possibly to jump at the times t of points
(t, ξ) of N such that

∑n
i=1 ξi ≥ 2. For such t, if Πn(t−) consists of the blocks B1, . . . , Bb,

then Πn(t) is defined by merging all of the blocks Bi such that ξi = 1. By Corollary 3 of [4],
these processes Πn determine a unique coalescent process Π∞ whose restriction to {1, . . . , n}
is Πn for all n, and Π∞ is a standard Λ-coalescent. For i = 1, 2, define Π(i)

n analogously, only
allowing jumps at times t of points (t, ξ) of Ni. These processes give rise to a Λ1-coalescent
Π(1)

∞ and a Λ2-coalescent Π(2)
∞ .

Note that ∫ 1

0

x−2Λ2(dx) =
∫ 1

a

x−2Λ2(dx) ≤ a−2Λ2([0, 1]) < ∞,

which, as stated in section 2.1 of [4], means that the Λ2-coalescent holds in its initial state
for an exponential time of rate at most a−2Λ2([0, 1]). Therefore, given t > 0, there is some
probability p > 0 that there are no points (s, ξ) in N2 with s ≤ t. Therefore, with probability
at least p, we have Π∞(t) = Π(1)

∞ (t). However, since the Λ1-coalescent stays infinite, we have
#Π(1)

∞ (t) = ∞ almost surely. Thus, #Π∞(t) = ∞ with probability at least p, which by
Proposition 23 of [4] implies that the Λ-coalescent stays infinite. �

Lemma 9 If
∑∞

b=2 γ−1
b = ∞, then the Λ-coalescent stays infinite.

Proof. Let Λ1 be the restriction of Λ to [0, 1/2], and let Λ2 be the restriction of Λ to (1/2, 1].
Then, Λ = Λ1 + Λ2. For i = 1, 2, let γ

(i)
b be the quantity for the Λi-coalescent analogous to

that defined by (2) for the Λ-coalescent. From (1) and (2), we see that γ
(1)
b ≤ γb for all b,

so
∑∞

b=2(γ
(1)
b )−1 = ∞. By Lemma 7, the Λ1-coalescent stays infinite. It now follows from

Lemma 8 that the Λ-coalescent stays infinite. �
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3 Consequences for some families of Λ-coalescents

In this section, we use Corollary 2 to determine whether the Λ-coalescent comes down from
infinity for particular families of measures Λ. We begin with the following lemma. Note that
if Λ1 and Λ2 are probability measures, then the hypothesis is equivalent to the condition that
a random variable with distribution Λ1 is stochastically smaller than a random variable with
distribution Λ2.

Lemma 10 Suppose Λ1([0, x]) ≥ Λ2([0, x]) for all x ∈ [0, 1]. If the Λ1-coalescent stays infinite,
then the Λ2-coalescent stays infinite. If the Λ2-coalescent comes down from infinity, then the
Λ1-coalescent comes down from infinity.

Proof. For i = 1, 2, define η
(i)
b for the Λi-coalescent as in (5). For x ∈ [0, 1], let

g(x) = b

b−2∑
k=0

(1 − x)k.

Then g′(x) < 0 for all x ∈ (0, 1). Following a similar derivation on page 43 of [2], we apply
Fubini’s Theorem and Lemma 3 to get

∫ 1

0

g′(y)Λi([0, y]) dy =
∫ 1

0

g′(y)
(∫ 1

0

1[0,y](x) Λi(dx)
)

dy

=
∫ 1

0

(∫ 1

0

g′(y)1[0,y](x) dy

)
Λi(dx) =

∫ 1

0

(∫ 1

x

g′(y) dy

)
Λi(dx)

=
∫ 1

0

(g(1) − g(x)) Λi(dx) = bΛi([0, 1]) − η
(i)
b .

Therefore,

η
(i)
b = bΛi([0, 1]) +

∫ 1

0

|g′(y)|Λi([0, y]) dy.

It follows from the assumptions on Λ1 and Λ2 that η
(1)
b ≥ η

(2)
b for all b ≥ 2. An application of

Corollary 2 completes the proof. �

Corollary 2 can be interpreted to mean that the Λ-coalescent stays infinite whenever the ηb

don’t grow too rapidly as b → ∞. Lemma 25 of [4] shows that the Λ-coalescent stays infinite
when

∫ 1

0
x−1 Λ(dx) < ∞. This condition is equivalent to the condition that the ηb don’t grow

faster than O(b), because by Lemma 3,

lim
b→∞

b−1ηb =
∞∑

k=0

∫ 1

0

(1 − x)k Λ(dx) =
∫ 1

0

x−1 Λ(dx).

In Proposition 11 below, we exhibit another collection of measures Λ for which the Λ-coalescent
stays infinite. Some of the measures do not satisfy the condition

∫ 1

0 x−1 Λ(dx) < ∞.

Proposition 11 Suppose there exist ε > 0 and M < ∞ such that Λ([0, δ]) ≤ Mδ for all
δ ∈ [0, ε]. Then the Λ-coalescent stays infinite.



A necessary and sufficient condition for the Λ-coalescent to come down from infinity 9

Proof. Let Λ1 be the restriction of Λ to [0, ε]. By Lemma 8, it suffices to prove that the Λ1-
coalescent stays infinite. Let U be the uniform distribution on [0, 1]. As mentioned in section
3.6 of [4], it is a consequence of results in [1] that the U -coalescent stays infinite. Multiplying
U by the constant M multiplies all of the γb by M . Therefore, the MU -coalescent also stays
infinite. Since

Λ1([0, x]) ≤ Mx = (MU)([0, x])

for all x ∈ [0, 1], it follows from Lemma 10 that the Λ1-coalescent stays infinite. �

Remark. Define ηu
b for the MU -coalescent as in (5). We can also show that the MU -coalescent

stays infinite by using Lemma 3 to calculate

ηu
b = Mb

b−2∑
k=0

∫ 1

0

(1 − x)k dx = Mb

b−2∑
k=0

1
k + 1

≤ Cb log b

for some C < ∞ not depending on b. Thus,
∞∑

b=2

(ηu
b )−1 ≥ 1

C

∞∑
b=2

1
b log b

≥ 1
C

∫ ∞

2

1
x log x

dx = ∞,

where the integral diverges because log(log x) is an antiderivative of 1/x log x.

There also exist measures Λ with densities that approach infinity as x → 0 for which the
Λ-coalescent stays infinite, as the following example shows.

Example 12 Suppose, for some ε < 1/e, Λ has a Radon-Nikodym derivative f with respect
to Lebesgue measure given by f(x) = log(log(1/x)) when x ∈ (0, ε) and f(x) = 0 otherwise.
Then there exists a constant C1 < ∞ such that for all k > 1/ε, we have
∫ 1

0

(1 − x)k Λ(dx) =
∞∑

n=1

∫ k−n

k−(n+1)
(1 − x)k log(log(1/x)) dx +

∫ ε

k−1
(1 − x)k log(log(1/x)) dx

≤
∞∑

n=1

k−n log(log kn+1) + log(log k)
∫ 1

0

(1 − x)k dx

=
∞∑

n=1

k−n log(log k) +
∞∑

n=1

k−n log(n + 1) + (k + 1)−1 log(log k)

≤ C1k
−1(1 + log(log k)).

Let N be the smallest integer such that N ≥ 1 + 1/ε. Then there exist constants C2 and C3

not depending on b such that for b ≥ N + 2, we have

b−1ηb ≤ C2 + C1

b−2∑
k=N

k−1(1 + log(log k)) ≤ C2 + C1

∫ b

e

x−1(1 + log(log x)) dx

= C2 + C1(log b)(log(log b)) ≤ C3(log b)(log(log b)).

Thus,
∞∑

b=2

η−1
b ≥

∞∑
b=N+2

η−1
b ≥ 1

C3

∫ ∞

N+2

1
x(log x)(log(log x))

dx = ∞,

where the divergence of the integral can be seen after substituting u = log(x). By Corollary
2, the Λ-coalescent stays infinite.
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We now exhibit a family of measures Λ for which the Λ-coalescent comes down from infinity.
The family is slightly larger than that studied in section 5 of [5].

Proposition 13 Suppose there exist ε > 0, M > 0, and α ∈ (0, 1) such that Λ([0, δ]) ≥ Mδα

for all δ ∈ [0, ε]. Then the Λ-coalescent comes down from infinity.

Proof. By Lemma 10, it suffices to prove the result when Λ([0, δ]) = Mδα for all δ ∈ [0, ε]
and Λ((ε, 1]) = 0. We may therefore assume that the Radon-Nikodym derivative of Λ with
respect to Lebesgue measure is given by Mαxα−1 on [0, ε] and 0 on (ε, 1]. We then have

∫ 1

0

(1 − x)kΛ(dx) = Mα

∫ 1

0

xα−1(1 − x)k dx = MαB(α, k + 1) =
MαΓ(α)Γ(k + 1)

Γ(k + 1 + α)
,

where B denotes the beta function. By Stirling’s formula, Γ(k +1)/Γ(k+1+α) ∼ k−α, where
∼ denotes asymptotic equivalence as k → ∞. Therefore, there exists a constant C1 > 0 such
that

∫ 1

0 (1 − x)k Λ(dx) ≥ C1k
−α for all k ≥ 1. Then, for some C2 > 0, we have

ηb = b
b−2∑
k=0

∫ 1

0

(1 − x)k Λ(dx) ≥ bΛ([0, 1]) + C1b
b−2∑
k=1

k−α ≥ C2b
2−α

for all b ≥ 2. Thus,
∑∞

b=1 η−1
b < ∞, so the Λ-coalescent comes down from infinity. �

The following example shows that the result above is not sharp.

Example 14 Suppose the Radon-Nikodym derivative of Λ with respect to Lebesgue measure
on [0, 1] is given by f(x) = log(1/x). For k ≥ 1, we have

∫ 1

0

(1 − x)k log(1/x) dx ≥
∫ k−1

0

(1 − x)k log(1/x) dx

≥
(

1 − 1
k

)k ∫ k−1

0

log(1/x) dx

=
(

1 − 1
k

)k

k−1(1 − log(1/k)) ≥ C1 log k

k

for some constant C1 > 0. It follows that for all b ≥ 2,

ηb ≥ b + C1b

b−2∑
k=1

log k

k
≥ C2b(log b)2

for some C2 > 0. We can see by substituting u = log x that∫ ∞

2

1
x(log x)2

dx < ∞.

Therefore,
∑∞

b=2 η−1
b < ∞, and the Λ-coalescent comes down from infinity.

Example 15 Suppose Λ has the beta density f(x) = B(α, β)−1xα−1(1 − x)β−1 with respect
to Lebesgue measure on [0, 1], where α > 0 and β > 0. If α ∈ (0, 1), then Λ satisfies the
hypotheses of Proposition 13. If α ≥ 1, then Λ satisfies the hypotheses of Proposition 11.
Thus, the Λ-coalescent comes down from infinity if and only if α < 1.



A necessary and sufficient condition for the Λ-coalescent to come down from infinity 11

Acknowledgments

The author thanks Jim Pitman for suggesting this problem and making detailed comments on
earlier drafts of this work. He also thanks Serik Sagitov and a referee for their comments.

References

[1] E. Bolthausen and A.-S. Sznitman. On Ruelle’s probability cascades and an abstract
cavity method. Comm. Math. Phys., 197(2):247-276, 1998.

[2] R. Durrett. Probability: Theory and Examples. 2nd ed. Duxbury Press, Belmont, CA,
1996.

[3] B. Fristedt and L. Gray. A Modern Approach to Probability Theory. Birkhauser, Boston,
1997.

[4] J. Pitman. Coalescents with multiple collisions. Technical Report 495, Dept. Statistics,
U.C. Berkeley, 1999. Availavle via http://www.stat.berkeley.edu/users/pitman. To
appear in Ann. Probab.

[5] S. Sagitov. The general coalescent with asynchronous mergers of ancestral lines. Available
via http://www.math.chalmers.se/Math/Research/Preprints. To appear in J. Appl.
Prob., December 1999.


