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Abstract
The lattice gas model in equilibrium is considered. We give a lower bound of the density-density
time correlation for large time, which involves the bulk diffusion matrix in a physically natural
way.

1 Introduction

The lattice gas model has been studied by many authors from physical and mathematical
point of view. (See Spohn (1991), Part II and the references therein.) In the context of
statistical mechanics, the lattice gas model is expected to exhibit various physical properties
of interest. In this article we are concerned with diffusive behavior of the lattice gas. The
model is described as an infinite particle system with a single conservation law of particle
numbers. More precisely, we consider the reversible Markov process on the configuration
space E ≡ {1, 0}Zd

over the d-dimensional square lattice with the generator of the form

L =
1
2

∑
x,y∈Zd

cx,y∇x,y (1.1)

where ∇x,y are difference operators defined by

∇x,yf(η) = f(ηx,y) − f(η), (ηx,y)z =


ηy if z = x
ηx if z = y
ηz if z 6= x and z 6= y.

Each coordinate ηx of a configuration η ∈ E stands for the number of particles at x ∈ Zd. Thus
the lattice gas model has the conservation law: particles are neither annihilated nor created

1Research supported in part by Grant-in-Aid for Encouragement of Young Scientists No. 09740152, The
Ministry of Education, Science, Sports and Culture.

1

DOI: 10.1214/ECP.v4-999

1

http://dx.doi.org/10.1214/ECP.v4-999


2 Electronic Communications in Probability

under the time evolution. We suppose that the family {cx,y} of rates satisfies the following
conditions.

(A.1) There exists a positive integer R such that

cx,y ≡ 0 whenever |x − y| > R.

(A.2) The system is nondegenerate in the sense that

cx,y(η) > 0 if |x − y| = 1 and ηx 6= ηy.

(A.3) For each pair of sites x, y ∈ Zd, cx,y(η) is a nonnegative local function of η.
(A.4) The system is translation invariant: for all x, y, a ∈ Zd and η ∈ E,

cx+a,y+a(η) = cx,y(τaη),

where τa is the shift by a, i.e., (τaη)z = ηz+a.

These conditions are enough to ensure the existence and uniqueness of the process η(t) =
{ηx(t)}x∈Zd associated with L. We also need to assume reversibility of the process. Let
Φ = {Φ(Λ)}Λ⊂Zd be a finite range and translation invariant potential. Then reversibility with
respect to Gibbs measures associated with Φ is interpreted as the next condition of detailed
balance. (See e.g. Georgii (1979) for more detailes.)

(A.5) For all x, y ∈ Zd and η ∈ E,

cx,y(η) = cx,y(ηx,y) exp [−∇x,yH(η)] ,

where H(η) is the Hamiltonian associated with Φ, a formal sum given by

H(η) =
∑

Λ⊂Zd

Φ(Λ)
∏
x∈Λ

ηx.

Note that ∇x,yH(η) is well-defined since it can be given as the finite sum

∇x,yH(η) =
∑

Λ∩{x,y}6=φ

Φ(Λ)∇x,y

∏
z∈Λ

ηz.

We are interested in ergodic properties of the reversible Markov process η(t). Because of the
conservation law, the system must evolve, in some sense, under very long range interaction.
What is expected as quantitative nature of convergence to equilibrium in this model? In
Spohn (1991), p.177, a physical conjecture concerning this question is stated as follows. Let
ν be a translation invariant Gibbs measure associated with Φ. We simply denote by 〈·〉 the
expectation with respect to ν or the corresponding process in equilibrium. The equilibrium
correlation function is then defined by

S(x, t) ≡ 〈ηx(t)η0(0)〉 − ρ2, (1.2)

where ρ = 〈ηx(t)〉 is the average density. Due to diffusive property of the lattice gas, it is
expected to hold that

S(x, t) ∼= χ(det(4πtD))−
1
2 exp

[
− 1

4t
(x, D−1x)

]
(1.3)
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under a proper rescaling of x and t. Here χ ≡ ∑
x S(x, 0) is the static compressibility by

definition and D is a symmetric d × d matrix (called the bulk diffusion matrix) having the
following quadratic form

(k, Dk) =
1
4χ

inf
f

∑
y

〈c0,y(η)[(k, y)(η0 − ηy) +
∑

x

∇0,yτxf(η)]2〉, (1.4)

where the infimum is taken over all local functions f on E and τxf are defined by τxf(η) =
f(τxη).
In the case when the lattice gas is of gradient type, Spohn (1991) proved the spatial Fourier
transform version of this conjecture. Also, without assuming the gradient condition, Spohn
(1991) obtained

lim inf
t→∞ S(0, t)t

d
2 ≥ χ(det(4πD))−

1
2 , (1.5)

where D is a trivial upper bound (as a matrix) of D with quadratic form

(k, Dk) =
1
4χ

∑
y

〈c0,y(η) [(k, y)(η0 − ηy)]2〉. (1.6)

Main result of this paper improves (1.5) by replacing D with D, giving more natural lower
bound of S(0, t) for large t.

Theorem 1 Suppose that the family {cx,y} satisfies all the conditions from (A.1) to (A.5).
We assume that the mixing condition (A.6) below holds for the translation invariant Gibbs
measure ν associated with Φ. Then

lim inf
t→∞ S(0, t)t

d
2 ≥ χ(det(4πD))−

1
2 . (1.7)

Given Λ ⊂ Zd, let FΛ be the σ-field generated by coordinates ηx with x ∈ Λ and let |Λ| denote
the cardinality of Λ. The mixing condition assumed is the following.

(A.6) Let Λ1 and Λ2 be bounded subsets of Zd. Then for FΛ1-measurable function f and
FΛc

2
-measurable function g,

|〈(f − 〈f〉) (g − 〈g〉)〉| ≤ Cδ(f)δ(g)|Λ1|e−α dist(Λ1,Λc
2),

where positive finite constants C and α are independent of f, g, Λ1 and Λ2, and δ(f) is the
oscillation of f defined as

δ(f) = sup{|f(η) − f(ξ)| : η, ξ ∈ E}.
Remark 1 It follows from (8.28), (8.32) and (8.33) of Georgii (1988) that if the potential Φ
satisfies Dobrushin’s uniqueness condition, then the unique Gibbs measure enjoys the property
(A.6).
Remark 2 Spohn and Yau (1995) proved positivity of the quadratic form χ(k, Dk) without
any assumption of mixing conditions.

The rest of this paper is organized as follows. The proof of Theorem 1.1 is given in Section
2 by using spatial Fourier transform of S(x, t). So we need a suitable decay of correlations in
the variable x. In Section 3, this property is shown to hold under the condition (A.6).
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2 Proof of Theorem 1.1

Our proof of Theorem 1.1 is based on estimates for the structure function, i.e., the spatial
Fourier transform of the correlation function with respect to 〈·〉, the translation invariant
reversible Gibbs measure for which we suppose to satisfy (A.6). Main ideas used below are
taken from Spohn (1991), p.176, except a perturbation argument from the conservation law.
We begin with generalizing the notion of the structure function. Let g be a complex-valued
local function and denote by g the complex conjugate of g. For x ∈ Zd, k ∈ Rd, and t ≥ 0,
define

Sg(x, t) = 〈(g(η(0)) − 〈g〉) (τxg(η(t)) − 〈g〉)〉
and

Ŝg(k, t) =
∑

x∈Zd

ei(k,x)Sg(x, t). (2.1)

In special case when g(η) = η0, set Ŝ(k, t) = Ŝg(k, t). Let {Tt} be the semigroup generated
by L with {cx,y} satisfying (A.1)-(A.5). By translation invariance (A.4) and uniqueness of the
process, we have Tt(τxg) = τx(Ttg). Therefore we can rewrite Sg(x, t) as

Sg(x, t) = 〈(g − 〈g〉) (Ttτxg − 〈g〉)〉 = 〈(g − 〈g〉) (τxTtg − 〈g〉)〉,

and the sum in (2.1) converges by exponential decay of spatial correlations proved in Section
3 (Lemma 3.1). Some basic properties of Ŝg(k, t) are shown in the following.

Lemma 2.1 Let g be a complex-valued local function such that 〈g〉 = 0. Then

Ŝg(k, t) = lim
Λ↑Zd

1
|Λ| 〈

∑
x∈Λ

ei(k,x)τxg(η(0))
∑
y∈Λ

e−i(k,y)τyg(η(t))〉 (2.2)

and
0 ≤ Ŝg(k, t) ≤ Ŝg(k, 0), (2.3)

where Λ ↑ Zd means that Λ runs over hypercubes with center (0, · · · , 0) ∈ Zd.

Proof. The equality (2.2) is easily shown by using translation invariance and exponential decay
of spatial correlations together. (2.3) is a direct consequence of (2.2). Indeed, fixing a bounded
Λ ⊂ Zd, we observe by the semigroup property and reversibility that

〈
∑
x∈Λ

ei(k,x)τxg(η(0))
∑
y∈Λ

e−i(k,y)τyg(η(t))〉

= 〈|Tt/2

∑
x∈Λ

ei(k,x)τxg|2〉 ≥ 0.

The contraction property yields the last inequality of (2.3).

The next lemma is our starting point to get a lower bound of Ŝg(k, t).

Lemma 2.2 Let f be a complex-valued local function. Assume that 〈f〉 = 0. Then

〈fTtf〉 ≥ 〈|f |2〉 exp
[
−t

D(f)
〈|f |2〉

]
, (2.4)
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where D(f) is the Dirichlet form given by

D(f) = −〈f · Lf〉 =
1
4

∑
x,y

〈cx,y|∇x,yf |2〉.

Proof. Use the spectral theorem to rewrite the left side of (2.4) in terms of the spectral
resolution of (a suitable extension of) −L and then apply Jensen’s inequality.

Given a local function g such that 〈g〉 = 0, set for bounded Λ’s

fΛ = |Λ|−1/2
∑
x∈Λ

ei(k,x)τxg.

Put f = fΛ in (2.4) and let Λ ↑ Zd. Then, by (2.2), (2.4) becomes

Ŝg(k, t) ≥ Ŝg(k, 0) exp

[
−t

D̂k(g)

Ŝg(k, 0)

]
(2.5)

where

D̂k(g) ≡ lim
Λ↑Zd

D(fΛ) =
1
4

∑
y

〈c0,y|
∑

x

ei(k,x)∇0,yτxg|2〉.

In the next step we introduce space-time rescaling of diffusion type and a perturbation from
the conservation law (a version of which is expressed as an identity D̂0(η0 − ρ) = 0):

k 7→ εk, t 7→ t/ε2, g(η) = gε(η) ≡ η0 − ρ − iε(f(η) − 〈f〉),

where f is an arbitrary real-valued local function and ε > 0. Asymptotics of the quantities in
(2.5) after the substitution above are described as follows.

Lemma 2.3 For any k ∈ Rd and t ≥ 0,

Ŝgε(εk, t/ε2) = Ŝ(εk, t/ε2) + o(1)

Ŝgε(εk, 0) = χ + o(1)

and

D̂εk(gε)ε−2 =
1
4

∑
y

〈c0,y(η)[(k, y)(η0 − ηy) +
∑

x

∇0,yτxf(η)]2〉 + o(1)

as ε ↓ 0.

Proof. (2.2) and Schwarz’s inequality together yield∣∣∣Ŝgε(εk, t/ε2) − Ŝ(εk, t/ε2)
∣∣∣ ≤ 2ε

√
Ŝf (εk, t/ε2)

√
Ŝ(εk, t/ε2) + ε2Ŝf(εk, t/ε2).

Since by (2.3) and the dominated convergence theorem

0 ≤ Ŝf (εk, t/ε2) ≤ Ŝf (εk, 0) −→ Ŝf (0, 0)
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as ε ↓ 0, this proves the first two equalities. The last equality is shown by straightforward
calculation.

We return to the proof of Theorem 1.1. Combining the three equalities of Lemma 2.3 with
(2.5), we get

Ŝ(εk, t/ε2) + o(1) ≥ (χ + o(1)) exp
[
−t

c∗k(f)
χ + o(1)

]
as ε ↓ 0, where

c∗k(f) =
1
4

∑
y

〈c0,y(η)[(k, y)(η0 − ηy) +
∑

x

∇0,yτxf(η)]2〉.

Since f is arbitrary, this implies

lim inf
ε↓0

Ŝ(εk, t/ε2) ≥ χ exp [−t(k, Dk)] .

In the final step, we use Fourier transform and Fatou’s lemma to obtain

lim inf
ε↓0

S(0, 1/ε2)ε−d = lim inf
ε↓0

1
(2π)d

∫
[−π/ε,π/ε]d

dkŜ(εk, 1/ε2)

≥ χ

(2π)d

∫
Rd

dk exp [−(k, Dk)]

= χ(det(4πD))−
1
2 ,

which is equivalent to the desired inequality (1.7).

3 Decay of Spatial Correlations

In this section we prove the following lemma used in the previous section. We denote by {Tt}
the semigroup generated by L with {cx,y} satisfying (A.1)-(A.4). Note that the next lemma
requires no assumption of reversibility (A.5).

Lemma 3.1 Suppose that the mixing condition (A.6) holds for some probability measure 〈·〉
on E. Let t ≥ 0. Then for all local functions f and g, there exist positive finite constants C1

and C2 such that
|〈(f − 〈f〉) (τxTtg − 〈τxTtg〉)〉| ≤ C1e

−C2|x| (3.1)

is true for all x ∈ Zd.

Roughly speaking, this lemma is a consequence of the fact that the following type of quasilo-
cality is preserved under the time evolution. A measurable function f on E is said to be
exponentially quasilocal if there exist positive finite constants A and a such that for each
positive integer l

δl(f) ≡ sup{|f(η) − f(ξ)| : η = ξ on Bl} ≤ Ae−al, (3.2)

where Bl = {x ∈ Zd : |x| ≤ l}. Let us denote by D1 the class of exponentially quasilocal
functions on E. We need the following fact in Spohn (1991)(Theorem 1.4, p.160).

Lemma 3.2 For all t > 0, TtD1 ⊂ D1.
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Before proving Lemma 3.1, recall the mixing condition (A.6) we suppose:

|〈(f − 〈f〉) (g − 〈g〉)〉| ≤ Cδ(f)δ(g)|Λ1|e−α dist(Λ1,Λc
2) (3.3)

Here f is FΛ1-measurable and g is FΛc
2
-measurable. Positive finite constants C and α are

independent of f, g, Λ1 and Λ2. Further, δ(f) is the oscillation of f .

Proof of Lemma 3.1. Let f and g be local functions on E. Take a finite subset Λ1 of Zd such
that f is FΛ1 -measurable. Fix an arbitrary t ≥ 0. Then by Lemma 3.2, gt ≡ Ttg ∈ D1 and
hence for each positive integer l we can choose an FBl

-measurable function gl
t such that

‖gl
t − gt‖∞ ≤ Ae−al and δ(gl

t) ≤ δ(gt) ≤ 2‖g‖∞ (3.4)

hold for some A and a > 0 which do not depend on l. Set Bl(x) = {y ∈ Zd : |y − x| ≤ l}.
Since τxgl

t is FBl(x)-measurable, by the mixing condition (3.3)

|〈(f − 〈f〉) (τxgl
t − 〈τxgl

t〉)〉| ≤ 2Cδ(f)‖g‖∞|Λ1|e−α dist(Λ1,Λc
2), (3.5)

provided that Λ2 ∩ Bl(x) = φ. In (3.5), C and α are the same constants as in (3.3) and, in
particular, independent of t, l and x.
In the rest of the proof, we will show that (3.1) holds for any x ∈ Zd such that dist(Λ1, {x}) ≥ 6.
Fixing such an x, let l be the smallest integer greater than or equal to dist(Λ1, {x})/3. Set

Λ2 = {y ∈ Zd : dist({y}, Λ1) ≤ l}.
It is not difficult to see Λ2 ∩ Bl(x) = φ. Observe that

dist(Λ1, Λc
2) ≥ l ≥ 1

3
dist(Λ1, {x})

≥ 1
3

dist({0}, {x})− 1
3

diam(Λ1 ∪ {0})

=
1
3
|x| − 1

3
diam(Λ1 ∪ {0}),

where we used notation diam(Λ) = sup{|x− y|; x, y ∈ Λ} for Λ ⊂ Zd. Using these inequalities
and (3.4) and applying (3.5) with this choice of l and Λ2, we get

|〈(f − 〈f〉) (τxgt − 〈τxgt〉)〉|
≤ 2δ(f)Ae−al + |〈(f − 〈f〉) (τxgl

t − 〈τxgl
t〉)〉|

≤ 2δ(f)Ae−al + 2Cδ(f)‖g‖∞|Λ1|e−αl

≤ 2δ(f)(A + C‖g‖∞|Λ1|)e−min{a,α}l

≤ 2δ(f)(A + C‖g‖∞|Λ1|)emin{a,α} diam(Λ1∪{0})/3e−|x|min{a,α}/3.

This shows that (3.1) holds with

C1 = 2δ(f)(A + C‖g‖∞|Λ1|)emin{a,α} diam(Λ1∪{0})/3

and C2 = min{a, α}/3, provided that dist(Λ1, {x}) ≥ 6. But this restriction can be removed
by modifying the constant C1 appropriately, and the proof of Lemma 3.1 is completed.

Remark 3 Since the above proof clearly works for g ∈ D1, the conclusion of Lemma 3.1 is
valid even if g ∈ D1.
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