
Elect. Comm. in Probab. 4 (1999) 87–90 ELECTRONIC
COMMUNICATIONS
in PROBABILITY

EDGE OCCUPATION MEASURE
FOR A REVERSIBLE MARKOV CHAIN

N. GUILLOTIN
Department of Mathematics, Imperial College
Huxley Building, 180 Queen’s Gate
London, SW7 2BZ, UK
Permanent address: Laboratoire de probabilités
Bâtiment 101, 43 bd du 11 novembre 1918
69622 Villeurbanne, France
guilloti@jonas.univ-lyon1.fr

submitted September 15, 1999, final version accepted on October 18, 1999

AMS subject classification: Primary 60J15
Keywords and phrases: Markov Chain, Limit theorems, Large deviations principle

Abstract:
In this note, we study the Gaussian fluctuations of the edge occupation measure for a reversible
Markov chain and give a nice description of the covariance matrix. Then we give some large
deviations results concerning this occupation measure.

Introduction

Consider a connected, finite dimensional graph (V, E) with V a set of n vertices. Each edge
(i, j) ∈ E has a nonnegative weight denoted by w(ij). Let (Xn)n∈N be the reversible Markov
chain with state space V and transition probabilities

p(i, j) = P(Xn+1 = j|Xn = i) =
w(ij)∑

l∈N(i) w(il)
,

where N(i) is the set of neighbours of the vertex i. Define the (unoriented) edge occupation
measure associated to a path, and defined for an edge (i, j) ∈ E by

µn ((i, j)) = µ(ij)
n =

∣∣∣{1 ≤ k ≤ n − 1 : Xk+1 = j, Xk = i or Xk+1 = i, Xk = j
}∣∣∣.

The aim of this note is to study the random sequence of edge occupation measures µn =
(µ(ij)

n )(ij)∈E associated to the sample path (Xk)k≤n, n ∈ N for the Markov chain introduced
above.
Because we have restricted our attention to finite Markov chains, it is clear that 1

nµn con-

verges almost surely to 1
‖w‖w and 1√

n

(
µn − w

‖w‖
)

converges in law to G(0, C) where ‖w‖ =∑
(ij)∈E w(ij) and G(m, C) is an |E|-dimensional Gaussian distribution with vector mean m
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and covariance matrix C. Our interest is to obtain explicit results concerning the covariance
C and also some large deviations results.
Such results are well known for the site occupation measure, where it is also easy to generalise
to the continuous case, but seem new for the edge process. The author’s attention was directed
to the problem as it turns out to be an essential initial step in understanding various path
dependent stochastic evolution proccesses.

1. The main calculation

Vertex occupation measures for Markov processes are well understood even in the non-reversible
case. So consider the expanded Markov chain (Yn)n∈N with state space the directed edges
Ẽ = {(ij) ∈ V 2; p(i, j) > 0} and transition probabilities

P ((ij), (kl)) = P(Yn+1 = (kl)|Yn = (ij)) = p(j, l)δj,k.

This process is an irreducible Markov Chain, and has stationary law:

ν(ij) =
w(ij)∑

(ij)∈Ẽ w(ij)
.

Then, for every function f defined on Ẽ,

lim
n→∞

1
n

n∑
k=1

f(Yk) = ν(f) =
∑

(ij)∈Ẽ

f(ij)ν(ij) a.s.

Applying this result to the function 1(ij) + 1(ji) and noting that µn(ij) =
∑n

k=1(1(ij)(Yk) +
1(ji)(Yk)) gives us the pointwise convergence of the occupation measure.

Let A be the |Ẽ| × |Ẽ|−matrix with coefficients

A((ij), (i′j′)) = ν(i′j′).

Let Z be the Green function (or fundamental matrix) of the Markov chain (Yn)n∈N defined by

Z = (I − P + A)−1

and P ∗ be the adjoint of P for the inner product (., .), in fact P ∗((ij), (i′j′)) = ν(i′j′)
ν(ij) P ((i′j′), (ij)).

Proposition 1. With these notations
1√
n

(µn(ij) − 2nν(ij))(ij)∈Ẽ

L−→
n→∞G(0, C)

where C((ij), (i′j′)) =
(
Z(1(ij) + 1(ji)), (I − P ∗P )Z(1(i′j′) + 1(j′i′))

)
Let us recall the well-known central limit theorem for the finite Markov chains (see Kemeny
and Snell [1] and [2]). Let (Xn)n∈N be an irreducible Markov chain with finite state space E
with a transition matrix denoted by p and its stationary law by µ. Let z be the Green function
of this Markov chain. Let f1, . . . , fm be functions defined on E. Then,

1√
n

(
n∑

k=1

fl(Xk) − nµ(fl))l=1,... ,m
L−→

n→∞G(0, C)

where C is a m × m−matrix with coefficients

C(l, l′) =
∑

i,j∈E

fl(i)cijfl′(j)
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with

cij = µ(i)z(i, j) + µ(j)z(j, i) − µ(i)δij − µ(i)µ(j)

Now we apply this result to the Markov chain (Yn)n∈N with the functions defined on Ẽ

f(ij) = 1(ij) + 1(ji)

The proposition 1 is proved by making the substitution PZ = A − I + Z in the covariance
terms.

Proposition 2. The self-adjoint operator I − P ∗P is an orthogonal projection, it has only
eigenvalues 0 and 1 with multiplicities n and mn = 2|E| − |V | respectively. (The graph being
connected, mn is strictly positive if n ≥ 3)

First, using the definitions of the Markov chains (Xn)n and (Yn)n, for every function f defined
on Ẽ,

P ∗Pf(kj) =
∑
m,l

ν(mk)
ν(kj)

f(kl)p(k, l)p(k, j)

=
∑
l∈V

p(k, l)f(kl)

So, the function f is an eigenfunction of I − P ∗P for the eigenvalue 0 if and only if for every
k, j ∈ V , ∑

l∈V

p(k, l)f(kl) = f(kj).

It is easy to see that for i = 1, . . . , n the functions defined by fi =
∑

(kl)∈Ẽ δi,k1(kl) verify
this equation and form an orthogonal n-dimensional basis of the eigenspace associated to the
eigenvalue 0. Now, let us construct the mn eigenfunctions of I − P ∗P for the eigenvalue 1.
The function f is an eigenfunction of I − P ∗P for the eigenvalue 1 if and only if for all i,∑

l∈N(i)

w(il)f(il) = 0.

For any given i ∈ V , the dimension of the space of the functions satisfying the previous
equation and such that f(kl) = 0, k 6= i is |N(i)| − 1, these functions are denoted by f

(j)
i , 1 ≤

j ≤ |N(i)| − 1. We can find a basis of this space orthogonal for the inner product (., .). And,
if i 6= i′, the functions (f (j)

i )j and (f (j)
i′ )j are orthogonal to each other. Then, we have an

orthogonal mn-dimensional basis of the eigenspace associated to the eigenvalue 1. All these
eigenfunctions can be renormalized to be an orthonormal basis (fi)i of L2(Ẽ, ν). So, we can
rewrite the covariance as

C((ij), (i′j′)) =
mn∑
l=1

(
Z(1(ij) + 1(ji)), fl

) (
Z(1(i′j′) + 1(j′i′)), fl

)
.

2. Large Deviations

The fact that 1
nµn converges in probability to 1

‖w‖w as n→∞ indicates that 1
nµn is a good

candidate for a large deviations principle in the space of probability measures M1(E).
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Proposition 3. The sequence of measures 1
nµn satisfies a large deviations principle with the

good rate function

I ′(q) =
∑

(ij)∈E

q(ij)
2

log
(

q2(ij)∑
lq(il)

∑
lq(jl)p(i, j)p(j, i)

)

where q(ij) = µ(ji) + µ(ij). This means that for every Γ ∈ M1(E),

− inf
q∈Γo

I ′(q) ≤ lim inf
n→∞

1
n

logP(
µn

n
∈ Γ)

≤ lim sup
n→∞

1
n

logP(
µn

n
∈ Γ) ≤ − inf

q∈Γ̄
I ′(q)

The directed edges occupation measure for the expanded Markov chain (Yn)n∈N is very well
understood (see Dembo and Zeitouni [1] for example) and an explicit formula for the good
rate function can be given. For any µ ∈ M1(Ẽ), let us define

µ1(i) =
∑
j∈V

µ(ij) and µ2(i) =
∑
j∈V

µ(ji).

Then, µ ∈ M1(Ẽ) is shift invariant (s.i.) if µ1 = µ2. The good rate function is then

I(µ) =




∑
(ij)∈Ẽ

µ(ij) log(
µ(ij)

µ1(i)p(i, j)
) if µ is shift invariant,

∞ otherwise.

Applying the contraction principle with the continuous function f which at each measure µ in
M1(Ẽ) associates the new measure (µ(ij) + µ(ji))(ij)∈E in M1(E).

I ′(q) = inf
µ s.i;f(µ)=q

I(µ).

We can rewrite I(µ) as

I(µ) =
∑
i∈V

∑
l∈N(i)

µ(il) log(µ(il)) −
∑
i∈V

∑
l∈N(i)

µ(il) log(
∑

k∈N(i)

µ(ik)p(i, l)).

Using the fact that µ is shift invariant and µ(ij) = q(ij) − µ(ji) for every (ij), the marginals
of µ are determined by q and then the second double sum does not depend on µ and as we
differentiate with respect to a (directed) edge (ij), only two terms in the first double sum are
involved: µ(ij) and µ(ji) = q(ij)−µ(ij). After some calculations, it appears that the infimum
is attained at µ defined as µ(ij) = µ(ji) = 1

2q(ij) which is a strict minimum. So

I ′(q) =
∑

(ij)∈E

q(ij)
2

log
(

q2(ij)∑
lq(il)

∑
lq(jl)p(i, j)p(j, i)

)
.
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