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Abstract

By choosing some special (random) initial data, we prove that with probability 1,
stochastic shadow Gierer-Meinhardt system blows up in finite time in the pointwise
sense. We also give a (random) upper bound for the blowup time and some estimates
about this bound. By increasing the amplitude of initial data, we can get a blowup in
any short time with a positive probability.
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1 Introduction

Inspired by the recent work [9] and [10], we study the blow up of the shadow
Gierer-Meinhardt system with random migrations with the following form:

∂tu = ∆u− u+ up

ξq in O × (0, T ),

dξ =
(
−ξ + ur

ξs

)
dt+ ξdBt in (0, T ),

∂u
∂ν = 0 on ∂O × (0, T ),

u(0) = u0 in O,

ξ(0) = ξ0,

(1.1)

where ξdBt can be explained as random migrations and Bt is a one-dimensional standard
Brownian motion. Due to the random effects, we need to introduce the sample space Ω

and re-define

u(t, x, ω) : R+ ×O × Ω→ R+, ξ(t, ω) : R+ × Ω→ R+ \ {0}.

The motivation for studying Eq. (1.1) can be found in [16], [15] and [8].
We shall study in this paper the blowup problem of Eq. (1.1) under quite general

assumptions. When p ≥ r and p−1
r > 2

n+2 , we show that with probability 1, Eq. (1.1)
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Blowup of stochastic Gierer-Meinhardt system

blows up in the pointwise sense if we choose some suitable (random) initial data. We also
give a (random) upper bound for the blow up time and consequently obtain a probabilistic
estimate of this blow up.

To our knowledge, there are not many results for the blow up of stochastic systems.
The work [1] proved that the 2nd moment of the solution of some nonlinear wave
equations blows up, while [2] gave a nice criterion for the blowup of the pth moment
for some stochastic reaction-diffusion equations. As pointed out in [2], the blowup of
the pth moment even does not imply the pathwise blowup with a positive probability. [4]
extended the result in [2] to the case of stochastic parabolic equations with delay. Most
recently, Chow and Khasminski established an almost sure blowup result for a family of
SDEs ([3]). [13] and [12] studied stochastic heat equations and showed that the noises
can produce blowup with positive probability. In contrast, our blowup results depend on
the choices of initial data, it is inspired by the deterministic work of [6], [10] and [9]. A
special (random) data can, with probability 1, lead to a blowup of SPDEs solutions. By
increasing the amplitude of the initial data, we can get the blowup in any short time with
positive probability.

Both probabilistic and PDE’s methods play important roles in our approach. Itô’s
formula in the proof of Lemma 2.2 below is the key point for finding a monotone
stochastic process ξ̂(t), which paves the way to applying classical PDE techniques and
estimating the upper bounds of blow up time. For the PDE’s argument, we follow the
approaches shown in [9] and [10].

The organization of the paper is as follows. In section 2, we introduce some notations
and give some prerequisite lemmas. To show our approach more transparently, we
prove a blowup theorem under some additional assumption in section 3. The 4th section
removes the assumption and build the general blowup result by integral estimates.

2 Some auxiliary lemmas and a monotone stochastic process ξ̂(t)

From now on, we assume O = B1(0), the unit open ball in Rn with zero center. For
notational simplicity, write v(t, z) = etu(t, z) for all t > 0 and z ∈ B̄1(0) and

K(t) =
e−(p−1)t

ξq(t)
, (2.1)

note that K(t) depends on ξ. It is easy to check

∂tv = ∆v +K(t)vp in B1(0),

dξ =
(
−ξ + e−rt v

r

ξs

)
dt+ ξdBt,

∂v
∂ν = 0 on {z = 1},

v(0) = u0,

ξ(0) = ξ0,

(2.2)

To study the blow up of Eq. (1.1) , we only need to study that of Eq. (2.2). So we shall
concentrate on the blow up of v and ξ in the sequel.

Write
B∗t = sup

0≤s≤t
|Bs| ∀t > 0,

it is well known ([7, p. 96]) that P (B∗t ≥ A) ≤
√
t√
2π

4
Ae−

A2

2t for any A > 0 and t > 0.
Hence,

P (B∗t <∞) = 1− lim
A→∞

P (B∗t ≥ A) = 1 ∀ t > 0.
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Blowup of stochastic Gierer-Meinhardt system

For every t > 0, denote Nt = {ω : B∗t = ∞}, it is clear that P(Nt) = 0. Take t = 1, 2, ...,
it is easy to see that Nt ⊂ Nm for all t ≤ m. Define N = limm→∞Nm, we have
P(N ) = limm→∞P(Nm) = 0. Hence, for all ω ∈ Ω \N , B∗t (ω) <∞ for all t > 0. From the
above observation, without loss of generality, we can assume that for all ω ∈ Ω,

B∗t (ω) <∞ ∀ t > 0. (2.3)

For all x ∈ Rn, denote z = |x|. Consider the following isotropic function

φ(z) =

{
z−α, δ ≤ z ≤ 1,

δ−α(1 + α
2 )− α

2 δ
−α−2z2, 0 ≤ z < δ,

with some δ ∈ (0, 1) and

α =
2

p− 1
. (2.4)

It is easy to check that for all z ∈ (0, 1)

∂2zφ+
n− 1

z
∂zφ+ αnφp ≥ 0. (2.5)

Take

v0 = γφ

as the initial data of Eq. (2.2), where γ > 0 is some (random) number. This special choice
of initial data is inspired by the deterministic work of [6], [10] and [9]. Since the initial
data is isotropic in the space, then the solution v(x, t) is also spatially isotropic for all
t > 0. Hence, we denote the solution by v(z, t) and Eq. (2.2) can be rewritten as

∂tv = ∂2zv + n−1
z ∂zv +K(t)vp in B1(0),

dξ =
(
−ξ + e−rt v

r

ξs

)
dt+ ξdBt,

∂v
∂z = 0 on {z = 1},

v(0) = v0,

ξ(0) = ξ0,

(2.6)

By a Banach fixed point argument as in [16, Lem. 2.1], Eq. (2.6) has a unique local
solution. More precisely, for ω ∈ Ω a.s., there exists some random time T (ω) > 0, Eq.
(2.6) has a unique solution (u, ξ) ∈ C([0, T ];C(B1(0),R)×R). The next lemma is about
the properties of the solution.

Lemma 2.1. Let v be the solution to Eq. (2.6) on [0, T ] (T > 0 is random), then the
following statements hold:

(i). v(z, t) ≥ γ for all 0 ≤ t ≤ T and 0 < z < 1.
(ii). ∂zv(z, t) ≤ 0 for all 0 ≤ t ≤ T and all 0 < z < 1.
(iii). For all β ∈ (0, 1], we have znvβ(z, t) ≤ vβ(t) for all 0 ≤ t ≤ T and all 0 < z < 1.
(iv). ∂zv( 1

2 , t) ≤ −C02n−1 for all 0 ≤ t ≤ T , where C0 > 0 depends on γ.

Proof. The proofs are similar to those in [10, Lemma 2.1].

Define

ξ̂(t) = e
3t
2 −Btξ(t) t > 0,

we have the following lemma:
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Blowup of stochastic Gierer-Meinhardt system

Lemma 2.2. We have
ξ̂(t) ≥ ξ̂(s) t ≥ s ≥ 0. (2.7)

Proof. By Itô’s formula, we have

dξ̂(t) = d
(
e

3t
2 −Btξ(t)

)
= ξ(t)

[
3

2
e

3t
2 −Btdt− e 3t

2 −BtdBt +
1

2
e

3t
2 −Btdt

]
+ e

3t
2 −Bt

[
−ξ(t)dt+ e−rt

vr(t)

ξs(t)
dt+ ξ(t)dBt

]
− e 3t

2 −Btξ(t)dt

= e−rt+
3t
2 −Bt

vr(t)

ξs(t)
dt.

(2.8)

Since vr(t) ≥ 0 and ξ(t) ≥ 0 for all t ≥ 0, ξ̂(t) is an increasing function with respect to t.
This completes the proof.

Since ξ̂(0) = ξ0, by Lemma 2.2 we have ξ̂(t) ≥ ξ0 for all t ≥ 0. For any λ ∈ (1,∞),
define

tλ = inf{t ≥ 0 : ξ̂(t) ≥ λξ0} (2.9)

with the convention inf ∅ = ∞. (tλ is actually a stopping time). It is easy to see that
tλ =∞ holds as long as ξ̂(t) < λξ0 for all t > 0. We clearly have

ξ0 ≤ ξ̂(t) ≤ λξ0 t ∈ [0, tλ]. (2.10)

In (2.10), we define ξ̂(∞) = limt→∞ ξ̂(t) as tλ =∞.

Let θ : Ω→ (0,∞) be a positive random variable. From (2.3), we clearly have

B∗θ(ω)(ω) <∞ ∀ ω ∈ Ω, (2.11)

for notational simplicity, we shall suppress the variable ω and write it as B∗θ . Recall the
definition of K(t) in (2.1), we have

(λξ0)−q exp (−(p− 1)θ − qB∗θ ) ≤ K(t) ≤ ξ−q0 exp

(
3

2
qθ + qB∗θ

)
, t ∈ [0, θ]. (2.12)

Indeed, it is easy to see that K(t) = ξ̂(t)−q exp
(
−(p− 1)t+ 3

2qt− qBt
)

holds. By (2.10),
we have

(λξ0)−q exp

(
−(p− 1)t+

3

2
qt− qBt

)
≤ K(t) ≤ ξ−q0 exp

(
−(p− 1)t+

3

2
qt− qBt

)
,

which immediately implies (2.12), as desired. For the further usage, we denote

Tb the blowup time of the solution v(z, t), (2.13)

Kθ = (λξ0)−q exp (−(p− 1)θ − qB∗θ ) . (2.14)

3 Pointwise blow up as tλ ≥ θ

Let θ ∈ (0,∞) be some strictly positive random variable as in the previous section.
Recall the definition of tλ in (2.9) with λ ∈ (1,∞) being some fixed number, under the
assumption tλ ≥ θ, we shall prove the next two theorems, whose proofs also partly give
the main idea of our approach. The first theorem gives an upper bound of the blow up
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Blowup of stochastic Gierer-Meinhardt system

time in the pointwise sense, while the second claims that the upper bound of the blowup
time is larger than θ as tλ ≥ θ, which means that the blow up could happen after the
time θ.

Note that the quantities below such as τ and Tb are random variables, we should
write them as τ(ω) and Tb(ω) more precisely. For notational simplicity, we shall suppress
the argument ω if no confusions arise.

Theorem 3.1. Let λ > 1 and let θ ∈ (0,∞) be some random number. If tλ ≥ θ, choose γ
such that γp−1Kθ >

4n
p−1 , then we have

Tb ≤
2δ2

γp−1Kθ(p− 1)

(
1 +

α

2

)−p+1

<
δ2

2n

(
1 +

α

2

)−p+1

. (3.1)

Proof. By (2.12), we have
K(t) ≥ Kθ, t ∈ [0, θ].

By (2.6) and the above inequality, we have
∂tv ≥ ∂2zv + n−1

z ∂zv +Kθv
p in B1(0)× (0, θ),

∂zv = 0 on {z = 1} × (0, θ),

v(0) = v0 in B1(0).

Now consider another equation
∂tw = ∂2zw + n−1

z ∂zw +Kθw
p in B1(0)× (0, θ),

∂zw = 0 on {z = 1} × (0, θ),

w(0) = v0 in B1(0).

(3.2)

By comparison principle, we have

v(z, t) ≥ w(z, t), (z, t) ∈ B1(0)× [0, θ].

Writing ρ = ∂tw − Kθ
2 w

p, by (3.2) we have

∂tρ = ∆ρ+
Kθ

2
p(p− 1)wp−1|∇w|2 +

Kθ

2
pwp−1∆w +

Kθ

2
pwp−1∂tw

≥ ∆ρ+
Kθ

2
pwp−1∆w +

Kθ

2
pwp−1∂tw

= ∆ρ+Kθpw
p−1ρ.

It is straightforward to check that for all z ∈ B1(0),

ρ(z, 0) = γ

[
∂2zφ(z) +

n− 1

z
∂zφ(z) +

Kθ

2
γp−1φp(z)

]
.

Under the condition in the theorem, (2.5) holds and thus the term in the square bracket
is positive. Therefore,

ρ(z, 0) ≥ 0, z ∈ B1(0).

It is easy to check ∂zρ = 0 for (z, t) ∈ {z = 1}× [0, θ]. Hence, the maximum principle gives
ρ(z, t) ≥ 0 for (z, t) ∈ B1(0) × [0, θ]. That is ∂tw − Kθ

2 w
p ≥ 0 for all (z, t) ∈ B1(0) × [0, θ],

which implies

w(z, t) ≥

[
1

v−p+1
0 (z)− Kθ(p−1)t

2

] 1
p−1

. (3.3)
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Blowup of stochastic Gierer-Meinhardt system

By the form of v0(z) = γφ(z), for every z ∈ (0, 1) the term on the right hand side (3.3)
blows up at t = τ(z) with

τ(z) :=


2

Kθ(p−1)γ
−p+1

[
1 +

1−( zδ )
2

2 α

]−p+1

δ2 z ∈ [0, δ],

2
Kθ(p−1)γ

−p+1z2 z ∈ (δ, 1),

where we have used the relation α(p− 1) = 2 (see (2.4)). It is easy to see that τ(z) is an

increasing function and τ(0) = 2δ2

γp−1Kθ(p−1)
(
1 + α

2

)−p+1
, thus we get the desired bound

for Tb.

Corollary 3.2. Assume that θ ≤ θ0 a.s. with θ0 > 0 being some constant and that γ > 0

is some (sufficiently large) deterministic number, then we have

P

(
Tb ≤

δ2

2n

(
1 +

α

2

)−p+1
)
≥ 1−

√
θ0√
2π

4

A0
e−

A2
0

2θ0 (3.4)

with A0 = 1
q ln (p−1)γp−1

4n(λξ0)q
− p−1

q θ0.

Proof. By Theorem 3.1, it suffices to prove that

P

(
γp−1Kθ >

4n

p− 1

)
≥ 1−

√
θ0√
2π

4

A0
e−

A2
0

2θ0 . (3.5)

Since Kθ is an decreasing function of θ and θ ≤ θ0 a.s., we have

P

(
γp−1Kθ >

4n

p− 1

)
≥ P

(
γp−1Kθ0 >

4n

p− 1

)
= 1− P

(
B∗θ0 ≥

1

q
ln

(p− 1)γp−1

4n(λξ0)q
− p− 1

q
θ0

)
≥ 1−

√
θ0√
2π

4

A0
e−

A2
0

2θ0

(3.6)

with A0 = 1
q ln (p−1)γp−1

4n(λξ0)q
− p−1

q θ0.

Corollary 3.3. Assume that the conditions in Theorem 3.1 hold. Let γ →∞ a.s., then
we have

Tb → 0, a.s..

Proof. By Theorem 3.1, we have

Tb ≤
2δ2

γp−1Kθ(p− 1)

(
1 +

α

2

)−p+1

.

As γ →∞ a.s., we get 2δ2

γp−1Kθ(p−1)
(
1 + α

2

)−p+1
a.s. and thus Tb → 0 a.s..

4 General pointwise blow up result

Recall that Tb is the blowup time of v(z, t) and the Kθ is defined in (2.14), in this
section, we shall prove the following blow up theorem:

Theorem 4.1. Let λ > 1 and let p ≥ r and p−1
r > 2

n+2 . We have the following two
statements:
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Blowup of stochastic Gierer-Meinhardt system

(i) In the case tλ ≥ 1, choose γ > 0 such that γp−1K1 >
4n
p−1 , we have

Tb ≤
2δ2

γp−1K1(p− 1)

(
1 +

α

2

)−p+1

. (4.1)

(ii) In the case tλ ≤ 1, there exists some θ̂ ∈ (0, 1] such that as long as γp−1Kθ̂ >
4n
p−1 ,

we have

Tb ≤
2δ2

γp−1Kθ̂(p− 1)

(
1 +

α

2

)−p+1

. (4.2)

By the same argument as showing Corollary 3.3, we immediately get the following
corollary.

Corollary 4.2. Assume that the conditions in Theorem 4.1 hold. Let γ →∞ a.s., then
we have

Tb → 0, a.s..

Let β ∈ (0, 1] be some number to be determined later. Denote

h(t) = vβ(t) t > 0.

For ease of notation, we define

h1(t) =
1

|B1(0)|

∫
BR(0)

vβ(z, t)dz, h2(t) =
1

|B1(0)|

∫
B1(0)\BR(0)

vβ(z, t)dz,

where R ∈ (0, 1) is some number to be determined later. We also define the following
stochastic quantity:

h∗λ = h(0) + β(λ− 1)λ−qγβ+p−1−r exp

(
−ptλ − (s+ q + 1)(

3tλ
2

+B∗tλ)

)
ξs−q+1
0 , (4.3)

it will frequently appear in the arguments below. It is easy to see

h∗λ ≤ h(0) + β(λ− 1)λ−qγβ+p−1−rξs−q+1
0 . (4.4)

Lemma 4.3. Let λ > 1 and p ≥ r. Assume tλ < ∞. Choose β ∈ (0, 1] such that
p+ β − 1 ≥ r, then we have

h(tλ) ≥ h∗λ.

Proof. We have

dh(t)

dt
=
β(1− β)

|B1(0)|

∫
B1(0)

vβ−2(x, t)|∇v(x, t)|2dx+ βK(t)vβ+p−1(t) ≥ βK(t)vβ+p−1(t),

where the last inequality is by β ∈ (0, 1]. Since p ≥ r and β ∈ (0, 1] are such that
p+ β − 1 ≥ r, by Lemma 2.1 (i), we have v(z, t) ≥ γ for all t > 0 and 0 < z < 1 and thus
vβ+p−1(t) ≥ γβ+p−1−rvr(t). Hence,

dh(t)

dt
≥ βγβ+p−1−rK(t)vr(t).

On the other hand, by (2.8), we have

vr(t) = ert−
3t
2 +Btξs(t)

dξ̂(t)

dt
.
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Blowup of stochastic Gierer-Meinhardt system

Hence, by (2.1), (2.10) and the above relations, we have

dh(t)

dt
≥ βγβ+p−1−rK(t)ert−

3t
2 +Btξs(t)

dξ̂(t)

dt

≥ βγβ+p−1−rλ−qξs−q0 e−pte−(s+q+1)( 3t
2 +B∗

t )
dξ̂(t)

dt

≥ βγβ+p−1−rλ−qξs−q0 exp

(
−ptλ − (s+ q + 1)(

3tλ
2

+B∗tλ)

)
dξ̂(t)

dt

for all t ∈ [0, tλ]. By the definition of tλ and Lemma 2.2, we immediately get the desired
inequality.

Stimulated from the previous lemma, we define

t̂λ = inf{t ≥ 0 : h(t) ≥ h∗λ}, (4.5)

it is clear that t̂λ ≤ tλ and

h(t) ≤ h∗λ, t ∈ [0, t̂λ]. (4.6)

Denote f(z, t) = zn−1∂zv(z, t), it is easy to check

Lf = ∂tf − ∂2zf +
n− 1

z
∂zf − pK(t)vp−1f = 0.

The proof of the next lemma has some similarity to that of [5, Lemma 2.2].

Lemma 4.4. Let λ > 1. Let k ∈ (1, p), β ∈ (0, 1] and ` ≥ k
β . Assume tλ < ∞. As ε ≤ ε∗

with

ε∗ = min

{
α(1 +

α

2
)−kh`(0), 2−`n+nC0γ

β`−k,
(p− k)γp+`−k

2k(λξ0)q
exp

(
−(p− 1)tλ − qB∗tλ

)}
,

(4.7)
we have

v(z, t) ≤
(

2h`(t)

ε(k − 1)

) 1
k−1

z−
2
k−1 , ∀ t ∈ [0, t̂λ] ∀ z ∈ (0,

1

2
]. (4.8)

Proof. Denote η(z, t) = f(z, t) + εzn v
k(z,t)
h`(t)

with f(z, t) = zn−1∂zv(z, t) and ε > 0 some

number to be determined later and ` ≥ k
β , we prove the lemma in the following three

steps.
Step 1: Property of η(z, t). By (i), (iii) and (iv) of Lemma 2.1 and the relation ` ≥ k

β ,
we further have

η(
1

2
, t) ≤ −C0 + ε(

1

2
)n

(
vβ( 1

2 , t)

h(t)

)`
vk−β`(

1

2
, t)

≤ −C0 + ε(
1

2
)n

(
vβ( 1

2 , t)

h(t)

)`
γk−β`

≤ −C0 + ε2n`−nγk−β`.

(4.9)

As t = 0, for all z ∈ (0, δ), by the relation α+ 2 = pα > kα, we have

η(z, 0) ≤
[
−αδ−α−2 + ε(1 +

α

2
)k

1

h`(0)
δ−αk

]
zn

≤
[
−α+ ε(1 +

α

2
)k

1

h`(0)

]
δ−α−2zn.

(4.10)
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For all z ∈ (δ, 1), by the relation α+ 2 = pα > kα again, we have

η(z, 0) ≤
[
−α+

ε

h`(0)

]
zn−α−2. (4.11)

Hence, collecting (4.9)-(4.11), as long as ε ≤ min
{
α(1 + α

2 )−kh`(0), 2−`n+nC0γ
β`−k},

we have

η(z, 0) ≤ 0, z ∈ (0, 1); η(
1

2
, t) ≤ 0, t ∈ (0, t̂λ). (4.12)

Step 2: Observe

Lη = L
(
εzn

vk

h`

)
= −2εkzn−1

vk−1

h`
∂zv − ε(p− k)e−(p−1)t

zn

ξq
vp−1+k

h`
− εk(k − 1)zn

vk−2

h`
(∂zv)2

− εβ(1− β)`zn
vk

h`+1
vβ−2|∇v|2 − ε`βe−(p−1)t z

n

ξq
vk

h`+1
vβ+p−1

≤ −2εkzn−1
vk−1

h`
∂zv − ε(p− k)e−(p−1)t

zn

ξq
vp−1+k

h`

= −2εk
vk−1

h`
η +

εznvk

h2`

[
2εkvk−1 − (p− k)e−(p−1)t

h`vp−1

ξq

]
.

Recall that v(t) ≥ γ for all t ≥ 0 from Lemma 2.1 and that ξ0 ≤ ξ̂(t) ≤ λξ0 for all t ∈ [0, tλ]

where ξ̂(t) = e
3t
2 −Btξ(t), we have

e−(p−1)t
h`(t)vp−k(t)

ξq(t)
= e−(p−1)t

h`(t)vp−k(t)

ξ̂q(t)e−
q
2 t+qBt

≥ e−(p−1)t γp+`−k

ξ̂q(t)e−
q
2 t+qBt

≥ e−(p−1)t γp+`−k

(λξ0)qe−
q
2 t+qBt

≥ e−(p−1)tλ−qB
∗
tλγp+`−k

(λξ0)q
, t ∈ [0, tλ].

Hence, as long as ε ≤ (p−k)e−(p−1)tλ−qB∗
tλ γp+`−k

2k(λξ0)q
, we have

Lη ≤ −2εk
vk−1

h`
η. (4.13)

Step 3: Choose ε ≤ ε∗ with ε∗ being defined as (4.7), then (4.13), (4.12) all hold.
Hence, 

Lη ≤ −2εk v
k−1

h`
η, 0 < z < 1

2 , 0 < t < t̂λ,

η(z, 0) ≤ 0, 0 < z < 1
2 ,

η(0, t) ≤ 0, 0 < t < t̂λ,

η( 1
2 , t) ≤ 0, 0 < t < t̂λ,

(4.14)

by maximum principle, we immediately get

η(z, t) ≤ 0

for all 0 < t < t̂λ and 0 < z < 1
2 , which implies

v(z, t) ≤
(

2h`(t)

ε(k − 1)

) 1
k−1

z−
2
k−1 , ∀ t ∈ [0, t̂λ] ∀ z ∈ (0,

1

2
]. (4.15)
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Lemma 4.5. Assume tλ ≤ 1. For R ∈ (0, 1), we have

|∂zv(z, t)| ≤ C1, ∀ z ∈ [R, 1] ∀ t ∈ [0, t̂λ], (4.16)

where C1 is some number depending on R and γ.

Remark 4.6. In the lemma, we assume tλ ≤ 1, the 1 here can be replaced by any other
positive number. It seems that the assumption tλ ≤ 1 is necessary for getting the bound
C1 which only depends on R.

Proof. Writing w(z, t) = ∂zv(z, t), by Eq. (2.6) we have

∂tw = ∂2zw +
n− 1

z
∂zw +

(
pK(t)vp−1 − n− 1

z2

)
w. (4.17)

By (iii) of Lemma 2.1 and (4.6), we have

vβ(z, t) ≤ z−nh(t) ≤ z−nh∗λ, ∀ t ∈ [0, t̂λ].

This and (4.4) further implies

vβ(z, t) ≤ R−n
[
h(0) + β(λ− 1)γβ+p−1−rλ−qξs−q+1

0

]
, ∀ t ∈ [0, t̂λ], z ∈ [R, 1]. (4.18)

Since t̂λ ≤ tλ ≤ 1, by (2.12), we have

K(t) ≤ ξ−q0 exp

(
3

2
q + qB∗1

)
, t ∈ [0, t̂λ]. (4.19)

We can extend Eq. (4.17) from the time interval [0, t̂λ] to [0, 1] by

K(t)vp−1(z, t) = K(t̂λ)vp−1(z, t̂λ), ∀ z ∈ [R, 1) ∀ t ∈ [t̂λ, 1].

Now Eq. (4.17) with (z, t) ∈ [R, 1)× [0, 1] has uniformly bounded coefficients.
On the other hand, as t = 0, it is easy to check

|∂zφ(z)| = αz−α−1, z ∈ [δ, 1]; |∂zφ(z)| = αδ−α−2z, z ∈ [0, δ].

Indeed, if R ≥ δ, then the first identity above implies

|∂zv0(z)| ≤ αγR−α−1, z ∈ [R, 1]; (4.20)

if R < δ, then the second identity above implies (4.20) as well. Hence,

|∂zv0(z)| ≤ αγR−α−1, z ∈ [0, 1].

So, by parabolic regularity ([11]), we immediately get the desired inequality.

Lemma 4.7. Assume tλ ≤ 1. Let p ≥ r and p−1
r > 2

n+2 . Let β ∈ (0, 1] be such that
p+ β − 1 ≥ r holds. For any R ∈ (0, 1), we have

t̂λ ≥
h∗λ − h(0)− n

(
2(h∗

λ)
`

ε∗(k−1)

) 1
k−1 R

n− 2β
k−1

n− 2β
k−1

L(β,C1, λ, γ, p, q, R)
,

(4.21)

where k ∈ (1, p), ` ≥ k
β , ε∗ is defined by (4.7), and

L(β,C1, λ, γ, p, q, R)

:= C1nβR
n−1γβ−1 + C2

1β(1− β)γβ−2 + βξ−q0 exp

(
3

2
qtλ + qB∗tλ

)(
h∗λ
Rn

) β+p−1
β

with C1 being the number in Lemma 4.5 (which depends on R).
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Remark 4.8. We can tune the number R such that the right hand of (4.21) is strictly
large than 0 and make the claim t̂λ > θ̂ > 0 be true.

Proof. Recall that h(t) = h1(t) + h2(t) with

h1(t) =
1

|B1(0)|

∫
BR(0)

vβ(x, t)dx, h2(t) =
1

|B1(0)|

∫
B1(0)\BR(0)

vβ(x, t)dx

with R being some number to be chosen. By Lemma 4.4, we have

v(z, t) ≤
(

2h`(t)

ε∗(k − 1)

) 1
k−1

z−
2
k−1 , ∀ t ∈ [0, t̂λ] ∀ z ∈ (0,

1

2
]. (4.22)

Since p−1
r > 2

n+2 , we have n(p− 1) > 2(r + 1− p). Thanks to the condition p+ β − 1 ≥ r
with β ∈ (0, 1], there exists some β ∈ (0, 1] so that n(p− 1) > 2β ≥ 2(r+ 1− p). Therefore,
we can choose some k ∈ (1, p) so that

n(k − 1) > 2β.

Hence, for any t ∈ [0, t̂λ], by (4.22) and (4.6), we have

h1(t) ≤ n
(

2h`(t)

ε∗(k − 1)

) β
k−1

∫ R

0

zn−1−
2β
k−1 dz ≤ n

(
2(h∗λ)`

ε∗(k − 1)

) β
k−1 Rn−

2β
k−1

n− 2β
k−1

. (4.23)

Now we consider h2(t), by (2.2), it is easy to see

d

dt
h2(t) = −nβRn−1vβ−1(R, t)vz(R, t)−

β(β − 1)

|B1(0)|

∫
B1(0)\BR(0)

vβ−2|∇v|2dx

+βK(t)
1

|B1(0)|

∫
B1(0)\BR(0)

vβ+p−1dx.

By (i) of Lemma 2.1 and Lemma 4.5, we have vβ−1 ≤ γβ−1, vβ−2 ≤ γβ−2 and∣∣∣∣ ddth2(t)

∣∣∣∣ ≤ nβRn−1γβ−1(R, t)|vz(R, t)|+
β(1− β)

|B1(0)|
γβ−2

∫
B1(0)\BR(0)

|∇v|2dx

+β
e−(p−1)t

ξq(t)

1

|B1(0)|

∫
B1(0)\BR(0)

vβ+p−1dx.

By (iii) of Lemma 2.1, we have vβ(z, t) ≤ h(t)
zn . This and (4.6) further give∣∣∣∣ ddth2(t)

∣∣∣∣ ≤ C1nβR
n−1γβ−1 + C2

1β(1− β)γβ−2

+βe−(p−1)t
(
ξ̂(t)e−

3
2 t+Bt

)−q 1

|B1(0)|

∫
B1(0)\BR(0)

(
h(t)

zn

) β+p−1
β

dx

≤ C1nβR
n−1γβ−1 + C2

1β(1− β)γβ−2

+βξ−q0 exp

(
3

2
qtλ + qB∗tλ

)(
h∗λ
Rn

) β+p−1
β

(4.24)

:= L(β,C1, λ, γ, p, q, R)

for all t ∈ [0, t̂λ].
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By the definition of t̂λ, (4.23) and (4.24), we have

h∗λ − h(0) ≤ h(t̂λ)− h(0) ≤ h1(t̂λ) + h2(t̂λ)− h2(0)

≤ n
(

2(h∗λ)`

ε∗(k − 1)

) 1
k−1 Rn−

2β
k−1

n− 2β
k−1

+

∫ t̂λ

0

∣∣∣∣ d

ds
h2(s)

∣∣∣∣ds
≤ n

(
2(h∗λ)`

ε∗(k − 1)

) 1
k−1 Rn−

2β
k−1

n− 2β
k−1

+ t̂λL(β,C1, λ, γ, p, q, R).

This immediately implies the desired inequality.

Proof of Theorem 4.1. To prove the theorem, we shall consider the two cases: (i) the
case tλ ≥ 1 and (ii) the case tλ < 1.

(i) tλ ≥ 1. Take θ = 1 in Section 3, we immediately get the desired estimate by
Theorem 3.1.

(ii) tλ < 1. By (4.3), it is easy to see that if tλ < 1 we have

h∗λ ≥ h(0) + β(λ− 1)λ−qγp+β−1−r exp

(
−p− (s+ q + 1)(

3

2
+B∗1)

)
ξs−q+1
0 . (4.25)

Recalling (4.4) as below:

h∗λ ≤ h(0) + β(λ− 1)γp+β−1−rλ−qξs−q+1
0 . (4.26)

The estimate (4.21), together with (4.25) and (4.26), implies that there exists some
R ∈ (0, 1) (which can be tuned according to p, q, λ,B∗1 , s, λ, γ, β, ξ0) and some some θ̂

(depending on β, p, q, λ, γ,B∗1 , s, R) such that t̂λ ≥ θ̂ > 0. θ̂ ∈ (0, 1) is obvious. Since
tλ ≥ t̂λ, we have tλ ≥ θ̂. Now we can use Theorem 3.1 to get the desired result.
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