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Abstract

Consider a sequence of Poisson point processes of non-trivial loops with certain
intensity measures (µ(n))n, where each µ(n) is explicitly determined by transition
probabilities p(n) of a random walk on a finite state space V (n) together with an

additional killing parameter c(n) = e−a·]V (n)+o(]V (n)). We are interested in asymptotic
behavior of typical loops. Under general assumptions, we study the asymptotics of
the length of a loop sampled from the normalized intensity measure µ̄(n) as n→ ∞.
A typical loop is small for a = 0 and extremely large for a = ∞. For a = (0,∞), we
observe both small and extremely large loops. We obtain explicit formulas for the
asymptotics of the mass of intensity measures, the asymptotics of the proportion of
big loops, limit results on the number of vertices (with multiplicity) visited by a loop
sampled from µ̄(n). We verify our general assumptions for random walk loop soups
on discrete tori and truncated regular trees. Finally, we consider random walk loop
soups on complete graphs. Here, our general assumptions are violated. In this case,
we observe different asymptotic behavior of the length of a typical loop.
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1 Introduction

Poisson ensembles of Markovian loops were introduced informally by Symanzik [16]
and then by Lawler and Werner [11] for 2D Brownian motion. An extensive investigation
of the loop soup on finite and infinite graphs was done by Le Jan [12] for reversible
Markov processes, and then by Sznitman [18] in relation with random interlacement
(see [17] or [8]).

It is natural to study the typical behavior of loops in loop soups. The following
questions were raised by Le Jan: for a loop sampled according to the normalized
intensity measure µ̄, what can one say about its typical size? In particular, does the
loop cover a positive proportion of the space? These questions are related to the length
of the loop (i.e. the number of vertices with multiplicity visited by the loop). Indeed,
by [5], the cover time for the SRW on a general graph with the vertex set V is O(]V 3),
which implies that a randomly chosen Markovian loop visits all the vertices with high
probability if its length exceeds certain power of ]V . This motivates our study on the
lengths of loops.
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A convergence result on the lengths of Markovian loops

Given a sequence of Poisson point processes of loops on a sequence of increasing
graphs, we are interested in the typical length of the loops. The intensity measures
considered in the paper are given by Markov chains with uniform killing rates. When
the killing rates go to zero super-exponentially, typical loops are extremely large. On the
other hand, when the killing rates decrease to zero sub-exponentially fast, the length of
a randomly chosen loop is tight. We are particularly interested in the intermediate case
where two types of typical loops appear simultaneously: loops of bounded size and loops
of size much bigger than the size of the state space of Markov chains.

Following [12], we consider measures on the space of loops associated with these
Markov chains. We first introduce the notation of based loops and loops. By a based loop
˙̀, we mean an element (x1, . . . , xk) ∈ (V (n))k. Two based loops are equivalent if they
coincide up to a circular permutation, e.g. (x1, x2, x3, x4) = (x2, x3, x4, x1). A loop is an
equivalence class of based loops. The based loop functionals that we will be interested in
will be loop functionals, i.e. they are invariant under circular permutations. For example,
the length | ˙̀| of a based loop ˙̀ = (x1, . . . , xk), which is defined by |(x1, . . . , xk)| = k. We
use the same notation for the length of a loop. We define the mass of ˙̀ under the based
loop measure µ̇(n) by

µ̇(n)( ˙̀) =
1

k
(1 + c(n))−k · p(n)(x1, x2)p(n)(x2, x3) · · · p(n)(xk, x1), (1.1)

where (p(n)(x, y))x,y are the transition probabilities of an irreducible Markov chain

X(n) = (X
(n)
k )k on a finite state space V (n) and

c(n) = e−a·]V
(n)+o(]V (n)) (a > 0)

plays the role of killing for the Markov chain X(n).
We normalize µ̇(n) and get a probability measure ¯̇µ(n). The corresponding push-

forward measures on the space of loops are denoted by µ(n) and µ̄(n). We refer to [12]
and [18] for more details on Markovian loop measures.

The main object of interest in this paper is the limit of |`| under µ̄(n). Let

ν(n) =

]V (n)∑
i=1

δλn,i/]V
(n)

be the empirical distribution of the eigenvalues of the matrix (p(n)(x, y))V (n) , where λn,i
are the eigenvalues of p(n) and δx is the Dirac mass at x for x ∈ C. By the Perron-
Frobenius theorem, ν(n) is supported in the unit disk. By tightness, there always exists a
convergent subsequence of ν(n). Therefore, we assume as hypothesis (H1) that

lim
n→∞

ν(n) = ν. (1.2)

By the Perron-Frobenius theorem, there exists a unique stationary distribution π(n) for
each X(n). Our second hypothesis (H2) is that these X(n) are more or less similar to
Markov chains on graphs of uniformly bounded degrees: there exist n-independent
constants c1, c2 > 0 such that

min
x∈V (n)

π(n)(x) · ]V (n) ≥ c1, min
x,y∈V (n)

p(n)(x,y)+p(n)(y,x)>0

p(n)(x, y) ≥ c2. (1.3)

Our main result is a limit result on the typical size of a loop sampled from µ̄(n).

Theorem 1.1. We suppose (H1) and (H2). Let (qn)n be such that limn→∞ qn = ∞ and
that log qn = o(]V (n)) as n increases to infinity. Then,
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a)
∫
| log(1− x)|ν(dx) ≤ 3 + 8

√
2c−11 c−42 ,

b) limn→∞ ||µ(n)||/]V (n) = a +
∫
− log(1 − x)ν(dx) where ||µ(n)|| is the total mass of

µ(n),

c) limn→∞ µ̄(n)(|`| ≥ qn) = a/(a+
∫
− log(1− x)ν(dx)),

d) limn→∞ µ̄(n)(|`| = j
∣∣|`| ≤ qn) = j−1

∫
xjν(dx)/

∫
− log(1− x)ν(dx),

e) limn→∞ µ̄(n)(log |`|/]V (n) ∈ dx
∣∣|`| ≥ qn) = 10<x<a · 1a · dx.

In Sections 3 and 4, we compute explicitly ν and
∫
− log(1− x)ν(dx) on tori and trees.

The proof of Theorem 1.1 is based on an upper bound on the transition functions of
Markov processes and a direct calculation.

In contrast, when X(n) is the simple random walk on the complete graph of n vertices.
Theorem 1.1 is not applicable as (H2) fails. By an explicit calculation, we get

Theorem 1.2. Suppose that X(n) is the simple random walk on a complete graph of n
vertices and c(n) = n−a+o(1) for some a > 0. Then, we have that limn→∞ ||µ(n)||/ log n = a

and that limn→∞ µ̄(n)(log |`|/ log n ∈ dx) = 10<x<a · 1a · dx.

By a comparison with the coupon collector problem, we get

Corollary 1.3. In the same setting as Theorem 1.2, let Ln be a Poisson point process of
loops with intensity µ(n)/ log n. Then,

∑
`∈Ln

1`∈C converges in distribution to a Poisson
random variable with mean a, where C stands for the set of loops which cover all the
vertices inside the graph.

Organization of the paper: Section 2 is devoted to prove Theorem 1.1. Then, we
analyze two examples and calculate the limit measures ν: random walk loop soups
on discrete tori in Section 3 and random walk loop soups on balls in a regular tree in
Section 4. We consider random walk loop soups on complete graphs and prove Theorem
1.2 and Corollary 1.3 in the last section.

2 Proof of Theorem 1.1

By (H2), the random walk X(n) is either aperiodic or 2-periodic. For simplicity, we
assume that these X(n) are all aperiodic. The argument for periodic case is quite similar
and is left to the reader. The key to prove Theorem 1.1 is the heat kernel bounds in
[15], which is stated for lazy random walks1. Under (H2), the laziness assumption is
satisfied by (X

(n)
2k )k and [15, Theorem 4] gives an upper bound on

∫
|x|kν(n)(dx). This

bound is then used to bound
∫
| log(1 − x)|ν(dx) and to control the convergence rate

of Tr(p(n))k towards 1, see Lemma 2.1. Then, Theorem 1.1 is straightforward through
explicit calculations.

By applying [15, Theorem 5] for (p(n))2, we have the following lemma, which is
implied by [3, Proposition 6.18] for finite regular graphs.

Lemma 2.1. Under (H2), we have that for k ≥ 4,

]V (n) ·
∫
|x|kν(n)(dx) ≤ 1 + 4c−11 c−42 · ]V (n) · bk/4c−1/2.

In particular, |Tr(p(n))k − 1| ≤ 4c−11 c−42 · ]V (n) · bk/4c−1/2.

Proof. Note that 1 is an eigenvalue of p(n) and that

|Tr(p(n))k − 1| ≤ ]V (n) ·
∫
|x|kν(n)(dx)− 1.

1By lazy random walks, we mean random walks with the transition probabilities ((1−γ)p(x, y)+γ ·1x=y))x,y ,
where γ ∈ (0, 1] and (p(x, y))x,y is the transition probabilities of some random walks.
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Also, note that ν(n) is supported inside the unit disk centered at 0. So,
∫
|x|kν(n)(dx)− 1

is non-increasing in k. Hence, it is sufficient to bound
∫
|x|4kν(n)(dx) for each k ≥ 1.

Since singular values dominate eigenvalues in the p-norm (see e.g. [9, Theorem 3.3.13
b)]), we get that ]V (n) ·

∫
|x|4kν(n)(dx) ≤ Tr(AtA), where At is the transpose of A and

A =

[
(p(n))2k(x, y)

√
π(n)(x)/π(n)(y)

]
x,y

.

(Note that A has the same eigenvalues as (p(n))2k.) Following [15, Eq. 14], for two
measures ν and π, we write

χ2(ν, π) =
∑
x

(ν(x))2/π(x)− 1.

Then, Tr(AtA) is exactly
∑
x π

(n)(x)χ2((p(n))2k(x, ·), π(n))+1. As we will explain in details

in the following, by applying [15, Theorem 4] to (X
(n)
2j )j≥0, we get that

max
x∈V (n)

χ2((p(n))2k(x, ·), π(n)) ≤ 4c−11 c−42 k−1/2 · ]V (n)

and hence ]V (n) ·
∫
|x|4kν(n)(dx) ≤ 1 + 4c−11 c−42 · ]V (n) · k−1/2. To apply [15, Theorem 4],

it suffices to verify that∫ 4/ε

4π
(n)
∗

du

uψ(u)
≤ k for ε = 4c−11 c−42 k−1/2 · ]V (n), (2.1)

where π(n)
∗ = minx∈V (n) π(n)(x) and ψ(u) is defined in [15, Eq. 13]. By [15, Lemma 3],

ψ(u) ≥ γ2

2(1− γ)2
inf{φ2S : S ⊂ V (n) such that

∑
x∈S

π(n)(x) ≤ min(u, 1/2)},

where γ = min( 1
2 ,minx(p(n))2(x, x)) and

φS =
∑

x∈S,y∈Sc

π(n)(x)(p(n))2(x, y)/
∑
z∈S

π(n)(z).

Under our assumption (H2), γ ≥ c22/2, π(n)
∗ ≥ c1/]V

(n) and φS ≥ c1c
2
2(u]V (n))−1 for

S ⊂ V (n) with
∑
x π

(n)(x) ≤ u. (By a slightly more careful estimate, one could get that
γ ≥ c2/2 and φS ≥ c1c2/(2u]V (n)).) Hence, we have that

ψ(u) ≥ c21c82(min(u, 1/2) · ]V (n))−2/2 ≥ c21c82u−2(]V (n))−2/2

and (2.1) follows.

Next, we prove Theorem 1.1 by Lemma 2.1:

Proof of Theorem 1.1. a) By Lemma 2.1 and (H1), we have that∫
|x|kν(dx) ≤ 4c−11 c−42 · bk/4c−1/2.

Hence, we have that∫
| log(1− x)|ν(dx) ≤ 3 +

∑
k≥4

k−1
∫
|x|kν(dx) ≤ 3 + 8

√
2c−11 c−42 .
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b) Note that by (1.1), ||µ(n)|| =
∑
k≥1 k

−1(1 + c(n))−k Tr(p(n))k. By (H1), for all fixed
N ≥ 1, we have that

lim
n→∞

(]V (n))−1
N∑
k=1

k−1(1 + c(n))−k Tr(p(n))k =

N∑
k=1

k−1
∫
xkν(dx).

By Lemma 2.1, ∃C = C(c1, c2) <∞ such that

lim
n→∞

(]V (n))−1
∑
k>N

k−1(1 + c(n))−k
∣∣∣Tr(p(n))k − 1

∣∣∣ ≤ CN−1/2.
Since we take c(n) = e−a·]V

(n)+o(]V (n)), we have that

lim
n→∞

(]V (n))−1
∑
k>N

k−1(1 + c(n))−k = a.

Then, Theorem 1.1 b) follows.

c) We give a brief indication and left the details to the reader. By b), it suffices to
show that µ(n)(|`| ≥ qn)

n→∞∼ a · ]V (n). By the definition of µ(n), we write that

µ(n)(|`| ≥ qn) =
∑
k≥qn

k−1(Tr(p(n))k − 1)(1 + c(n))−k +
∑
k≥qn

k−1(1 + c(n))−k.

The second summand is the major term, which is asymptotically equivalent to
a · ]V (n) by our assumptions on qn and c(n). The first term is o(a · ]V (n)) as n→∞
by Lemma 2.1.

d),e) The proofs are similar and we left them to the reader.

Remark 2.2. By a direct calculation, the total mass of µ(n) is− log det(I−(1+c(n))−1p(n)),
see [12, Eq. (2.5)]. Note that det((1 + c(n)) · I − p(n)) is the partition function of
weighted spanning trees rooted at the cemetery point ∂ of a Markov chain with transition
probabilities (1 + c(n))−1p(n), see [12, Section 8.2]. The weight of a tree T is the
product of weights p(n)(x, y) on edges (x, y) directed to the root with the convention

that p(n)(x, ∂) = c(n). Hence, by using the crude lower bound c#V
(n)−1

2 c(n) (given by a
single tree) of the partition function of weighted spanning trees, we get that ||µ(n)|| ≤
]V (n)(log(1 + c(n)) − log c2) − log c(n) and hence

∫
− log(1 − x)ν(dx) ≤ − log c2. For a

reversible chain (i.e. π(n)(x)p(n)(x, y) = π(n)(y)p(n)(y, x), ∀x, y ∈ V (n)), ν(n) and ν are
supported on [−1, 1] and Theorem 1.1 a) is improved:∫

| log(1− x)|ν(dx) =

∫
− log(1− x)ν(dx) ≤ log(2/c2).

3 Example: discrete tori

We calculate the limiting probability measure ν and
∫
− log(1 − x)ν(dx) for simple

random walks X(d,n) on discrete tori V (d,n) = Zd/nZd. We denote by p(d,n) the corre-
sponding transition probabilities. Then, (H2) holds with c1 = 1 and c2 = (2d)−1. The
eigenvalues of p(1,n) are cos( 2π

n ), cos( 4π
n ), . . . , cos( 2πn

n ), see e.g. [13, Subsection 12.3.1].
Since p(d,n) is a product of p(1,n) in the sense [13, Eq. 12.19], its eigenvalues are
1
d

(
cos
(
2π
n p1

)
+ · · ·+ cos

(
2π
n pd

))
where p1, . . . , pd take values in {0, . . . , n − 1}. Rewrite

these real eigenvalues of p(d,n) in non-decreasing order λ
(d)
1 ≤ . . . ≤ λ

(d)

nd . Define
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νdn = 1
nd

∑nd

i=1 δλ(d)
i

and ν̃dn = 1
nd

∑nd

i=1 δd·λ(d)
i

. Then ν̃dn = (ν1n)∗d. For all f ∈ C([−1, 1]),

lim
n→∞

∫ 1

−1
f(x)ν1n(dx) = lim

n→∞

1

n

n−1∑
p1=0

f(cos(2p1π/n))

=

∫ 1

0

f(cos(2πx)) dx =

∫ 1

−1

f(x)

π
√

1− x2
dx.

Hence, for d ≥ 1, ν is the convolution of arcsine distributions on [−1/d, 1/d]:

ν = lim
n→∞

νdn = m∗d where m(dx) = 1x∈[−1/d,1/d]dπ
−1(1− d2x2)−1/2dx,

∫
xjν(dx) = 1j is even ·

∑
j1,...,jd≥0:j1+···+jd=j/2

(2d)−j
j!

(j1!)2 · · · (jd!)2
,

and that ∫
− log(1− x) ν(dx) =

∫
[0,1]d

− log

(
1− 1

d

d∑
i=1

cos(2πxi)

)
dx1 · · · dxd,

which equals log 2 when d = 1 and equals −4G/π + 2 log 2 when d = 2, where G is the
Catalan’s constant. We refer to [10] or [14] for the evaluation when d = 2. By Theorem 1.1
and previous calculations, for d = 1, we have that limn→∞ µ(n)(log(|`|)/n ∈ dx)/n =

log 2 ·δ0(dx)+10<x<a ·dx and that limn→∞ µ(n)(|`| = j)/n =
∫
xjν(dx) = 1j is even ·2−j

(
j
j/2

)
.

Hence, for d = 1, if we take a Poisson point process L(n) of loops of the intensity µ(n)/n,
then as n → ∞,

∑
`∈L(n) δlog |`|/n converges to a Poisson point process on [0, a] with

intensity measure log 2 · δ0 + Leb(dx), where Leb denotes the Lebesgue measure, and∑
`∈L(n):|`|≤n100 δ|`| converges to a Poisson point process on 2Z+ with intensity measure∑
j 2−j

(
2j
j

)
δj . (Indeed, the sequence (n100)n could be replaced by any sequence of

positive integers (kn)n such that limn→∞ kn =∞ and that limn→∞ log kn/n = 0.)

4 Example: balls in a regular tree

We consider the SRW on a truncated regular tree and we will calculate ν(dx). More
precisely, let Td be an infinite regular tree with degree d ≥ 3. Fix a vertex v0 ∈ Td, let
G(d,n) = B(v0, n) be the balls with radius n centered at v0 andX(d,n) be the SRW on it with
transition probabilities p(d,n). Let ν(d,n) be the empirical distribution of the eigenvalues
of p(d,n). By choosing a root vertex o uniformly within G(d,n), we obtain a sequence of
random graphs (G(d,n), o), which converges locally to a canopy tree (T (d), O), where the
root O is of distance k from the boundary2 ∂T with probability (d− 2)(d− 1)−(1+k) for
k ≥ 0, see Figure 1 for an illustration of T 4. Indeed, by explicit calculations, we have
that d(o, ∂Gd,n) converge in distribution to d(O, ∂T ). Moreover, for all positive integers
k, conditionally on that o is of distance k from the boundary ∂Gd,n, the distribution of
the ball B(o, k) in Gd,n equals the ball B(O, k) inside T for large enough n.

For simplicity of notation, we write T instead of T (d). The notion of local convergence
is introduced in [7] and [4]. By [1], it implies the convergence of the spectral measures
ν(d,n). More precisely, limn→∞ ν(d,n) = ν(d) such that

ν(d) = P[O is of distance j from ∂T ] · ν(d)j ,

2The boundaries are the leaves, i.e. the vertices with degree 1.
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Figure 1: Illustration of T 4

and ν(d)j (dz) is the probability measure supported on the unit disk such that for vertices
x of distance j from ∂T ,∫

zkν
(d)
j (dz) = Px[X

(d)
k = x] = lim

n→∞

∑
y∈G(d,n) is of

distance k from ∂T

Py[X
(d,n)
k = y]/]G(d,n),

where (X
(d)
k )k is the SRW on the canopy tree. Hence,

∫
zkν(d)(dz) = E[PO[X

(d)
k = O]].

By [2, Theorem 1.4], the transition kernel of the SRW on canopy tree T acting on
`2(T ) has only point spectrum with compactly supported eigenfunctions. In that proof, M.
Aizenman and S. Warzel used the idea in [6] on the decomposition of `2(T ) into invariant
subspaces. To be more precise, let (p(d)(x, y))x,y∈T be the transition probabilities of SRW
on canopy tree T and m be a reference measure defined by m({x}) = deg(x) for a vertex
x in the canopy tree. Note that p(d) is reversible with respect to m and `2(T ) equals
L2(T ,m) in the sense of set. As in [2], for a vertex x ∈ T , we define a finite subtree T (x)

at x:
T (x) = {y ∈ T : y is forward (in the direction of ∂T ) or equal to x}

and we have an orthogonal decomposition of L2(T ,m) as follows:

L2(T ,m) =
⊕
x∈T
Qx with Qx =

⊕
y∈T (x),y∼x

Sy 	 Sx,

where 	 means the orthogonal complement3 and Sx denotes the subspace of symmetric
functions supported on the forward subtree T (x):

Sx
def
=

{
ψ ∈ L2(T ,m) :

ψ is supported on T (x) and is constant
on each generation of T (x)

}
.

Then, for each x ∈ T , Qx is an invariant space for the map p(d) = (p(d)(x, y))x,y∈T :

ψ → p(d)ψ such that p(d)ψ(x) =
∑
y p

(d)(x, y)ψ(y). We will describe the eigenvalues and
the corresponding eigenfunctions in each Qx where x is of distance N ≥ 1 from ∂T .
Consider the following transition probabilities on {0, . . . , N − 1}:

QN =



0 1 0 . . . 0

d−1
d 0 1

d

. . .
...

0
. . .

. . .
. . . 0

...
. . . d−1

d

. . . 1
d

0 . . . 0 d−1
d 0


.

3To be more precise,
⊕

y∈T (x),y∼x Sy 	 Sx = {f ∈
⊕

y∈T (x),y∼x Sy : f ⊥ Sx}.

ECP 20 (2015), paper 73.
Page 7/11

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-4263
http://ecp.ejpecp.org/


A convergence result on the lengths of Markovian loops

Note that

det(λ · IN −QN ) =

(√
d− 1

d

)N (
dUN

(
dλ

2
√
d− 1

)
− dλ√

d− 1
UN−1

(
dλ

2
√
d− 1

))
, (4.1)

where UN are Chebyshev polynomials of the second kind, defined by the identity

UN (cos(θ)) = sin((N + 1)θ)/ sin(θ), ∀θ ∈ R.

Hence, QN has N different eigenvalues (λN,i)i=1,...,N which are exactly 2
√
d− 1/d times

the zeros of
dUN (x) = 2(d− 1)xUN−1(x). (4.2)

Denote by (ϕN,i)i=1,...,N the corresponding eigenfunctions. Next, take a (d− 1)× (d− 1)

real orthogonal matrix (ξij)i,j=1,...,d−1 with ξ1j = 1/
√
d− 1 for j = 1, . . . , d − 1. List the

neighbor vertices of x in T (x): y1, . . . , yd−1. For N ≥ 1, i = 1, . . . , N and j = 2, . . . , d− 1,
we define a function ψN,i,j supported on ∪d−1i=1 T (yi) by taking the value ξjs · ϕN,i(k) on
each {z ∈ T (ys) : z is of distance k from ∂T }. Then, (ψN,i,j)j=2,...,d−1 are eigenfunctions
associated with the eigenvalue λN,i and (ψN,i,j)i=1,...,N ;j=2,...,d−1 is an orthogonal basis
of Qx. From the spectral representation of the transition probabilities p(d), we obtain
the following

Remark 4.1. Let (λN,i)i=1,...,N be the zeros of (4.2). Then,

ν =

∞∑
N=1

(d− 2)2

(d− 1)1+N

N∑
i=1

δλN,i

and
∫
− log(1−x)ν(dx) =

∑∞
N=1−

(d−2)2
(d−1)1+N log det(IN −QN ). 4 Note that det(IN −QN ) =

d1−N . A quick way to view this is through the connection with random rooted spanning
tree with all edges directed towards the root. Indeed, det(I − QN ) is the total mass
of directed spanning trees rooted at the cemetery point, where the weight of a tree
is given by the product of weights (QN )xy on directed edges xy in that tree. In this
particular case, there is only one rooted tree with weight d1−N . Hence, we get that∫
− log(1− x)ν(dx) = (d− 1)−1 log d. If we are only interested in the total mass ||µ(n)||,

then a simpler way is to use the relation with the spanning trees. Indeed, by (1.1), we
have that

||µ(n)|| = − log det(I−(1+c(n))−1p(d,n)) = log(1+c(n)) ·]V (n)+log det((1+c(n)) ·I−p(d,n)),

where V (n) is the vertex set of the n-th trees in the sequence and log det((1+c(n))·I−p(d,n))
equals the total mass of directed spanning trees rooted at the cemetery point. (Here, we
view c(n) as the killing rate, i.e. the jumping rate to the cemetery point.) For our choice
of c(n), the mass is concentrated on trees such that the root has only one neighbor. The
total mass of such trees is simply c(n)

∑
x∈V (n) deg(x)/

∏
x∈V (n) deg(x). Hence,

lim
n→∞

||µ(n)||/]V (n) = a+
∑

x∈V (n)

log deg(x)/]V (n), (4.3)

which equals a+ (log d)/(d−1) for a sequence of balls in a d-regular tree. For a sequence
of trees in general, when the average degrees are bounded,

∑
x∈V (n) log deg(x)/]V (n) are

also bounded by concavity and (4.3) holds when limn→∞
∑
x∈V (n) log deg(x)/]V (n) exists.

In this case, the uniformly chosen balls B(o(n), r) ⊂ G(n) with radius r are tight for each
r since ]B(o(n), r) are tight. (One could show this by induction on r and by using the
fact that a uniform chosen neighbor of a uniformly chosen vertex is a uniformly chosen
vertex.) Hence, (G(n))n are tight and locally convergent subsequence exists. One could
get similar results along that convergent subsequence.

4Similarly, by (4.1), we could express
∫
− log(λ−x)ν(dx) by an infinite sum of functions involving Chebyshev

polynomials and logarithms. However, we have no closed form expression for the moments of ν.
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5 Complete graphs

Let G(n) be the complete graph with vertex set V (n) and X(n) be a SRW on it.

5.1 Proof of Theorem 1.2

By explicit calculation, we have that

Tr(p(n))k = 1 + (−1)k(n− 1)−(k−1). (5.1)

By (1.1) and (5.1), we have that

||µ(n)|| = − log(c(n)/(1 + c(n)))− (n− 1) log(1 + (1 + c(n))−1(n− 1)−1)
n→∞∼ a log n. (5.2)

Take t ∈ (0, a). We have that

µ̄(n)(log |`|/ log n ≤ t) = ||µ(n)||−1
∑
k≤nt

k−1(1 + c(n))−k Tr(p(n))k.

Note that both (1 + c(n))−k and Tr(p(n))k converge to 1 uniformly for k ≤ nt as n → ∞.
Hence, µ̄(n)(log |`|/ log n ≤ t) converges to t/a as n→∞.

5.2 Proof of Corollary 1.3

As before, we denote by (X
(n)
k )k≥0 a simple random walk on the complete graph.

We denote by P(n)
k the law of (X

(n)
j )j=0,...,k−1 with X

(n)
0 uniformly distributed on the

complete graph. We first compare P(n)
k (C) with µ̄(n)(C

∣∣|`| = k):

Lemma 5.1. Let P(n)
k (C) be the probability that (X

(n)
1 , . . . , X

(n)
k ) covers the complete

graph. Then, we have that

n− 2

n
µ̄(n)(C

∣∣|`| = k) ≤ P(n)
k (C) ≤ n− 1

n− 2
µ̄(n)(C

∣∣|`| = k).

Proof. Define S
(k)
1 = {(x1, . . . , xk) ∈ {1, . . . , n}k : x2 6= x1, x3 6= x2, . . . , xk 6= xk−1} and

S
(k)
2 = {(x1, . . . , xk) ∈ {1, . . . , n}k : x1 6= xk, x2 6= x1, x3 6= x2, . . . , xk 6= xk−1}. Then,

]S
(k)
1 = n(n − 1)k−1 and ]S

(k)
2 = (n − 1)k + (−1)k(n − 1). Note that ¯̇µ(n)(·

∣∣|`| = k) is the

uniform distribution on S(k)
2 and P(n)

k is the uniform distribution on S(k)
1 . Hence,

P
(n)
k (C, X(n)

k 6= X
(n)
1 ) = ]S

(k)
2 /]S

(k)
1 · µ̄(n)(C

∣∣|`| = k).

Note that ]S(k)
2 ≤ ]S(k)

1 ≤ n
n−2 ]S

(k)
2 . We see that

n− 2

n
µ̄(n)(C

∣∣|`| = k) ≤ P(n)
k (C, X(n)

k 6= X
(n)
1 ) ≤ µ̄(n)(C

∣∣|`| = k). (5.3)

On the other hand, we have that

P
(n)
k (C, X(n)

k = X
(n)
1 ) = P

(n)
k−1

(
P

(n)
k (C, X(n)

k = X
(n)
1 |σ(X

(n)
1 , . . . , X

(n)
k−1))

)
= E

(n)
k−1

(
(n− 1)−1P

(n)
k−1(C)1

X
(n)
k−1 6=X

(n)
1

)
≤ (n− 1)−1P

(n)
k (C). (5.4)

By combining (5.3) and (5.4), we get that

P
(n)
k (C) ≤ µ̄(n)(C

∣∣|`| = k) + (n− 1)−1P
(n)
k (C) ≤ n− 1

n− 2
µ̄(n)(C

∣∣|`| = k).
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Consider the cover time C(n) = min{k ≥ 0 : (X
(n)
j )j=0,...,k contains V (n)}. In the

complete graph case, it happens to be a coupon collector problem and it is known that
C(n)−n logn

n converges in law to a Gumbel distribution, see Section 6.2 in [3]. It implies
that for all δ > 0,

lim
n→∞

P[C(n) ≤ n] = 0 and lim
n→∞

P[C(n) ≤ n1+δ] = 1. (5.5)

Hence, by Theorem 1.2, Lemma 5.1 and (5.5), we see that lim
n→∞

µn(C)
logn = (a − 1)+ and

Corollary 1.3 follows.
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