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Abstract

We show that, in the context of stochastic control systems, the uniform existence of
a limit of Cesàro averages implies the existence of uniform limits for averages with
respect to a wide class of measures dominated by the Lebesgue measure and satisfying
some asymptotic condition. It gives a partial answer to the problem mentioned in [18]
and it provides an alternative method for the approach in [13] (in the deterministic
control setting). Finally, we mention that the arguments rely essentially on integration-
by-parts and is applicable to general deterministic or stochastic control problems.
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1 Introduction

In this paper, we consider a regular jump-diffusion stochastic control system. Never-
theless, the results of the main Section 3 are independent of the actual system considered,
as soon as the dynamic programming-issued monotone result (in Proposition 3.2) holds-
true. To fix the notations, we let (Ω,F ,P) be a complete probability space supporting an
Rd−valued Brownian motion and an independent compound Poisson measure N with
intensity N̂ (dedt) = λ (de) dt for some finite measure λ on a metric space (E, E) endowed
with its Borel σ-algebra. We consider a compact metric control space U. The coefficients
b : RN × U −→ RN , σ : RN × U −→ RN×d, f : RN × E × U −→ RN are assumed to
be uniformly continuous, bounded and Lipschitz-continuous in space, uniformly with
respect to the control parameter. We consider the controlled system

dXx,u
t = b (Xx,u

t , ut) dt+ σ (Xx,u
t , ut) dWt +

∫
E

f
(
Xx,u
t− , e, ut

)
N (dedt) , t ≥ 0, Xx,u

0 = x,

where x ∈ RN . The process u is U−valued and predictable (with respect to the natural
filtration generated by W and N and completed by the P-null sets) and the family of
such controls is denoted by Uad.

We consider a cost criterion g : RN × U −→ [0, 1] assumed to be uniformly contin-
uous. Whenever (µδ)δ>0 is a family of probability measures on R+, one considers the
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General Tauberian results for jump systems

µδ−averaged value functions

vδ (x) := inf
u∈Uad

E

[∫
R+

g (Xx,u
t , ut)µδ (dt)

]
, x ∈ RN , for all δ > 0. (1.1)

Two particular classes are widely studied. The case when µδ (dt) = δ1[0, 1δ ]
(t) dt leads to

the Cesàro averages denoted, for convenience (and by setting T = δ−1),

VT (x) := inf
u∈Uad

1

T
E

[∫ T

0

g (Xx,u
t , ut) dt

]
, x ∈ RN , for all T > 0. (1.2)

The case when µδ are exponentially distributed with parameter δ > 0 leads to the Abel
means

vδAbel (x) := inf
u∈Uad

E

[∫ ∞
0

δe−δtg (Xx,u
t , ut) dt

]
, x ∈ RN , for all δ > 0.

In a discrete setting, for sequences of bounded real numbers (xn)n≥1, Hardy and Little-

wood have proven in [11] that the convergence of the Cesàro means
(
1
n

∑n
i=1 xi

)
n≥1 is

equivalent to the convergence of their Abel means
(
δ
∑∞
i=1 (1− δ)i xi

)
1>δ>0

. This result

has been generalized by Feller (cf. [8], XIII.5) to the case of uncontrolled deterministic
dynamics in continuous time. A further generalization to deterministic controlled dynam-
ics with continuous time is available in [1]. However, the framework of the cited paper
guarantees that the limit value function does not depend of the initial data. The general
case for deterministic dynamics in which the limit value function may depend on the
initial data has been considered in [15]. The main result in [15] states that, for deter-
ministic control systems, Vt converges uniformly as t→∞ if and only if vδAbel converges
uniformly as δ → 0. Moreover, the two limits coincide. The authors of [15] also give an
example proving that the limit value functions may not coincide if the convergence is
not uniform. In the Brownian diffusion setting, similar results have been obtained in [5].
Finally, similar partial (Abelian) results for piecewise deterministic Markov processes
make the object of [9].

The recent paper [18] considers a discrete control problem with arbitrary state
space and bounded rewards and gives an affirmative answer to the existence of the
limit for problems in which the averaging concerns general discrete measures, when
the “patience” of the decision-maker tends to infinity. For a sequence of measures, a
notion of "impatience" is translated in [18] by a total-variation decreasing to 0 condition.
The method is adapted to a deterministic continuous control framework in the recent
preprint [13] via what the authors call the "long-term condition". In both cases, the
approach relies on the dynamic programming, reachability properties and an explicit
candidate for limit (given in a sup/inf formulation and inspired by repeated games).

In this short note we show that, in the context of stochastic control systems, the
uniform existence of a limit of Cesàro limits VT implies the existence of uniform limits for
averages vδ with respect a wide class of measures dominated by Lebesgue measure and
satisfying some asymptotic condition. It provides an alternative to the approach in [13].
Our approach requires some regularity of the density functions of the averaging measures
and relies essentially on integration-by-parts formulae. Furthermore, it generalizes the
method in [15] (in a deterministic setting) and [5, Section 4] (in a Brownian diffusion
setting) and is applicable to general deterministic or stochastic control problems.

The specific assumptions on the measures µδ are given in Section 2. We give some
examples of measures (Weibull, normal folded, uniform) satisfying these assumptions.
In Section 3 we give the statement and the proof of the main Tauberian result and an
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General Tauberian results for jump systems

example of piecewise diffusive switch inspired by Cook’s genetic model introduced in
[7].

2 An Asymptotic Behavior Assumption

2.1 A Class of Lebesgue-Dominated Averaging Measures

The probability measures µδ are assumed to be dominated by Lebesgue measure on
R+ and their densities ξ (δ, t) = dµδ(t)

dt to be locally absolutely continuous on the support
of µδ for all δ > 0. Moreover, we assume the following asymptotic condition to hold true

i. lim
δ→0+

∫ t
0
|ξ (δ, t)− ξ (δ, s)| ds = 0, for all t > 0.

ii.
There exists tδ ≥ 0 s.t. ξ (δ, ·) is non-increasing on

[
tδ,∞

)
, for δ > 0,

ξ
(
δ, tδ+

)
6= 0 and lim

δ→0+

∫ tδ
0

∣∣ξ (δ, tδ)− ξ (δ, s)
∣∣ ds = 0,

iii. lim sup
β→∞, s→∞

sup
δ≤ 1

β

[
µδ
([

max
(
tδ, s

)
, βs
])
− sξ (δ, s)

]
= 1.

(A)

Remark 2.1. (i) Whenever

lim sup
δ→0+

µδ ([0, t]) = lim sup
δ→0+

ξ (δ, t) = 0, for all t > 0, (2.1)

the condition (A i) is satisfied. Moreover, let us assume that sup
δ>0

ξ (δ, ·) ∈ L1
loc (dt) and the

(almost sure) existence of ξ (t) := lim
δ→0+

ξ (δ, t) . Then (A i) is satisfied if and only if (2.1)

holds true.
(ii) The condition ξ

(
δ, tδ+

)
6= 0 guarantees that, for some ε > 0, the interval

[
tδ, tδ + ε

]
belongs to the support of µδ. Otherwise, tδ can trivially be chosen as an upper-bound of
this support set.

If, moreover, lim sup
δ→0+

µδ
([

0, tδ
])

= lim sup
δ→0+

tδξ
(
δ, tδ

)
= 0, then the limit condition in

(A ii) is also satisfied. In particular, this is the case if tδ can be chosen independent of
δ > 0 (i.e. if sup

δ>0
tδ <∞) and the conditions (i) hold true. It is also satisfied when tδ is a

maximum point of ξ (δ, ·) (specific unimodal distributions) and lim sup
δ→0+

tδξ
(
δ, tδ

)
= 0.

(iii) Let us fix t > 0. For δ > 0, we let a (δ) := sup {r > 0 : ξ (δ, r) > 0} ∈
(
tδ,∞

]
. Then,

for δ small enough, a (δ) ≥ t. Otherwise, let us consider some sequence δ → 0 for which
a (δ) < t. It follows that

∫ t
0

(ξ (δ, t)− ξ (δ, s)) ds = −1 which contradicts (A i).
(iv) The lim sup

β→∞, s→∞
should be understood as lim sup

β→∞
lim sup
s→∞

.

Let us assume that lim sup
δ→0+

µδ ([0, t]) = lim sup
δ→0+

ξ (δ, t) = 0 , for all t > 0. Then, the

condition (A iii) roughly states that, as the expansion factor β increases, any interval[
tδ, βs

]
has almost full µδ-measure, for some small δ. This is a tightness condition. Of

course, our assumption is slightly stronger since δ = δ (β, s) in (A iii) and some uniform
(tightness) property is required.

(v) If ξ (δ, ·) are non-increasing on R+, the condition (A) is implied by

i. lim
δ→0+

µδ ([0, t]) = 0, for all t > 0.

ii.

there exists an increasing sequence βn ↗∞ and, for every n ≥ 1,

an increasing, unbounded sequence (sn,p)p≥1 and

a sequence (δn,p)p≥1 ⊂
[
0, 1

βn

]
s.t.

limn→∞ limp→∞ µδn,p ([0, sn,p]) = 0 and
limn→∞ limp→∞ µδn,p ([0, βnsn,p]) = 1.

(B)
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General Tauberian results for jump systems

2.2 Examples of Classical Laws Satisfying Our Assumption

Let us now mention some classes of distributions which satisfy these asymptotic
conditions.

Example 2.2. The Weibull laws with scale parameter δ > 0 and form k (δ) > 0 and such

that lim
δ→0

k (δ) = 1 given by the densities ξ (δ, r) = k (δ) δk(δ)rk(δ)−1e−(δr)
k(δ)

1r>0, for

δ > 0 satisfy the previous assumptions. (Note that for k (δ) = 1 one gets the exponential

distribution). One can choose tδ = 1
δ

(
k(δ)−1
k(δ)

) 1
k(δ)

. Note that tδ may be unbounded (e.g.

k (δ) = 1 +
√
δ). The conditions (A i and ii) follow from Remark 2.1 and

lim
δ→0+

µδ ([0, t]) = lim
δ→0+

(
1− e−(δt)k(δ)

)
= 0, lim

δ→0+
tξ (δ, t) = lim

δ→0+
k (δ) (δt)

k(δ)
e−(δt)

k(δ)

= 0.

lim
δ→0+

µδ
([

0, tδ
])

= lim
δ→0+

(
1− e−

k(δ)−1
k(δ)

)
= 0, lim

δ→0+
tδξ
(
δ, tδ

)
= lim
δ→0+

(k (δ)− 1) e−
k(δ)−1
k(δ) = 0.

Moreover, by picking s ≥
√
β and δs,β := 1

s
√
β

, one gets

sup
δ≤ 1

β

(
µδ
([

max
(
tδ, s

)
, βs
])
− sξ (δ, s)

)

≥ min

e−β− k
(

1
s
√
β

)
2 , e

1

k

(
1

s
√
β

)−1− e−β k
(

1
s
√
β

)
2 − k

(
1

s
√
β

)
β−

k

(
1

s
√
β

)
2 e−β

−
k

(
1

s
√
β

)
2 ,

which implies (A iii) by recalling that lim
δ→0

k (δ) = 1.

Example 2.3. The folded normal distributions ξ (δ, r) := δ√
2π

(
e−

δ2(r−a(δ))2
2 + e−

δ2(r+a(δ))2

2

)
such that lim

δ→0+
δa (δ) = 0. One picks tδ = a (δ). We have ξ (δ, r) ≤

√
2
π δ and, thus,

lim sup
δ→0+

(µδ ([0, t]) + tξ (δ, t)) ≤ lim sup
δ→0+

√
8
π δt = 0, for all t > 0 and

lim sup
δ→0+

(
µδ
([

0, tδ
])

+ tδξ
(
δ, tδ

))
≤ lim sup

δ→0+

√
8
π δa (δ) = 0.

Finally, for β > 0, we pick δβ,s = 1
s
√
β

and, for sβ great enough (s.t. 1
s
√
β
a
(

1
s
√
β

)
≤ 1√

β
,

for s ≥ sβ), we get

µδβ,s
([

max
(
tδ, s

)
, βs
])
− sξ (δβ,s, s)

≥
∫ βs

s

δβ,s√
2π

(
e−

δ2β,s(r−a(δβ,s))
2

2 + e−
δ2β,s(r+a(δβ,s))

2

2

)
dr −

√
2

πβ

≥
∫ √β− 1√

β

1√
β

1√
2π

(
e−

r2

2 + e
−

(
r+ 2√

β

)2

2

)
dr −

√
2

πβ
≥
∫ √β− 1√

β

3√
β

2√
2π
e−

r2

2 dr −
√

2

πβ
.

The latter expression increases to 1 as β →∞.
Example 2.4. The uniform laws ξ (δ, r) = 1

a(δ)−a(δ)1[a(δ),a(δ)] (r) such that a and a are

continuous and lim
δ→0

1+a(δ)
a(δ)−a(δ) = 0. One picks tδ = a (δ) . Again,

(
tδ
)
δ>0

may be unbounded.

For every t > 0, one gets

lim sup
δ→0+

(µδ ([0, t]) + tξ (δ, t)) ≤ lim sup
δ→0+

2t
a(δ)−a(δ) = 0, and∫ tδ

0

∣∣ξ (δ, tδ)− ξ (δ, s)
∣∣ ds = a(δ)

a(δ)−a(δ) ,
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General Tauberian results for jump systems

for all δ > 0. Also, for β > 0 and every (great enough) s > 0, we pick δβ,s :=

inf {δ > 0 : a (δ) = βs} and have

µδβ,s
([

max
(
tδβ,s , s

)
, βs
])
− sξ (δβ,s, s) ≥

a (δβ,s)−max (a (δβ,s) , s)− s
a (δβ,s)− a (δβ,s)

≥ 1− 2

β

a (δβ,s)

a (δβ,s)− a (δβ,s)
.

Remark 2.5. In fairness to the authors of [13], we point out that in the uniform example,
our assumption is slightly stronger that the so-called LTC (long term condition) given
in the deterministic framework. Indeed, the authors of [13] prove, for uniform laws (cf.
[13, Example 3.3]), that the LTC condition holds true if and only if a (δ) − a (δ) grows
to infinity, while, in our case, we need to equally impose that this growth dominates
a (δ) . This is essentially a consequence of the method we employ, based uniquely on
integration by parts and implicitly requiring integrability conditions. More involved IPP
formulae might allow this condition to be weakened.

Nevertheless, it is worth pointing out that our proof makes no use of the explicit
type of problem and applies to both stochastic and deterministic frameworks. Similar
assertions hold true for the folded normal distribution.

Inspired by the previous examples, let us assume that µδ admit finite first-order
moments µδ :=

∫
R+

rξ (δ, r) dr <∞ for all δ > 0. A sufficient condition guaranteeing (A)
is given by :

i) lim sup
δ→0+

ξ (δ, t) = lim sup
δ→0+

µδ ([0, t]) = 0, for all t > 0,

ii) lim sup
δ→0+

ξ
(
δ, tδ

)
= lim sup

δ→0+
µδ
([

0, tδ
])

= 0 (with tδ as in (A)),

iii)
There exist two sequences an ↗∞ and δn ↘ 0 s.t.

µδn ([0, an]) = o(1), ξ (δn, an) = o
(

1
an

)
and µδn = O (an) as n→∞.

, (A’)

Remark 2.6. (i) The condition (A’iii) reads limn→∞ µδn ([0, an]) = limn→∞ anξ (δn, an) = 0

and lim sup
n→∞

µδn
an

<∞.

(ii) In particular, (A’iii) holds true if supδ>0 µδ <∞ and if (A’i) is satisfied.

3 The Main Tauberian Result

3.1 Theoretical Result

The main result of our note is the following.

Theorem 3.1. (i) If the sequence (Vt)t>0 converges to some function v uniformly on
compact sets as t→∞, then, for all ε > 0 and all k > 0, there exists δε,k > 0 such that

vδ (x) ≥ v (x)− ε,

for all x ∈ RN such that |x| ≤ k and all δ < δε,k.

(ii) If the sequence (Vt)t>0 converges to some function v uniformly on RN as t→∞,
then there exists a sequence (δn)n≥1 such that

(
vδn
)
n≥1 converges uniformly to v.

Proof. (i) To prove the first assertion, let us fix ε > 0 and k > 0. Then, there exists some
tε,k > 0 such that

sup
x∈RN , |x|≤k

|Vt (x)− v (x)| ≤ ε

3
,
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for all t ≥ tε,k. Due to (A i) and (A ii), we can set δε,k such that∫ max(tε,k,tδ)

0

∣∣ξ (δ,max
(
tε,k, t

δ
))
− ξ (δ, s)

∣∣ ds ≤ ε

6
,

for all δ ≤ δε,k. For δ > 0, we let a (δ) := sup {r > 0 : ξ (δ, r) > 0} ∈
(
tδ,∞

]
. We can

assume, without loss of generality, that a (δ) > tε,k (see Remark 2.1 (iii)). Then, for some
max

(
tε,k, t

δ
)
≤ a (δ, ε) < a (δ) ,

1− ε

3
≤ 1 +

∫ max(tε,k,tδ)

0

(
ξ
(
δ,max

(
tε,k, t

δ
))
− ξ (δ, s)

)
ds− ε

6

≤ max
(
tε,k, t

δ
)
ξ
(
δ,max

(
tε,k, t

δ
))

+ µδ
([

max
(
tε,k, t

δ
)
, a (δ, ε)

])
.

An integration-by-parts argument implies that, for every x ∈ RN such that |x| ≤ k, every
δ ≤ δε,k and every admissible control process u ∈ Uad, we have

v (x)− 2ε

3
≤
(

1− ε

3

)(
v (x)− ε

3

)
≤

(
max

(
tε,k, t

δ
)
ξ
(
δ,max

(
tε,k, t

δ
))

+

∫ a(δ,ε)

max(tε,k,tδ)

ξ (δ, s) ds

)(
v (x)− ε

3

)
≤ a (δ, ε) ξ (δ, a (δ, ε))

(
v (x)− ε

3

)
+

∫ a(δ,ε)

max(tε,k,tδ)

−s∂sξ (δ, s)
(
v (x)− ε

3

)
dt

≤ a (δ, ε) ξ (δ, a (δ, ε))
(
v (x)− ε

3

)
+

∫ a(δ,ε)

max(tε,k,tδ)

−∂sξ (δ, s) sVs (x) ds

≤ a (δ, ε) ξ (δ, a (δ, ε))
(
v (x)− ε

3

)
+

∫ a(δ,ε)

max(tε,k,tδ)

−∂sξ (δ, s)

∫ s

0

E [g (Xx,u
l , ul)] dlds

Again, by an integration-by-parts argument, we have

v (x)− 2ε

3
≤ a (δ, ε) ξ (δ, a (δ, ε))

[
v (x)− ε

3
− 1

a (δ, ε)

∫ a(δ,ε)

0

E [g (Xx,u
l , ul)] dl

]
(3.1)

+

∫ max(tε,k,tδ)

0

[
ξ
(
δ,max

(
tε,k, t

δ
))
− ξ (δ, t)

]
g (Xx,u

t , ut) dt

+ E

[∫ a(δ,ε)

0

ξ (δ, t) g (Xx,u
t , ut) dt

]
.

Recalling that a (δ, ε) ≥ tε,k, one gets

1

a (δ, ε)

∫ a(δ,ε)

0

E [g (Xx,u
l , ul)] dl ≥ Va(δ,ε) (x) ≥ v (x)− ε

3
. (3.2)

Also, ∫ max(tε,k,tδ)

0

[
ξ
(
δ,max

(
tε,k, t

δ
))
− ξ (δ, t)

]
g (Xx,u

t , ut) dt

≤
∫ max(tε,k,tδ)

0

∣∣ξ (δ,max
(
tε,k, t

δ
))
− ξ (δ, t)

∣∣ dt ≤ ε

6
.

Substituting this inequality and (3.2) in (3.1), one gets

v (x)− 2ε

3
≤ E

[∫ ∞
0

ξ (δ, t) g (Xx,u
t , ut) dt

]
+
ε

6
.
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The conclusion follows by picking some admissible control process u ∈ Uad which is
ε
6 -optimal for vδ (x) .

(ii) Before proving the second assertion, we state the following monotonicity result

Proposition 3.2. For every T0 > s ≥ 0, x ∈ RN and admissible control process u ∈ Uad,
one has

lim inf
t→∞

Vt (x) ≤ lim inf
t→∞

E
[
Vt
(
Xx,u
T0

)]
and (T0 − s)E [VT0−s (Xx,u

s )] ≤ E

 T0∫
s

g (Xx,u
r , ur) dr

 .
(3.3)

We postpone the proof of this proposition to the end of the subsection and complete
our theorem. We fix ε > 0 and α (ε) > 0 to be specified later on. Our assumption yields
the existence of some tε,α(ε) > 0 such that

sup
x∈RN

|Vs (x)− v (x)| ≤ α2 (ε) ,

for all s ≥ α (ε) tε,α(ε). We fix, for the time being, the time horizon t ≥ tε,α(ε) and an
admissible control ut,α(ε) ∈ Uad for which

1

t
E

[∫ t

0

g
(
Xx,ut,α(ε)

r , ut,α(ε)r

)
dr

]
≤ Vt (x) + α2 (ε) .

Using the first inequality in Proposition 3.2, we get

v (x) ≤ lim inf
T→∞

E
[
VT

(
Xx,ut,α(ε)

s

)]
= E

[
v
(
Xx,ut,α(ε)

s

)]
≤ E

[
Vt−s

(
Xx,ut,α(ε)

s

)]
+ α2 (ε) ,

for all s ≤ (1− α (ε)) t (the last inequality is a consequence of the fact that t − s ≥
α (ε) tε,α(ε)). Combining this estimate with the second inequality in Proposition 3.2 and
recalling the choice of ut,α(ε), one has

tv (x) ≥ tVt (x)− tα2 (ε) ≥ E
[∫ t

0

g
(
Xx,ut,α(ε)

r , ut,α(ε)r

)
dr

]
− 2tα2 (ε)

≥ E
[∫ s

0

g
(
Xx,ut,α(ε)

r , ut,α(ε)r

)
dr

]
+ (t− s)E

[
Vt−s

(
Xx,ut,α(ε)

s

)]
− 2tα2 (ε)

≥ E
[∫ s

0

g
(
Xx,ut,α(ε)

r , ut,α(ε)r

)
dr

]
+ (t− s) v (x)− (3t− s)α2 (ε) ,

for all α (ε) t ≤ s ≤ (1− α (ε)) t. This implies that whenever s ∈ [α (ε) t, (1− α (ε)) t] ,

v (x) ≥ 1

s
E

[∫ s

0

g
(
Xx,ut,α(ε)

r , ut,α(ε)r

)
dr

]
− 3α (ε) . (3.4)

We then use the splitting

[0,∞) = (α (ε) t, (1− α (ε)) t] ∪ ([0,∞) r (α (ε) t, (1− α (ε)) t]) ,

and recall that 0 ≤ g ≤ 1 to get

vδ (x) ≤
∫ α(ε)t

0

ξ (δ, r) dr + 1−
∫ (1−α(ε))t

0

ξ (δ, r) dr

+ E

[∫ (1−α(ε))t

α(ε)t

ξ (δ, r) g
(
Xx,ut,α(ε)

r , ut,α(ε)r

)
dr

]

≤
∫ α(ε)t

0

ξ (δ, r) dr + 1−
∫ (1−α(ε))t

0

ξ (δ, r) dr

+

∫ max(α(ε)t,tδ)

α(ε)t

ξ (δ, r) dr + E

[∫ (1−α(ε))t

max(α(ε)t,tδ)

ξ (δ, r) g
(
Xx,ut,α(ε)

r , ut,α(ε)r

)
dr

]
,
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for all δ > 0. Using, as we have already done in the first part, an integration-by-parts
formula and the inequality (3.4), it follows that

vδ (x)

≤ 1−
∫ (1−α(ε))t

α(ε)t

ξ (δ, r) dr +

∫ max(α(ε)t,tδ)

α(ε)t

ξ (δ, r) dr

+ (1− α (ε)) tξ (δ, (1− α (ε)) t)
1

(1− α (ε)) t
E

[∫ (1−α(ε))t

0

g
(
Xx,ut,α(ε)

r , ut,α(ε)r

)
dr

]

+

∫ (1−α(ε))t

max(α(ε)t,tδ)

−s∂sξ (δ, s)E

[
1

s

∫ s

0

g
(
Xx,ut,α(ε)

r , ut,α(ε)r

)
dr

]
ds

≤ 1− µδ
([

max
(
α (ε) t, tδ

)
, (1− α (ε))t

])
+ (v (x) + 3α (ε))

[
(1− α (ε)) tξ (δ, (1− α (ε)) t) +

∫ (1−α(ε))t

max(α(ε)t,tδ)

−s∂sξ (δ, s) ds

]
= 1− µδ

([
max

(
α (ε) t, tδ

)
, (1− α (ε))t

])
+ (v (x) + 3α (ε))×(

max
(
α (ε) t, tδ

)
ξ
(
δ,max

(
α (ε) t, tδ

))
+ µδ

([
max

(
α (ε) t, tδ

)
, (1− α (ε))t

]))
≤ 1− µδ

([
max

(
α (ε) t, tδ

)
, (1− α (ε))t

])
(3.5)

+ (v (x) + 3α (ε))
(
max

(
α (ε) t, tδ

)
ξ
(
δ,max

(
α (ε) t, tδ

))
− µδ

([
0,max

(
α (ε) t, tδ

)])
+ 1
)
.

The reader is invited to note that, by our assumptions (A ii) and (A iii), there exists
βε >

1
ε and some sε > tε,α(ε) such that

sup
δ≤ 1

βε

[
µδ
([

max
(
tδ, sε

)
, βεsε

])
− sεξ (δ, sε)

]
≥ 1− ε, for all ε > 0 and∫ tδ

0

(
ξ
(
δ, tδ

)
− ξ (δ, s)

)
ds ∈ [−ε, ε] , for all δ < 1

βε
.

(3.6)

We set α (ε) := 1
βε+1 < ε (the reader will note that (1− α (ε)) = βεα (ε)). Then, by setting

t := sε
α(ε) , the first inequality in (3.6) yields the existence of some δε <

1
βε

such that

µδε
([

max
(
tδε , α (ε) t

)
, (1− α (ε)) t

])
≥ 1− 2ε and α (ε) tξ (δε, α (ε) t) ≤ 2ε.

Moreover, using the second inequality in (3.6), we get

tδεξ
(
δε, t

δε
)
− µtδε

([
0, tδε

])
ds ∈ [−ε, ε] .

Then, for ε < 1
6 , the inequality (3.5) implies

vδε (x) ≤ 2ε+ (v (x) + 3ε) (1 + 2ε) ≤ v (x) + 8ε.

Our result is now complete by recalling that δε ≤ 1
βε

and using the first assertion of our
theorem.

Remark 3.3. (i) In the last part of our proof, the choice of δε explicitly relies on sε. Since
the condition (A iii) can only produce a sequence of such sε, we can only infer that some
subsequence vδ converges to v. However, in our explicit examples, δε = δ (βε, s) for all
s large enough and this dependence is continuous in s. It follows that, at least for our
examples, the second part can be given with respect to any sequence (δn)n≥1. Hence, in

this case, we have the existence of a unique limit for
(
vδ
)
δ>0

as δ → 0. To achieve this,
in general, one could strengthen the condition by asking the existence of a continuous
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function δ : R2
+ −→ R+ such that

δ (β, s) ≤ 1

β
,

δ (β, ·) is non-increasing, lim
s→∞

δ (β, s) = 0,

lim sup
β→∞

lim inf
s→∞

[
µδ(β,s)

([
max

(
tδ(β,s), s

)
, βs
])
− sξ (δ (β, s) , s)

]
= 1.

In this way, when a convenient bound is got for δn := δ (n, sn) , it holds true for all δ ≤ δn
(due to Darboux property and the lim inf formulation.)

(ii) The essential assumption in the main result is the uniform convergence of the
sequence (Vt)t>0. Minimal non-expansive conditions guaranteeing this convergence can
be found in [5, Theorem 8] with no jumps (f = 0). Adapting this approach (see also
[10] in a framework where the jump mechanism is more complicated), a non-expansive
condition in this setting would be

sup
u∈U

inf
v∈U

max


(
〈b (x, u)− b (y, v) , x− y〉+ 1

2 |σ (x, u)− σ (y, v)|2
)
,

sup
e∈Supp(λ)

||x+ f (x, e, u)− y − f (y, e, v)| − |x− y||

|g (x, u)− g (y, v)| − Lip (g) |x− y|

 ≤ 0, (3.7)

where

|σ (x, u)− σ (y, v)|2 = Tr [(σ (x, u)− σ (y, v)) (σ∗ (x, u)− σ∗ (y, v))] ,

for all (x, y, u, v) ∈ R2N × U2, Supp (λ) ⊂ E denotes the support of the measure λ and
Lip (g) denotes the Lipschitz constant of g with respect to the state parameter. Let us
also assume that there exists some compact set K which is invariant with respect to
the dynamics (see [16] for explicit conditions). Then it can be shown (in the same way
as [5, Proposition 4]) that the functions Vt are equicontinuous on K and they converge
uniformly on K. The reader will note that, in this invariant case, the condition (3.7) needs
only be checked for (x, y) ∈ K.

To complete the subsection, we sketch the proof of the monotonicity result. It is a
mere consequence of the dynamic programming principle.

Proof of Proposition 3.2. Using the dynamic programming principle (cf. [17], [14], [4],
etc.), one gets, for every t > T0,

tVt (x) = inf
u∈Uad

(
E

[∫ T0

0

g (Xx,u
s , us) ds

]
+ E

[
(t− T0)Vt−T0

(
Xx,u
T0

)])

and the conclusion follows by dividing the equality by t > 0 and letting t→∞.
The second assertion follows similar patterns. (For a proof based only on Itô’s formula

and Krylov’s shaking the coefficients method, the reader may want to take a look at [5,
Proposition 19]. Finally, we mention that an adaptation of Krylov’s method [12] to Lévy
processes can be found in [3].)

3.2 A Gene-inspired Piecewise Diffusive Switch Example

We recall the diagram of Cook’s model of gene expression, product accumulation and
product degradation and its implications on haploinsufficiency (cf. [7]).

G
ka
�
kd

G*
u
k→ X

kp→
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This model considers a gene (x0) to switch randomly between inactive state (G) and active
state (G*). The activation (respectively deactivation) rate is denoted by ka (respectively
kd) and, to simplify the framework, we assume ka = kd = 1. When active, a single burst
of u

k (u is an exogenous control and k a volume normalization coefficient) units of the
(concentration) vector X occurs. We consider a simple model in which two products
X are of interest : a monomer (x1) and its dimer (x2). There is a continuous transition
from monomer to dimer and conversely and the monomer is subject to degradation with
a stochastic perturbation. We deal with a three-dimensional state space (N = 3, x =

(x0, x1, x2)). We have a unidimensional Brownian motion (d = 1). The jump mechanism is
driven by activation and deactivation. The Poisson measure only counts the jumps and,
as a new jump occurs, x0 switches from 0 (inactive) to 1 (active) or vice versa. For the
dimerization and degradation (which is a high speed reaction with kp > 2), we have

2 X1

u
�
u

X2 and X1
kpu→

with a random fluctuation occurring only in the degradation. The control space is set to
be U = [0, 1].

Remark 3.4. Transcription can occur either in averaged form (units per second) or, as
we meant here, as a single burst of u

k units at the activation of the gene. With this in
mind, a proper way of writing

G
ka
�
kd

G*
u
k→ X

would be
G

ka→ G∗ +
u

k
X1 and G∗

kd→ G .

We get the following coefficients

b

 x0
x1
x2

 , u

 =

 0

−2ux21 + 2ux2 − kpux1
ux21 − ux2

 , σ

 x0
x1
x2

 , u

 =

 0

u (1− x1)x1
0


f

 x0
x1
x2

 , 1, u

 =

 1− 2x0
min

(
u
k , 1− x1

)
(1− x0)

0

 , x0 ∈ {0, 1} , (x1, x2) ∈ R2.

One easily notes that K := {0, 1} × [0, 1]
2 is invariant with respect to the system. Indeed,

x0 does not change between jumps and, when jumps occur, it switches between 0 and 1

(according to f, it changes from x0 to 1− x0). The x1 component increases with u
k but

cannot exceed 1 (at gene activation, i.e. when, previously, x0 = 0 and a jump occurs).
Jumps do not change x2.

Step 1. Invariance. To check invariance between jumps, one can use the results in
[6] or [2]. Alternatively, one may note that, for (x0, x1, x2) ∈ K,

σ

 x0
1

x2

 , u

 = σ

 x0
0

x2

 , u

 = 0,

b

 x0
1

x2

 , u

 =

 0

(2x2 − 2− kp)u ≤ 0

u− ux2

 , b

 x0
0

x2

 , u

 =

 0

2ux2 ≥ 0

−ux2

 ,

b

 x0
x1
0

 , u

 =

 0

−2ux21 − kpux1
ux21 ≥ 0

 , b

 x0
x1
1

 , u

 =

 0

−2ux21 + 2u− kpux1(
x21 − 1

)
u ≤ 0


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to conclude that K is invariant.
Step 2. Non-expansivity. For every u ∈ [0, 1] ,

inf
v

(
〈b (x, u)− b (y, v) , x− y〉+

1

2
|σ (x, u)− σ (y, v)|2

)
≤
(
〈b (x, u)− b (y, u) , x− y〉+

1

2
|σ (x, u)− σ (y, u)|2

)
= −u

[ (
2 (x1 + y1)− 1

2u (x1 + y1 − 1)
2

+ kp

)
(x1 − y1)

2

− (x1 + y1 + 2) (x1 − y1) (x2 − y2) + (x2 − y2)
2

]
≤ 0.

The last inequality is a consequence of the fact that x1, y1 ∈ [0, 1], kp ≥ 2 and

∆ = (x1 + y1 + 2)
2 − 4

(
2 (x1 + y1)− 1

2
u (x1 + y1 − 1)

2
+ kp

)
= (x1 + y1 − 2)

2 − 4

(
−1

2
u (x1 + y1 − 1)

2
+ kp

)
< 4− 4

(
−1

2
+ kp

)
< 0.

For the jumps, since the first component of f does not depend on u, the inequality
can be written for vectors sharing the same x0 ∈ {0, 1}. We note that the function
x1 7→ x1 + min

(
u
k , 1− x1

)
(1− x0) is 1−Lipschitz continuous. Then our system is non-

expansive.
Using the Remark 3.3 (ii), in this setting, the Cesàro means converge uniformly on K

and Theorem 3.1 holds true.
Step 3. Non-dissipativity. We also note the fact that our system is not dissipative and

classical results do not apply. Indeed, for u = 0 and y1 = y2 = 0,

inf
v

(
〈b (x, u)− b (y, v) , x− y〉+

1

2
|σ (x, u)− σ (y, v)|2

)
= 0,

for all x ∈ K. Hence, we are unable to find a C > 0 such that

inf
v

(
〈b (x, u)− b (y, v) , x− y〉+

1

2
|σ (x, u)− σ (y, v)|2

)
≤ −C |x− y|2 ,

for all u ∈ [0, 1] and all (x, y) ∈ K2.
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