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Abstract

In a recent paper, we constructed a stationary 1−dependent 4−coloring of the integers
that is invariant under permutations of the colors. This was the first stationary finitely
dependent q−coloring for any q. When the analogous construction is carried out
for q > 4 colors, the resulting process is not finitely dependent. We construct here
a process that is symmetric in the colors and 1−dependent for every q ≥ 4. The
construction uses a recursion involving Chebyshev polynomials evaluated at

√
q/2.
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1 Introduction

By a (proper) q−coloring of the integers, we mean a sequence (Xi : i ∈ Z) of
[q]−valued random variables satisfying Xi 6= Xi+1 for all i (where [q] := {1, . . . , q}). The
coloring is said to be stationary if the (joint) distribution of (Xi : i ∈ Z) agrees with that
of (Xi+1 : i ∈ Z), and k−dependent if the families (Xi : i ≤ m) and (Xi : i > m+ k) are
independent of each other for each m. In [4], we gave a construction of a stationary
1−dependent 4−coloring of the integers that is invariant under permutations of the
colors. When the same construction is carried out for q > 4 colors, the resulting
distribution is not k−dependent for any k. Of course, the 1−dependent 4−coloring is
also a 1−dependent q−coloring for every q > 4, and one may obtain other 1−dependent
q−colorings by splitting a color into further colors using an independent source of
randomness. However, these colorings are not symmetric in the colors. We give here
a modification of the process of [4] for every q ≥ 4 that is symmetric in the colors and
1−dependent. Here is our main result.

Theorem 1. For each integer q ≥ 4, there exists a stationary 1−dependent q−coloring
of the integers that is invariant in law under permutations of the colors and under the
reflection (Xi : i ∈ Z) 7→ (X−i : i ∈ Z).

This paper is part of a series ([3], [4], [5]) that began with a question raised by
Benjamini, Weiss and Holroyd, and studied by Schramm in 2008. The question is: for
which k, q does there exist a stationary k−dependent q−coloring of the integers. It is
easy to see that there is no such 2−coloring for any k, and Schramm proved, among
other things, that there is no 1−dependent 3−coloring. Proofs of the latter fact are given
in [4] and [5]. In [4], we constructed a 2−dependent 3−coloring and a 1−dependent
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Symmetric colorings

4−coloring of the integers. These are arguably the first genuinely natural finitely
dependent processes that are not block factors, i.e., that cannot be written in the form
Xi = f(Ui+1, . . . , Ui+r) for some function f of r variables and an i.i.d. sequence Ui. (A
coloring is finitely dependent if it is k−dependent for some k.) It is shown in [3] that
while it is not a block factor the four coloring is a finitary factor of an i.i.d. process.

Block factors are of course examples of finitely dependent processes. Some history
of finitely dependent processes that cannot be written as block factors is given in [4].
The ones constructed in the present paper provide additional examples, which hopefully
will lead to a better understanding of such processes.

Part of the motivation for this paper involves the problem of constructing random
colorings on other graphs. In [4], we used our Z1 construction to build 1−dependent
4d−colorings of Zd. These are stationary and symmetric in the d coordinates separately,
but are not invariant under all automorphisms of Zd if d > 1. Specifically, if d = 2, they
are not invariant under reflection about 45 degree lines.

As pointed out by R. Lyons (private communication) a similar construction applies to
homogeneous trees, but again, the resulting coloring is not fully automorphism invariant.
A 1−dependent coloring of the infinite 3−regular tree requires at least 7 colors, and
on the 4−regular tree, at least 10 colors (see [4]). We have no example of a fully
automorphism invariant coloring of a regular tree but any such coloring, when restricted
to a copy of Z1, must be a coloring of Z1 that requires more than 4 colors. So, one can
regard our present construction as being a first step toward building colorings on more
general graphs.

It is natural to ask whether our colorings are unique in any sense. We do not know
the answer, but will say something more about this in the final section. Unfortunately, we
have no probabilistic construction of our new colorings. Hopefully, such a construction
will emerge in the future.

Finitely dependent colorings cannot be written as block factors or as functions of finite
state Markov chains. These statements are proved in Sections 4 and 5 of [4] respectively.
The former is a consequence of an earlier result in [6], where it appears in a different
form, motivated by applications in distributed computing. Further consequences and
extensions appear in [2] and [5]. For example, block factors must contain arbitrarily
long constant sequences with positive probability.

The fact that colorings cannot be constructed from various stochastic processes
that are reasonably well understood makes it necessary to employ more difficult and
less obvious techniques. Our construction is given in the next section. Sections 3 and
4 provide some preliminary results and the proof of Theorem 1 respectively. Open
problems are discussed in the final section.

2 The construction

For x = (x1, x2, . . . , xn) ∈ [q]n, we will write P(Xi+1 = x1, . . . , Xi+n = xn) = P (x) for
any i ∈ Z. To motivate the construction, we begin by noting that the finite-dimensional
distributions P of the 4−coloring in [4] are defined recursively by P (∅) = 1 and

P (x) =
1

2(n+ 1)

n∑
i=1

P (x̂i) (2.1)

for proper x ∈ [4]n, where x̂i is obtained from x by deleting the ith entry in x. Of course,
even if x is proper, x̂i may not be. So the definition is completed by setting P (x) = 0 for
x’s that are not proper.

For general q ≥ 4, we will now allow the coefficients in the defining sum to depend
on i as well as n. Considering many special cases, and the constraints imposed by the
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Symmetric colorings

1−dependence requirement, we were led to define

P (x) =
1

D(n+ 1)

n∑
i=1

C(n− 2i+ 1)P (x̂i) (2.2)

for proper x ∈ [q]n, in terms of two sequences C and D. Again motivated by computations
in special cases, we take

C(n) = Tn
(√
q/2
)
, n ≥ 0;

D(n) =
√
q Un−1

(√
q/2
)
, n ≥ 1,

where Tn and Un are the Chebyshev polynomials of the first and second kind respectively.
(For more on these computations, see the final section.)

There are several standard equivalent definitions of Chebyshev polynomials. One is

Tn(u) = cosh(nt) and Un(u) =
sinh[(n+ 1)t]

sinh(t)
, where u = cosh(t). (2.3)

A variant definition using trigonometric functions (e.g. (22:3:3-4) of [7]) is easily seen to
be equivalent by taking t imaginary; the hyperbolic function version is convenient for
arguments u ≥ 1. Another definition is

Tn(u) =

bn2 c∑
k=0

(
n

2k

)
un−2k(u2 − 1)k and Un(u) =

bn2 c∑
k=0

(
n+ 1

2k + 1

)
un−2k(u2 − 1)k.

That this is equivalent to (2.3) follows from e.g. (22:3:1-2) of [7].

If x is not a proper coloring, we take P (x) = 0 as before. We extend both sequences
C and D to all integer arguments by taking C(n) and D(n) to be even and odd functions
of n respectively (in accordance with (2.3)). In particular, D(0) = 0.

Observe that C(n) and D(n) are strictly positive for q ≥ 4 and n ≥ 1, and therefore
P (x) is strictly positive for all proper x. Note also that C(n−2i+1)/D(n+1) is a rational
function of q; therefore so is P (x). (The factors of

√
q cancel). When q = 4 we have

C(n) = 1 and D(n) = 2n, and so (2.2) reduces to (2.1) in this case. As we will see, the
fact that the coefficients in (2.2) depend on i substantially complicates the verifications
of the required properties of P .

Here are a few examples of cylinder probabilities generated by (2.2).

P (1) =
1

q
, P (12) =

1

q(q − 1)
, P (121) =

1

q2(q − 1)
, P (123) =

1

q2(q − 2)
,

P (1212) =
q − 3

q2(q − 1)(q2 − 3q + 1)
, P (1234) =

1

q2(q2 − 3q + 1)
.

3 Preliminary results

Chebyshev polynomials satisfy a number of standard identities. They lead to identities
satisfied by the sequences C and D. The first three in the proposition below are examples
of this. The fourth is a consequence of the third one. Before stating them, we record
some values of C and D to facilitate checking computations here and later.

C(0) = 1, C(1) =

√
q

2
, C(2) =

q − 2

2
, C(3) =

√
q(q − 3)

2
, C(4) =

q2 − 4q + 2

2
.

D(0) = 0, D(1) =
√
q, D(2) = q, D(3) =

√
q(q − 1), D(4) = q(q − 2).
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Proposition 2. For j, k, `,m, n ∈ Z, the following identities hold.

2C(m)C(n) = C(m+ n) + C(n−m). (3.1)

q − 4

2q
D(m)D(n) = C(m+ n)− C(n−m). (3.2)

2C(m)D(n) = D(m+ n) +D(n−m). (3.3)

C(j + k)D(k + `) = C(k)D(j + k + `)− C(`)D(j). (3.4)

Proof. The first three parts are immediate consequences of (22:5:5-7) in [7], or 22.7.24-
26 in [1], if m and n are nonnegative. None of the identities is changed by changing the
sign of either m or n. Therefore, they hold for all m and n. Alternatively, the identities
may be checked directly from (2.3) using the product formulae for hyperbolic functions.
For (3.4), replace the products of C’s and D’s by sums of D’s using (3.3), and then use
the fact that D is an odd function.

Next we verify some identities that involve both the sequences C and D and the
measure P defined by (2.2). For the statement of the second part of the next result, let

Q(x) =
1

D(n+ 1)

n∑
i=1

C(2i)P (x̂i) and Q∗(x) =
1

D(n+ 1)

n∑
i=1

C(2n− 2i+ 2)P (x̂i)

for x ∈ [q]n. The first part of Proposition 3 is needed in proving the second part, which
plays a key role in the proof of consistency and 1−dependence of P . Note the similarity
between the left side of (3.5) and the right side of (2.2).

Proposition 3. If n ≥ 1, and x is a proper coloring of length n, then

n∑
i=1

D(n− 2i+ 1)P (x̂i) = 0; (3.5)

Q(x) = Q∗(x) = P (x)C(n+ 1). (3.6)

Proof. For the first statement, let R be the set of proper colorings, and x̂A be obtained
by deleting the entries xi for i ∈ A from x. The proof of (3.5) is by induction on n, the
length of x. The identity is easily seen to be true if n ≤ 2. Suppose that (3.5) is true for
all x of length n− 1, and let x ∈ R have length n. For those i with x̂i ∈ R, applying (3.5)
gives

i−1∑
j=1

D(n− 2j)P (x̂i,j) +

n∑
j=i+1

D(n− 2j + 2)P (x̂i,j) = 0. (3.7)

On the other hand, if x̂i /∈ R, then 1 < i < n and

P (x̂i,j) = 0 if |j − i| > 1 and P (x̂i−1,i) = P (x̂i,i+1). (3.8)

The left side of (3.5) for x can be written, using the definition of P (x̂i) and then (3.3), as

=
1

D(n)

∑
1≤i≤n:
x̂i∈R

D(n− 2i+ 1)

[ ∑
1≤j<i

C(n− 2j)P (x̂i,j) +
∑

i<j≤n

C(n− 2j + 2)P (x̂i,j)

]

=
1

2D(n)

∑
1≤j<i≤n:

x̂i∈R

[D(2n− 2i− 2j + 1) +D(2j − 2i+ 1)]P (x̂i,j)

+
1

2D(n)

∑
1≤i<j≤n:

x̂i∈R

[D(2n− 2i− 2j + 3) +D(2j − 2i− 1)]P (x̂i,j).

(3.9)
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Rewriting, and ignoring the 2D(n) in the denominator, gives

n∑
i=1

1[x̂i ∈ R]
[ i−1∑

j=1

[D(2n− 2i− 2j + 1) +D(2j − 2i+ 1)]P (x̂i,j)

+

n∑
j=i+1

[D(2n− 2i− 2j + 3) +D(2j − 2i− 1)]P (x̂i,j)

]
.

(3.10)

We must show that (3.7) and (3.8) imply that (3.10) is zero.
We would like to write (3.10) as a linear combination of expressions that vanish

because of (3.7) and (3.8) as follows.

∑
1≤i≤n:
x̂i∈R

αi

[ i−1∑
j=1

D(n−2j)P (x̂i,j)+
n∑

j=i+1

D(n−2j+2)P (x̂i,j)

]
+
∑

1≤i≤n:
x̂i /∈R

n∑
j=1

βi,jP (x̂i,j), (3.11)

where βi,i = βi,i−1 + βi,i+1 = 0. If 1 ≤ i < j ≤ n, the coefficient of P (x̂i,j) in (3.10) is

1[x̂j ∈ R]
[
D(2n− 2i− 2j + 1) +D(2i− 2j + 1)

]
+1[x̂i ∈ R]

[
D(2n− 2i− 2j + 3) +D(2j − 2i− 1)

]
.

(3.12)

The coefficient of P (x̂i,j) in (3.11) is

1[x̂j ∈ R]αjD(n− 2i) + 1[x̂i ∈ R]αiD(n− 2j + 2) + 1[x̂i /∈ R]βi,j + 1[x̂j /∈ R]βj,i. (3.13)

We need to choose the α’s and β’s so that (3.12) and (3.13) agree. If x̂i, x̂j ∈ R, this says

D(2n− 2i− 2j + 1) +D(2n− 2i− 2j + 3) = αjD(n− 2i) + αiD(n− 2j + 2)

since D is an odd function. It may sound unreasonable to expect to solve this system,
since there are n unknowns and

(
n
2

)
equations. However, D satisfies relations that make

this possible. Solving the equations for small n suggests trying αi = 2C(n− 2i+ 1). The
fact that this choice solves these equations for all choices of n, i, j then follows from (3.3)
and the fact that D is odd. If x̂i /∈ R and x̂j /∈ R, (3.12) and (3.13) agree if βi,j + βj,i = 0.
If x̂i ∈ R and x̂j /∈ R, they agree if

D(2n− 2i− 2j + 3) +D(2j − 2i− 1) = αiD(n− 2j + 2) + βj,i.

Using (3.3) again gives βj,i = 2D(2j − 2i− 1). Similarly, if x̂i /∈ R and x̂j ∈ R, they agree
if βi,j = 2D(2i − 2j + 1). With these choices, β is anti-symmetric, and βk,k−1 = 2D(1)

and βk,k+1 = 2D(−1), so βk,k−1 + βk,k+1 = 0 as required. This completes the induction
argument.

For (3.6), use the definition of P to write the right side of (3.6) as

C(n+ 1)

D(n+ 1)

n∑
i=1

C(n− 2i+ 1)P (x̂i).

Using (3.1), this becomes
1

2
Q(x) +

1

2
Q∗(x).

Therefore, we need to prove that

Q∗(x)−Q(x) =
1

D(n+ 1)

n∑
i=1

[
C(2n− 2i+ 2)− C(2i)

]
P (x̂i) = 0.

But by (3.2), this follows from (3.5).
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4 Proof of the main result

We will often write x1x2 · · ·xn instead of (x1, x2, . . . , xn) below. If x ∈ [q]m and y ∈ [q]n,
let xy denote the word x1 · · ·xmy1 · · · yn ∈ [q]m+n.

Proof of Theorem 1. We first need to show that the finite dimensional distributions
defined in (2.2) are consistent, i.e., that∑

a∈[q]

P (xa) = P (x), x ∈ [q]n, n ≥ 0. (4.1)

This is true if x is not proper, since then xa is also not proper, and so both sides vanish.
For proper x, the proof is by induction on n. Note that for a ∈ [q],

P (a) =
C(0)

D(2)
=

1

q
,

so
∑

a∈[q] P (a) = 1. This gives (4.1) for n = 0. Suppose it holds for all x ∈ [q]n−1 with
n ≥ 1. Then for proper x ∈ [q]n, using the induction hypothesis in the second equality,

∑
a∈[q]

P (xa) =
∑
a 6=xn

1

D(n+ 2)

[ n∑
i=1

C(n− 2i+ 2)P (x̂ia) + C(−n)P (x)
]

=
1

D(n+ 2)

[ n∑
i=1

C(n− 2i+ 2)P (x̂i)− C(−n+ 2)P (x) + (q − 1)C(−n)P (x)
]
.

The middle term in the second line accounts for the missing term a = xn when the
inductive hypothesis is applied to the case i = n (since x̂nxn = x). Using (j, k, `) =

(1, n− 2i+ 1, 2i) in (3.4) gives

C(n− 2i+ 2)

D(n+ 2)
=
C(n− 2i+ 1)

D(n+ 1)
− C(2i)D(1)

D(n+ 2)D(n+ 1)
.

Therefore∑
a∈[q]

P (xa) = P (x)− D(1)Q(x)

D(n+ 2)
− C(n− 2)

D(n+ 2)
P (x) + (q − 1)

C(n)

D(n+ 2)
P (x).

This is P (x), as required, by (3.6) and the fact that

(q − 1)C(n) = C(n− 2) + C(n+ 1)D(1),

which is obtained by taking (j, k, `) = (2,−n, n+ 1) in (3.4), and then canceling a factor
of
√
q.

Invariance of the measure under permutations of colors and translations is immediate
from the definition. Invariance under reflection amounts to checking P (x) = P (xn · · ·x1),
which follows from the fact that the coefficients of x̂i and x̂n−i+1 in (2.2), which are
C(n− 2i+ 1) and C(−n+ 2i− 1) respectively, are equal by the symmetry of C.

For 1−dependence, we need to show that for x ∈ [q]m and y ∈ [q]n with m,n ≥ 0,

P (x ∗ y) = P (x)P (y),

where the * means that there is no constraint at the single site between x and y. This is
again true if x or y is not proper since then both sides are zero. For proper x and y, the
proof is by induction, but now on m+ n. The statement is immediate if m = 0 or n = 0.
So, we take m ≥ 1 and n ≥ 1.
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There are two cases, according to whether or not xy is a proper coloring, i.e., whether
xm and y1 are equal or different. Assume first that xm = y1. Without loss of generality,
take their common value to be 1. Then using the definition of P , including the fact that
P (xy) = 0,

P (x ∗ y) =
∑
a∈[q]

P (xay) =
1

D(n+m+ 2)

∑
a 6=1

[ m∑
i=1

C(n+m− 2i+ 2)P (x̂iay)

+ C(n−m)P (xy) +

n∑
j=1

C(n−m− 2j)P (xaŷj)

]

=
1

D(n+m+ 2)

[ m∑
i=1

C(n+m− 2i+ 2)P (x̂i ∗ y) +
n∑

j=1

C(n−m− 2j)P (x ∗ ŷj)
]
. (4.2)

Using the induction hypothesis, this becomes

P (x∗y) = 1

D(n+m+ 2)

[
P (y)

m∑
i=1

C(n+m−2i+2)P (x̂i)+P (x)

n∑
j=1

C(n−m−2j)P (ŷj)

]
.

Taking (j, k, l) = (n+ 1,m− 2i+ 1, 2i) in (3.4) gives

C(n+m− 2i+ 2)

D(n+m+ 2)
=
C(m− 2i+ 1)

D(m+ 1)
− C(2i)D(n+ 1)

D(m+ 1)D(n+m+ 2)
.

Similarly, replacing (j, k, l) in (3.4) by (m+ 1, 2j − n− 1, 2n− 2j + 2) gives

C(m+ 2j − n)
D(n+m+ 2)

=
C(2j − n− 1)

D(n+ 1)
− C(2n− 2j + 2)D(m+ 1)

D(n+ 1)D(n+m+ 2)
.

Therefore, since C(·) is even,

P (x ∗ y) = P (y)

[
P (x)− D(n+ 1)

D(n+m+ 2)
Q(x)

]
+ P (x)

[
P (y)− D(m+ 1)

D(n+m+ 2)
Q∗(y)

]
.

By (3.6),

P (x ∗ y) = P (x)P (y)

[
2− C(m+ 1)D(n+ 1) + C(n+ 1)D(m+ 1)

D(n+m+ 2)

]
.

By (3.3), we see that the expression in brackets above is 1, as required.
Assume now that xm 6= y1, say xm = 1 and y1 = 2. Then

P (x ∗ y) =
∑
a∈[q]

P (xay) =
1

D(n+m+ 2)

∑
a 6=1,2

[ m∑
i=1

C(n+m− 2i+ 2)P (x̂iay)

+ C(n−m)P (xy) +

n∑
j=1

C(n−m− 2j)P (xaŷj)

]

=
1

D(n+m+ 2)

[ m∑
i=1

C(n+m− 2i+ 2)P (x̂i ∗ y) +
n∑

j=1

C(n−m− 2j)P (x ∗ ŷj)
]

(4.3)

as in the previous case. However, in the previous case, the term P (xy) dropped out
because xy was not a proper coloring. In this case, the term (q − 2)C(n −m)P (xy) is
cancelled by the terms −P (xy)C(n−m+ 2) and −P (xy)C(n−m− 2), which arise from∑

a6=1,2

P (x̂may) = P (x̂m ∗ y)− P (xy) and
∑
a6=1,2

P (xaŷ1) = P (x ∗ ŷ1)− P (xy).

The fact that the overall coefficient of P (xy) vanishes is a consequence of (3.1) with
m = 2, since 2C(2) = q − 2. The rest of the proof is the same as in the case xm = y1
above.

ECP 20 (2015), paper 31.
Page 7/8

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-4070
http://ecp.ejpecp.org/


Symmetric colorings

5 Open problems

A number of open problems related to colorings are listed at the end of [4]. We list
here several that are most natural in the present context.

1. Is our construction the unique Sq−symmetric, 1−dependent, q−coloring of Z?
To give some information about this, we will discuss the computations that led to the
choices of C(n), D(n) in Section 2. One can think of a 1−dependent coloring as a
nonnegative solution to an infinite set of nonlinear equations. The unknowns are the
cylinder probabilities P (x), which are assumed to be translation invariant, symmetric
in the colors, and invariant under reflection. The equations are quadratic, since they
represent the 1−dependence requirement. Solving the equations for cylinders of length
at most three leads to the unique solution that is given at the end of Section 2. However,
when moving to cylinders of length four, one obtains the one parameter family of solutions

P (1212) =
α

q2(q − 1)
, P (1213) =

1− α
q2(q − 1)(q − 2)

, P (1231) =
1

q2(q − 1)(q − 2)
,

P (1234) =
1

q2(q − 1)

[
α

q − 3
+

1− α
q − 2

]
.

Thus one gets uniqueness for some cylinder probabilities along the way. But, if one is
to show uniqueness for all cylinder probabilities, it appears that one must consider the
full infinite set of equations. We used the unique cylinder probabilities to “guess" the
expressions for C(n), D(n) that we used, and then checked that the required properties
of P (x) are true in general.

2. Find a fully automophism invariant 1−dependent coloring of Zd.

3. Find a fully automophism invariant 1−dependent coloring of the d−regular tree.

4. Can our colorings be expressed as finitary factors of i.i.d. processes? Can this
be done with a finite mean coding radius? (The first of these questions is answered
affirmatively for q = 4 in [3].)
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