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1 Introduction

In this paper we are interested in the speed of convergence of the environment viewed
by the particle in the context of random walk among random independent conductances.
We refer to [6] for an introduction. We will first introduce the model and then state our
main theorem.

Consider the d-dimensional lattice (Zd,Bd), d ≥ 1, with Bd the set of unoriented

edges connecting any two points of Zd at Euclidian distance 1 and set Ω := [0,+∞)B
d

.
Given an environment ω = (ωx,y){x,y}∈Bd ∈ Ω we shall consider the associated Markov

process (Xω
t )t>0 with jump rate between x and y given by the conductance ωx,y and

write Pωx for its law starting from x ∈ Zd. In many places we may simply write (Xt)t>0

for simplicity. The environment itself will also be a random variable. In fact, throughout
the paper, we will assume that the conductances ωx,y, {x, y} ∈ Bd, are i.i.d. with common
law µ, whose support is included in [1,∞). The law of the environment is therefore the

product measure P := µB
d

and we denote by E the associated expectation. Since P is
a product measure, standard percolation arguments guarantee that that the Markov
process (Xt)t>0 is well defined for almost all ω ∈ Ω, for all times, see e.g. [20, 11, 26].

Moreover it is reversible with respect to the counting measure, i.e. for all x, y ∈ Zd, it
holds Pωx (Xt = y) = Pωy (Xt = x).

Now, define the translation operators (θz)z∈Zd given by (θzω)x,y := ωx+z,y+z. Then the
Markov process (ω (t))t>0 := (θXtω)t>0, called the environment viewed by the particle, is
reversible with respect to P.

The aim of this short paper is to give an optimal quantitative bound on the decay to
equilibrium of (ω (t))t>0.

*Université Paris Ouest Nanterre La Défense Modal’X, France. E-mail: debuyer@math.cnrs.fr
†ENS Lyon, CNRS,France. E-mail: jean-christophe.mourrat@ens-lyon.fr

http://dx.doi.org/10.1214/ECP.v20-3998
http://ecp.ejpecp.org/
mailto:debuyer@math.cnrs.fr
mailto:jean-christophe.mourrat@ens-lyon.fr


Diffusive decay of the environment viewed by the particle

In order to state our theorem, we need some more notations. A function f : Zd×Ω→ R

is said to be translation invariant if f (x, ω) = f (0, θxω) for all x ∈ Zd and local if f(0, ·)
depends only on a finite set of conductances. The smallest set satisfying that property
is called the support of f and is denoted by supp(f), while #supp (f) stands for the size
of the support (i.e. the number of sites of Zd contained in supp(f)). For any translation
invariant function f , we set E[f ] := E[f(0, ·)].

Our main theorem is the following.

Theorem 1.1. Let d ≥ 3. Assume that the law µ of the conductance has support in
[1,∞) and finite second moment E

[
ω2
·,·
]
<∞. Then there exists a constant C > 0 that

depends only on d such that for all local translation invariant function f : Zd × Ω → R

with E [f ] = 0, all x ∈ Zd, it holds

E
(
Eωx [f (Xt, ω)]

2
)
6 CE

[
ω2
·,·
]

#supp (f)
2 E

[
f2
]

td/2
∀t > 0. (1.1)

Let us comment on Theorem 1.1.
We first observe that similar results already exist in the literature. One of us [26]

proved a polynomial decay in dimension 1 with exponent 1/2, in dimension 2 with

behavior log t/t, in dimension 3 to 6 with t−1 and in dimension 7 and higher with t
−d
2 +2.

Moreover, in the right hand side of (1.1) appears a much stronger norm than only the
L2 norm (the sum of the L∞ norm of f and the so-called triple norm |||f ||| that involves
the infinite sum of L∞-norm of local gradients of f , a natural norm largely used in the
statistical mechanics literature, see for example [23] and also [5, 19, 27]). On the other
hand, the results of [26] hold without the assumption on the finiteness of the second
moment of the conductance. More recently, Gloria, Neukamm and Otto [15] obtained,
among other results, a polynomial decay t−

d
2−1 when the function f is the divergence of

some other function. Because we follow closely their approach, our result is not far from
theirs, although they need to assume that conductances are bounded, i.e. that µ has
support contained in a compact set and that the function f considered is in Lp, where p
is very large and not explicit. Finally, we mention that [30, 10, 17, 18] are related papers
that deal with estimates on the diffusion matrix and we refer to [16, 2] and references
therein for recent results on homogenization of random operators.

Then, we observe that the power in (1.1) is the best possible, and we note that it can
be obtained under stronger assumptions in [15]. On the other hand, we believe that the
result should hold without the assumption on the finiteness of the second moment of the
conductance, which appears as a technical fact in our proof. The second moment E

[
f2
]

is also best possible. Indeed, a smaller norm would imply some regularization effect that
would in turn imply a spectral gap estimate which is known not to hold. For the same
reason, there must be some dependence, in the right hand side of (1.1), on the size of
the support of f . Finally, we observe that the assumption on the support of µ is also
necessary since it is known, for some specific choice of function f , with conductances
taking small values, that the decay of the heat-kernel coefficients can be very slow, see
[4], which would interfer with the decay in (1.1).

As for the proof, diffusive scaling is usually obtained, including other settings on
graphs such as interacting particle systems (Kawasaki dynamics), using functional in-
equalities of Nash type, see e.g. [22, 5, 26], Harnack [12] or weak PoincarÃl’ inequalities
[7, 27], see also [3, 28]. Induction techniques can also be used [19, 8], or specific aspects
of the model such as attractivness [13]. However, none of these techniques seem, to the
best of our knowledge, to apply to our setting. Here instead, we will mainly follow the
PDEs ideas from [15], but with many simplifications due to our non specific choice of
class of functions.
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As a result we believe that our approach of the decay to equilibrium of the envi-
ronment viewed by the particle improves upon known results into different directions
(class of function, assumption on the conductance, short and elementary proof), but, as
a counterpart, we are not able to extend the result of Gloria, Neukamm and Otto [15] to
unbounded conductances for divergence functions.

The paper is organized as follows. In the next subsection we will give some more
notations. Then, we will give the proof of Theorem 1.1. Such a proof will rely on a series
of lemmas that we will prove later on. Finally, in the last section, using the theory of
completely monotonic functions, we comment on a possible short way of extending the
results of Gloria, Neukamm and Otto [15] to our setting.

1.1 Notations

In this section we give some more notations.
Given an environment ω ∈ Ω, the infinitesimal generator of the process (Xt)t≥0

and its associated semi-group, acting on functions f : Zd × Ω → R are given, for any
x, ω ∈ Zd × Ω by

Lωf (x, ω) =
∑
|z|=1

ωx,x+z (f (x+ z, ω)− f (x, ω)) ,

respectively by

Pωt f (x, ω) = exp (Lωt) f (x, ω) =
∑
y∈Zd

Pωx (Xt = y) f (y, ω) .

In some situations, we may want to work with a given fixed environment. In that
case, and to emphasize this fact, we shall use the letter m instead of ω and call that
given environment the walk scheme. A walk scheme is well-defined when there is a
threshold such that the set of conductances above it does not percolate. This will be
used in particular to evaluate the behaviour of (Xm

t )t>0.

In many places we shall use the following equality P θxω0 (Xt = y) = Pωx (Xt = y + x)

that holds for all x, y ∈ Zd and all ω ∈ Ω.
For simplicity of notation, we set ft (x, ω) := Pωt f (x, ω) = Eωx f (Xt, ω), t ≥ 0, x ∈ Zd,

ω ∈ Ω, where Eωx is the mean associated to Pωx , and in many places we shall omit the
dependence in ω when there is no ambiguity.

Next, we define three different gradients. Denote by e1, . . . , ed the canonical orthonor-
mal basis of Zd (i.e. for all i, ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 at the ith coordinate), set
e−i = −ei, i = 1, . . . , d and e0 := (0, . . . , 0) for the origin. With that notation in hand, we
define the following local gradient of g : Zd → R:

Dig(y) := g (y + ei)− g (y) − d 6 i 6 d, y ∈ Zd.

In particular, if f : Zd × Ω → R, then Dif (y, ω) = f (y + ei, ω) − f (y, ω), ω ∈ Ω, and
DiP

ω
x (Xt = y) stands for the gradient applied to the mapping y 7→ Pωx (Xt = y). Similarly,

∇iPmx (Xt = y) := Pmx+ei (Xt = y)− Pmx (Xt = y) − d 6 i 6 d, x, y ∈ Zd.

Therefore, the infinitesimal generator of a random walk with scheme m can be written
as

Lmf (x, ω) =
∑
−d6i6d

mx,x+eiDif (x, ω) x ∈ Zd, ω ∈ Ω.

Finally, for x ∈ Zd, let a (x) = {ωx,x+ei ; 1 6 i 6 d}, a (x) = {ωe, e ∈ Bd} \ a(x) =

∪y 6=xa (y) and E(x) be the conditional expectation given a (x). Then, for y ∈ Zd, we set

∂xf (y, ω) := f (y, ω)− E(x) [f (y, ω)]
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so that E(x)[(∂xf)2] is nothing else than the variance of f with respect to the conditional
expectation E(x). Two sites x, y are neighbors, a property we denote by x ∼ y, if
{x, y} ∈ Bd. Also, given f : Ω→ R, we say that x is a neighbor of y with respect to f , and
write x ∼

f
y, if a (x− y) ∩ supp (f) 6= ∅ (observe that this is not an equivalence relation).

In particular, observe that, if x is not a neighbor of y with respect to a local translation
invariant function f (i.e. if a (x− y) ∩ supp (f) = ∅) then ∂xf (y, ω) = 0.

2 Variance decay for unbounded conductances: proof of Theorem
1.1

In this section we prove Theorem 1.1. The idea, following [15], is to decompose the

variance E
(
Eωx [f (Xt, ω)]

2
)

, using Efron-Stein’s inequality, into an infinite sum of terms

of the type E
[
(∂yPtf)

2
]
, which, by Duhamel’s formula, are split into two different terms

that need to be analyzed separately (the core of the proof). The point in using Duhamel’s
Formula is to commute the operators Pt and ∂y. The proof ends by applying some sort of
Gronwall Lemma.

Proof. [Proof of Theorem 1.1] Let f : Ω → R be a local translation invariant function
with E[f ] = 0, and assume, by homogeneity and for simplicity, that E[f2] = 1. Following
[15], we apply Efron-Stein’s Inequality and the Duhamel formula (that we recall below,
in Lemma 2.1, for completeness) to bound E

[
f2t
]
:

E
[
f2t
]
6 E

∑
y∈Zd

(∂yPtf)
2

 = E

∑
y∈Zd

(
Pt∂yf +

∫ t

0

Pt−shs (0, y, ω) ds

)2


6 2E

∑
y∈Zd

(Pt∂yf)
2

+ 2E

∑
y∈Zd

(∫ t

0

Pt−shs (0, y, ω) ds

)2
 . (2.1)

where hs (x, y, ω) := E(y) [Lfs (x, ω)] − LE(y) [fs (x, ω)], x, y ∈ Zd, ω ∈ Ω, s ≥ 0. Next we
analyze each term of the right hand side of the latter separately and start with the first
one.

First recall that if a (y − x) ∩ supp (f) = ∅ then ∂yf (x, ω) = 0. Hence

E

∑
y∈Zd

(Pt∂yf)
2

 = E

∑
y

∑
x∈Zd

Pω0 (Xt = x) ∂yf (x, ω)

2


6 #supp(f)
∑
y

∑
x:y∼

f
x

E
[
Pω0 (Xt = x)

2
∂yf (x, ω)

2
]
. (2.2)

By invariance by translation we have

E
[
Pω0 (Xt = x)

2
∂yf (x, ω)

2
]

= E
[
P
θ−xω
0 (Xt = x)

2
∂yf (x, θ−xω)

2
]

= E
[
Pω0 (Xt = −x)

2
∂y−xf (0, ω)

2
]
.
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Therefore, changing variables (set x′ = y − x and y′ = x′ − y), it holds

E

∑
y∈Zd

(Pt∂yf)
2

 6 #supp(f)
∑
y

∑
x:y∼

f
x

E
[
Pω0 (Xt = −x)

2
∂y−xf (0, ω)

2
]

6 #supp(f)
∑
y

∑
x′:x′∼

f
0

E
[
Pω0 (Xt = x′ − y)

2
∂x′f (0, ω)

2
]

6 #supp(f)
∑

x′:x′∼
f
0

∑
y′

E
[
Pω0 (Xt = y′)

2
∂x′f (0, ω)

2
]
.

Finally, using Lemma 2.2 below and the fact that E
[
∂x′f (0, ·)2

]
6 2E

[
f (0, ·)2

]
=

2E
[
f2
]

= 2, we conclude that, for some constant C that depends only on d,

E

∑
y∈Zd

(Pt∂yf)
2

 6 C
#supp (f)

2

(t+ 1)
d/2

(2.3)

Next we focus on the second term in the right hand side of (2.1). Using Lemma 2.3
we have

E

∑
y∈Zd

(∫ t

0

Pt−shs (0, y, ω) ds

)2
 = E

∑
y∈Zd

(∫ t

0

d∑
i=1

DiP
ω
0 (Xt−s = y) gs (y, y, ω, i) ds

)2


so that, by Minkowski’s integral inequality and the invariance by translation, it holds

E

∑
y∈Zd

(∫ t

0

Pt−shs (0, y, ω) ds

)2
 1

2

6
√
d

∫ t

0

(∑
y

∑
i

E
[
(DiP

ω
0 (Xt−s = y))

2
gs (y, y, ω, i)

2
]) 1

2

ds

=
√
d

∫ t

0

(∑
y

∑
i

E
[(
∇iPω0 (Xt−s = y)

)2
gs (0, 0, ω, i)

2
]) 1

2

ds

6
√

2d

∫ t

0

(∑
y

∑
i

E
[(
∇iPω0 (Xt−s = y)

)2
E(0) [ω0,eiDifs (0, ω)]

2
]

+ E
[
ω2
0,ei

(
∇iPω0 (Xt−s = y)

)2
E(0) [Difs (0, ω)]

2
]) 1

2

ds (2.4)

where gs (x, y, ω, i) := E(x) [ωy,y+eiDifs (y, ω)] − ωy,y+eiE(x) [Difs (y, ω)], s ≥ 0, x, y ∈ Zd,
ω ∈ Ω and i = 1, . . . , d. Therefore, using twice that (a+ b)

2 6 2a2 + 2b2, Lemma 2.2 and
Lemma 2.4 guarantee that, for some constant C that depends only on d, it holds

E

∑
y∈Zd

(∫ t

0

Pt−shs (y, 0, ω) ds

)2
 1

2

6 C

∫ t

0

(
(t− s+ 1)

− d2
∑
i

E
[
E(0) [ω0,eiDifs (0, ω)]

2
]

+ (t− s+ 1)
−d/2∑

i

E
[
ω2
0,eiE

(0) [Difs (0, ω)]
2
])1/2

ds

6
√

2C

∫ t

0

(t− s+ 1)
− d4 E

[
ω2
0,e1

]1/2 (−∂sE [|fs (0, ω) |2
])1/2

ds. (2.5)
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Plugging (2.3) and (2.5) into (2.1), we end up with

E
[
f2t
] 1

2 6 C ′#supp (f)E
[
ω2
0,e1

] 1
2

(
(t+ 1)

− d4 +

∫ t

0

(t− s+ 1)
− d4
(
−∂sE

[
f2s
]) 1

2 ds

)
for some constant C ′ that depends only on d. The expected result will finally follow

from Lemma 2.6 with a (t) := E
[
f2t
] 1

2 and α = d
4 . Indeed, a(t) is non-increasing since,

using classical computations for reversible Markov processes, ∂tE
[
f2t
]

= 2E [ftLft] =

−
∑
iE
[
ω0,ei(Dift)

2
]
≤ 0. This ends the proof.

In the proof of Theorem 1.1 we used the following series of lemma. The first two
lemmas are well known results from Probability Theory and Analysis. The others are
technical.

Lemma 2.1. [Efron-Stein’s Inequality and the Duhamel formula] The following holds.

(Efron-Stein’s Inequality) Let n > 1 and f be a function of X1, ..., Xn, n independent
variables, then

Var (f) 6
n∑
i=1

E
[
Var(i) (f)

]
where Var(i) is the conditional variance given {X1, ..., Xn} \ {Xi}.

(Duhamel’s Formula) For all t > 0 and almost all ω ∈ Ω it holds

∂yPtf (x, ω) = Pt∂yf (x, ω) +

∫ t

0

Pt−shs (x, y, ω) ds

where hs (x, y, ω) := E(y) [Lfs (x, ω)]− LE(y) [fs (x, ω)], x, y ∈ Zd, ω ∈ Ω, s ≥ 0.

Proof. Efron-Stein’s Inequality, also called tensorisation of the variance (see e.g. [1,
Proposition 1.4.1]), is a well known result following from Cauchy-Schwarz’ inequality.
See [21] for an extension to general φ-entropy, see also [24].

As for the Duhamel formula, we observe that

∂yPtf (x, ω) = Pt∂yf (x, ω) +

∫ t

0

∂sPt−s∂yPsf (x, ω) ds

which leads to the expected result, since hs (x, y, ω) = (∂yL − L∂y)Psf and ∂tPt = LPt =

PtL.

Lemma 2.2. There exists a constant C (that depends only on d) such that for all well-
defined walk scheme m and for all t > 0 it holds∑

y∈Zd
Pm0 (Xt = y)

2 6 C (t+ 1)
−d/2

.

Proof. The proof of this inequality is a consequence of the reversibility and the fact that
the invariant measure is the uniform measure. Indeed∑

y∈Zd
Pm0 (Xt = y)

2
=
∑
y∈Zd

Pm0 (Xt = y)Pmy (Xt = 0) = Pm0 (X2t = 0)

which gives the desired result combining [9, Theorem 2.1] and [26, Proposition 10.2] in
its first arXiv version.
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Lemma 2.3. Given f : Zd×Ω→ R, define hs (x, y, ω) := E(y) [Lfs (x, ω)]−LE(y) [fs (x, ω)]

and gs (x, y, ω, i) = E(y) [ωx,x+eiDifs (x, ω)] − ωx,x+eiE(y) [Difs (x, ω)], x, y ∈ Zd, ω ∈ Ω,
s ≥ 0 and i = 0, . . . , d. Then, for all s, t > 0 and all x, y it holds

Pths (x, y, ω) = −
d∑
i=1

DiPx (Xt = y) gs (y, y, ω, i) .

Proof. Recall the definition of Di. On the one hand, by definition, we have

E(y) [Lfs (x, ω)] =

d∑
i=1

E(y) [ωx,x+ei (Difs (y, ω))]− E(y) [ωx,x−ei (Difs (x− ei, ω))]

and

LE(y) [fs (x, ω)] =

d∑
i=1

ωx,x+eiE
(y) [(Difs (x, ω))]− ωx,x−eiE(y) [(Difs (x− ei, ω))] .

On the other hand, ωx,x+ei is ā (y)-measurable iff x 6= y and ωx,x−ei is ā (y)-measurable
iff x− ei 6= y. Therefore,

hs (x, y, ω) =


∑d
i=1 gs (y, y, ω, i) if x = y

−gs (y, y, ω, i) if x− ei = y, i = 1, . . . , d

0 otherwise.

It finally follows that

Pths (x, y, ω) =
∑
z∈Zd

Px (Xt = z)hs (z, y, ω)

= Px (Xt = y)hs (y, y, ω)−
d∑
i=1

Px (Xt = y + ei)hs (y + ei, y, ω)

=

d∑
i=1

(Px (Xt = y)− Px (Xt = y + ei)) gs (y, y, ω, i)

which is the desired result.

Lemma 2.4. Let f : Zd × Ω→ R. Then, for all s > 0 it holds

d∑
i=1

E

[(
E(0) [ω0,eiDifs (0, ω)]

)2]
6 −E

[
ω2
0,e1

]
∂sE

[
fs (0, ω)

2
]
,

d∑
i=1

E

[(
ω0,eiE

(0) [Difs (0, ω)]
)2]

6 −E
[
ω2
0,e1

]
∂sE

[
fs (0, ω)

2
]
.

Remark 2.5. The proof actually leads to a better bound in the first inequality above.
Indeed, one can replace the second moment of the conductance by the first moment.
This refinement will anyway not be useful for our purpose.

Proof. [Proof of Lemma 2.4] Using Cauchy-Schwarz’ inequality and the fact that ω0,ei is
a (0)-measurable, we have

E

[(
E(0) [ω0,eiDifs (0, ω)]

)2]
6 E

[
E(0) [ω0,ei ]E

(0)
[
ω0,ei (Difs (0, ω))

2
]]

= E [ω0,ei ]E
[
ω0,ei (Difs (0, ω))

2
]
.
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Using that ∂tE
[
f2t
]

= ∂tE
[
ft(0, ω)2

]
= −

∑d
i=−dE

[
ω0,ei (Difs (0, ω))

2
]

(a classical conse-

quence of the reversibility) and summing over i = 1, . . . , d, we get

d∑
i=1

E

[(
E(0) [ω0,eiDifs (0, ω)]

)2]
6 −E [ω0,e1 ] ∂sE

[
fs (0, ω)

2
]

which leads to the first inequality since ω0,e1 ≥ 1.
For the second inequality by conditioning and Jensen’s inequality, we have

E

[(
ω0,eiE

(0) [Difs (0, ω)]
)2]

= E

[
E(0)

[
ω2
0,ei

] (
E(0) [Difs (0, ω)]

)2]
= E

[
ω2
0,ei

]
E
[
Difs (0, ω)

2
]
.

Now, since ω0,e1 ≥ 1, one has
∑d
i=1E

[
Difs (0, ω)

2
]
≤
∑d
i=1E

[
ω0,e1Difs (0, ω)

2
]

=

−∂sE
[
fs(0, ω)2

]
which leads to the desired result and ends the proof of the lemma.

The last lemma is related to Lemma 15 of [15]. However, due to our specific setting,
considering p = 1/2, its proof is a bit simpler. We give it for completeness.

Lemma 2.6. [[15]] Let α > 1/2 and a : R+ → R+ be a C1 non-increasing function. Let
b(t) =

√
−2a′(t)a(t), t ≥ 0. Assume that

a (t) 6 C

(
(t+ 1)

−α
+

∫ t

0

(t− s+ 1)
−α

b (s) ds

)
∀t ≥ 0

for some constant C. Then there exists a constant Cα that depends only on α such that
a (t) 6 Cα max(C, a(0)) (t+ 1)

−α.

Proof. Throughout the proof we use that u . v if there exists a constant A that depends
only on α such that u ≤ Av. The expected result will follow from the fact that, for some
to > 0 that will be chosen later on, [to,∞) 3 t 7→ Λ (t) := supto≤s6t (s+ 1)

α
a (s) is a

bounded function, bounded by C ′max(C, a(0)) for some C ′ depending only on α. Indeed,
since a is non-increasing a(s) ≤ a(0) for any s ∈ [0, to] which, together with the bound on
Λ would lead to the desired conclusion.

Our starting point is the following inequality obtained using that a is non-increasing.

a (t) 6
2

t

∫ t

t
2

a (u) du 6
2C

t

∫ t

t
2

du

(u+ 1)
α +

2

t

∫ t

t
2

∫ u

0

b(s)dsdu

(u+ 1− s)α
≤ C

( t2 + 1)α

+
2

t

∫ t

t
2

∫ T

0

b(s)dsdu

(u+ 1− s)α
+

2

t

∫ t

t
2

∫ u/2

T

b(s)dsdu

(u+ 1− s)α
+

2

t

∫ t

t
2

∫ u

u/2

b(s)dsdu

(u+ 1− s)α

=
C

( t2 + 1)α
+ I + II + III (2.6)

where T ∈ [1, t/4] is a parameter that will be chosen later on. In order to bound I, II and
III, we will repeatedly use the following bounds, that holds for all T1 < T2 and whose
proof is given below ∫ T2

T1

b (s) ds .

{√
T2 − T1a (T1)

Λ (T2)T
1
2−α
1 if T1 > 0.

(2.7)

To prove the first inequality, we use Cauchy-Schwarz’ inequality. Namely

1

T2 − T1

(∫ T2

T1

b (s) ds

)2

6
∫ T2

T1

b2 (s) ds = −
∫ T2

T1

d

ds
a2 (s) ds 6 a (T1)

2
.
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To prove the second inequality, we repeatedly use the latter. set N = dlog2

(
T2

T1

)
e, then

we have∫ T2

T1

b (s) ds =

N−1∑
n=0

∫ 2n+1T1

2nT1

b (s) ds 6
N−1∑
n=0

√
2nT1a (2nT1) 6

N−1∑
n=0

(2nT1)
1
2−α Λ (2nT1)

6 Λ (T2)T
1
2−α
1

N−1∑
n=0

(
2

1
2−α

)n
. Λ (T2)T

1
2−α
1 .

Now, since T ≤ t/4 and thanks to (2.7), we have

I :=
2

t

∫ t

t
2

∫ T

0

b(s)dsdu

(u+ 1− s)α
6

2

t

∫ t

t
2

∫ T

0

b(s)dsdu

( t4 + 1)α
=

∫ T
0
b(s)ds

( t4 + 1)α
.

√
Ta(0)

(t+ 1)α
.

Again using (2.7) we have

II :=
2

t

∫ t

t
2

∫ u/2

T

b(s)dsdu

(u+ 1− s)α
≤ 2

t

∫ t

t
2

∫ u/2
T

b(s)ds

( t4 + 1)α
du ≤

2
t

∫ t
t
2

Λ(u2 )T
1
2−αdu

( t4 + 1)α
.

Λ(t)T
1
2−α

(t+ 1)α
.

In order to bound the third term, which is more intricate, we first use the Fubini Theorem,
noting that 1t/26u6t1u/26s6u 6 1t/46s6t1s6u6t, and that α > 1/2 to get

III 6
2

t

∫ t

t
4

∫ t

s

(u+ 1− s)−α dub (s) ds =
2

t

∫ t

t
4

∫ t−s

0

(t′ + 1)
−α

dt′b (s) ds

6
2

t

∫ t

0

(t′ + 1)
−α

dt′ ×
∫ t

t
4

b (s) ds . (t+ 1)−
1
2−αΛ (t)

Therefore, plugging the previous bounds on I, II and III into 2.6, it holds

(1 + t)αa(t) ≤ A
√
T max(C, a(0)) +AΛ(t)

(
T

1
2−α +

1√
t

)
for some constant A that depends only on α. Now, since α > 1/2, there exist to ≥ 4 and
T ≥ 1 such that for all t ≥ to, 1/

√
t ≤ 1/(4A) and T

1
2−α ≤ 1/(4A) so that, taking the

supremum and using the monotonicity of Λ, it holds Λ(t) ≤ A
√
T max(C, a(0)) + 1

2Λ(t) for
all t ≥ to which leads to the desired conclusion. The proof of the lemma is complete.

3 Additional remarks

3.1 Completely monotonic functions

In this section, we prove some results on Pmx (Xt = y), for a given walk scheme m,
using the notion of completely monotonic functions. Recall that a function f : (0,∞)→ R

is said to be completely monotonic if it possesses derivatives f (n) of all orders and if
(−1)nf (n)(x) ≥ 0 for all x > 0 and all n = 0, 1, 2, . . . (see e.g. [14, 25]).

Proposition 3.1. Let C,α > 0. Assume that f : (0,∞) → R is a completely monotonic
function satisfying for all t > 0, f(t) 6 C

tα . Then, for all t > 0, it holds −f ′(t) ≤ C′

tα+1 for
some constant C ′ that depends only on C and α.

Remark 3.2. At the price of some technicalities, the above result can be extended to
more general decay (i.e. replacing 1/tα by some general completely monotonic function
g with lim∞ g = 0).

Proof. Without loss of generality assume that f (0) = 1. It is well known (see [14, 29])
that f is the Laplace transform of a positive random variable X, namely that, for all
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t > 0, f (t) = E
[
e−tX

]
where E denotes the mean of the law of X. Using the Markov

Inequality we get for all λ > 0 and all x > 0

P (X 6 x) 6 E
[
e−λX

]
eλx 6 C exp (λx− α log λ) .

Optimizing over the λ > 0 we get (since infλ>0{λx− α log λ} = α− α logα+ α log x (the
minimum being reached at λ = α/x)) P (X 6 x) 6 Ceα

(
x
α

)α
. Therefore, using Fubini’s

theorem, for all t > 0 it holds

−f ′(t) = E
[
Xe−tX

]
= E

[
X

∫ ∞
X

te−txdx

]
=

∫ ∞
0

te−txE [X1X≤x] dx

≤
∫ ∞
0

txe−txP(X ≤ x)dx ≤ Cα
tα

∫ ∞
0

(tx)α+1e−txdx =
CαΓ(α+ 2)

tα+1

which ends the proof.

Corollary 3.3. There exists a constant C such that for all well-defined walk scheme m

and all t > 0 it holds
∑
y∈Zd,|z|=1 (Pm0 (Xt = y)− Pm0 (Xt = y + z))

2 6 C/ (t+ 1)
d
2+1.

Proof. For p ≥ 1, set ‖f‖pp :=
∑
x |f (x) |p and, given an operator P acting on functions,

‖P‖p→q = sup ‖Pf‖q, where the supremum is taken over all f with ‖f‖p = 1.

First, we observe that the quantity is bounded as a consequence of Lemma 2.2. As a
matter of fact, for all y ∈ Zd and t > 0,

∑
x P

m
y (Xt = x)

2
= Pmy (Xt = y) 6 1.

Then, note that t 7→ ‖Pmt f‖22 is a completely monotonic function. It is due to the fact
that Lm is self-adjoint (< f,Lmg >=< Lmf, g >) and defines a negative quadratic form
(< Lmf, f >6 0). Indeed, for any function f , ∂t < Pmt f, P

m
t f >= 2 < LPmt f, Pmt f >6 0,

∂t∂t < Pmt f, P
m
t f >= 4 < LmPmt f,LmPmt f >> 0, and because Lm commutes with Pmt ,

we can conclude repeating these last arguments with the function Lmf . Hence, using
Proposition 3.1, there exists a constant C ′ that depends only on d and C such that for all
f ∈ `1, d

dt‖P
m
t f‖22 6 C ′/t

d
2+1.

On the other hand, by definition of Lm and Pmt , we have

d

dt
‖Pmt f‖22 = −

∑
x,|z|=1

mx,x+z (Pmt f (x+ z)− Pmt f (x))
2 (3.1)

Observe that for f = 1{0} (the function that equals 1 at 0 and 0 elsewhere), we have
f ∈ `1 and Pmt f(x) =

∑
y∈Zd P

m
x (Xt = y)f(y) = Pm0 (Xt = x) which plugged in (3.1) gives

the desired result.

3.2 Gloria, Neukamm and Otto with a fixed walk scheme

Using the monotonic function approach above, we can prove a stronger decay of the
variance of the environment view by the particle, when the function f is the divergence
of an other function, but only when the walk scheme m is fixed. This is a result (much
weaker but) in the spirit of [15].

Proposition 3.4. There exists a constant C > 0 such that for almost all walk scheme m,
all t > 0 and all function f = Dig, where −d 6 i 6 d, g is local, translation-invariant and

E[g2] <∞, it holds E
[
(Pmt f (0, ω))

2
]
6 C#supp(g)2 E[g2]

(t+1)
d
2
+1

.

Proof. Using the Cauchy-Schwarz Inequality and that E [g (x, ω) g (y, ω)] = 0 as soon as
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supp (g(x, ω)) ∩ supp (g(y, ω)) = ∅ we have

E
[
(Pmt f (0, ω))

2
]

= E


∑
x∈Zd

(Pm0 (Xt = x− ei)− Pm0 (Xt = x)) g (x, ω)

2


6 #supp (g)
2
∑
x∈Zd

(Pm0 (Xt = x)− Pm0 (Xt = x+ ei))
2
E
[
g2
]

which, combined with Corollary 3.3 gives the expected result.

3.3 Discussion about the polynomial decay

In the introduction, we told that t−d/2 is the optimal decay for local functions in L2.
Indeed, in [11], they proved that, under the annealed law, the walker Xt converges to a
Brownian motion, suggesting a diffusive behaviour and this rate of decay as optimal. In
[26], it is suggested that, using spectral theory, we can construct a non-local function f
such that E[f2t ] decays as fast or as slow as we want. We note here that one can construct
a local function with a faster decay than t−d/2. Indeed, because E[f2t ] is a completely
monotonic function, it is a consequence of corollary 3.1. For example, consider a function
g ∈ L2 such that f = Lg, then

E[f2t ] = E[(Lgt)2] = ∂t∂tE[g2t ] 6 Cgt
−d/2−2

Iterating the process, considering f = Lng, we have that E[f2t ] 6 Cgt
−d/2−2n. Note that

in this case, f might not be in L2, even if ft would.

Acknowledgments. We thank Cyril Roberto and Julien Bureaux.
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