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Abstract

In recent papers it has been demonstrated that sampling a Gibbs distribution from
an appropriate time-irreversible Langevin process is, from several points of view,
advantageous when compared to sampling from a time-reversible one. Adding an
appropriate irreversible drift to the overdamped Langevin equation results in a larger
large deviations rate function for the empirical measure of the process, a smaller
variance for the long time average of observables of the process, as well as a larger
spectral gap. In this work, we concentrate on irreversible Langevin samplers with a
drift of increasing intensity. The asymptotic variance is monotonically decreasing with
respect to the growth of the drift and we characterize its limiting behavior. For a Gibbs
measure whose potential has one or more critical points, adding a large irreversible
drift results in a decomposition of the process in a slow and fast component with fast
motion along the level sets of the potential and slow motion in the orthogonal direction.
This result helps understanding the variance reduction, which can be explained at
the process level by the induced fast motion of the process along the level sets of the
potential. The limit of the asymptotic variance as the magnitude of the irreversible
perturbation grows is the asymptotic variance associated to the limiting slow motion.
The latter is a diffusion process on a graph.
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1 Introduction

It is often the case that one is given a high dimensional distribution π(dx), which is
known only up to normalizing constants, a state space E and an observable f and the goal
is to compute an integral of the form f̄ =

∫
E
f(x)π(dx). Typically, such integrals cannot

be computed in closed forms, so one has to resort to approximations. What is typically
done is to construct a Markov process Xt, which has π as its invariant distribution. Then
under the assumption of positive recurrence, the ergodic theorem guarantees that for
any f ∈ L1(π),

lim
t→∞

1

t

∫ t

0

f(Xs)ds =

∫
E

f(x)π(dx), a.s.
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Variance reduction for irreversible Langevin samplers

Then, the estimator 1
t

∫ t
0
f(Xs)ds is used to approximate the integral of interest. However,

the degree of accuracy of such an approximation depends on both the choice of the
Markov process Xt and on the criterion used for comparison.

Let us assume that π(dx) is of Gibbs type on the state space E and in particular that

π(dx) = Z−1e−
U(x)
β dx, where Z =

∫
E

e−
U(x)
β dx. (1.1)

A Markov process that has π as its invariant distribution is the time-reversible Langevin
diffusion

dXt = −∇U(Xt)dt+
√

2βdWt . (1.2)

However, as it has been argued in the literature [11, 13], it is advantageous to use
appropriate irreversible diffusions of the form

dXt = [−∇U(Xt) + C(Xt)] dt+
√

2βdWt

and if the vector fields C satisfy div(Ce−U/β) = 0 or equivalently

divC = β−1C∇U ,

then the measure π is still invariant.
The main result of [11] is that under certain conditions the absolute value of the

second largest eigenvalue of the Markov semigroup in L2(π) decreases when C 6= 0,
which naturally implies faster convergence to equilibrium. In [5], the Donsker-Varadhan
large deviations rate function [4] has been proposed as a natural tool to compare the
convergence to equilibrium for ergodic averages and it was used to analyze parallel
tempering type algorithms. In [13], this criterion is used as a guide to design and analyze
non-reversible Markov processes and compare them with reversible ones. It is proven
that the large deviations rate function monotonically increases under the addition of
an irreversible drift. Moreover upon connecting the large deviations rate function with
the asymptotic variance of the estimator, it is proven in [13], that adding a drift C also
decreases the asymptotic variance of the estimator, in the sense that

σ2
f,C = lim

t→∞
tVar

(
1

t

∫ t

0

f(Xs)ds

)
,

is smaller than the asymptotic variance with C = 0, i.e, smaller than σ2
f,0.

The goal of the current work is to study the situation when the additional drift has
the form 1

εC(x) and to consider what happens when ε→ 0. A similar question, but from a
different perspective, has been studied in [3, 6]. There, the authors studied the behavior
of the spectral gap for diffusions on compact manifolds with U = 0 and a one-parameter
families of perturbations 1

εC for some divergence free vector field C. In those papers the
behavior of the spectral gap is related to the ergodic properties of the flow generated by
C (for example if the flow is weak-mixing then the second largest eigenvalue tends to 0

as ε→ 0). In the present paper we want to understand the effect that increasing 1/ε has
on the asymptotic variance and on the paths of Xt.

We find that the asymptotic variance of the estimator is monotonically decreasing
in δ = 1/ε. Using an averaging argument, we characterize the limiting asymptotic
variance as ε ↓ 0. Focusing on the case where the potential U(x) has one or more
critical points, the irreversible perturbations with a small ε induce a fast motion on the
constant potential surface and slow motion in the orthogonal direction. Using the theory
of diffusions on graphs and the related averaging principle as developed in a series of
works [2, 7, 8, 9], we identify the limiting motion of the slow component. The fast motion
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Variance reduction for irreversible Langevin samplers

on constant potential surfaces decreases the variance as the phase space is explored
faster. The limit of the asymptotic variance as ε → 0 is the asymptotic variance of a
one-dimensional estimation problem on a graph, which is where the slow component of
the process lives in the limit as ε ↓ 0.

Upon completion of this work, we became aware of the recent paper [12] where
an alternative expression of the limiting asymptotic variance is provided, see also
Remark 2.4. The methods of [12] are analytical and the characterization of the limiting
variance is expressed as the projection to a kernel of a certain operator. Our approach
provides complementary information and is dynamical since we are using an averaging
principle which allows us to make direct connections with the limiting behavior of the
underlying process itself, relating the limiting variance with an estimation problem on
an one-dimensional graph.

The rest of the paper is organized as follows. In Section 2 we formulate the problem
precisely and present our main results. The averaging problem treating the limit of the
slow component of the process is discussed in Section 3. Due to the special structure of
the model, one can perform explicit computations and thus derive precise results. The
formula for the limit of the asymptotic variance as the perturbation grows is in Section 4.
Numerical simulations illustrating the theoretical findings are in Section 5.

2 Statement of the problem and main results

The papers [3, 6, 11, 13] motivate to look at a one parameter family of irreversible
drifts 1

εC(x). For this purpose, we consider the model

dXε
t =

[
−∇U(Xε

t ) +
1

ε
C(Xε

t )

]
dt+

√
2βdWt , (2.1)

where 1
εC is a one-parameter family of vector fields, ε ∈ R and the vector field C satisfies

div(Ce−U/β) = 0. As mentioned in the introduction, the invariant measure is maintained
if the vector fields C satisfies div(Ce−U/β) = 0, or equivalently

divC = β−1C∇U .

A convenient choice, which we assume henceforth, is to pick C such that

divC = 0 , and C∇U = 0 .

This is not the most general choice for C, but it has the advantage that allows to
choose C independently of β. A standard choice of C(x) is C(x) = S∇U(x), where S
is any antisymmetric matrix. A more elaborate discussion on other possible choices of
C(x) can be found in [13]. The meaning of these conditions is straightforward: the flow
generated by C must preserve Lebesgue measure since it it is divergence-fee but since
U is a constant of the motion, the micro-canonical measure on the surfaces {U = z} are
preserved as well.

We assume here that the diffusion process Xε
t is on a d-dimensional compact smooth

manifold without boundary and that U and C are sufficiently smooth. The ergodicity of
Xε
t implies that the empirical measure

πεt ≡
1

t

∫ t

0

δXεs ds,

converges to π almost surely as t→∞. Under our assumptions we have a large deviation
principle (uniformly in the initial condition) for the family of measures πεt , which we
write, symbolically, as

P {πεt ≈ µ} � exp
(
−tI1/ε(µ)

)
,
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where � denotes logarithmic equivalence. (Since C is fixed we have suppressed the
dependence of I1/ε on C.) The rate function I1/ε(µ) quantifies the exponential rate at
which the (random) measure πεt converges to π as t → ∞. It is proven in [13] (see
Theorem 2.1 below) that the rate function I1/ε(µ) is quadratic in ε.

The information in I1/ε(µ) can be used to study the rate of convergence of observables.
If f ∈ C(E;R) then we have the large deviation principle

P

{
1

t

∫ t

0

f(Xε
s) ds ≈ `

}
� exp

(
−tĨf,1/ε(`)

)
,

where, by the contraction principle, we have

Ĩf,1/ε(`) = inf
µ∈P(E)

{
I1/ε(µ) ;

∫
fdµ = `

}
.

An alternative formula for Ĩf,1/ε(`) is in terms of the Legendre transform of the max-

imal eigenvalue λ(γ) of the Feynmann-Kac semigroup T tγh(x) = Ex

[
eγ

∫ t
0
f(Xεs) dsh(Xε

t )
]

acting on C(E;R). For ` in the range of f we have

Ĩf,1/ε(`) = sup
γ

[γ`− λ(γ)] = γ̂(`)`− λ(γ̂(`)) where λ′(γ̂) = ` . (2.2)

For f ∈ L2(π) with f̄ =
∫
fdπ the asymptotic variance is given by, see e.g. Proposition

I.V.1.3 in [1],

σ2
f,1/ε = lim

t→∞
tVar

(
1

t

∫ t

0

f(Xε
s)ds

)
= 2

∫ ∞
0

Eπ
[
(f(Xε

0)− f̄)(f(Xε
t )− f̄)

]
dt

and, if f ∈ C(E;R), it is related to the rate function Ĩf,1/ε(`) by

Ĩ ′′f,1/ε(f̄) =
1

2σ2
f,1/ε

.

We have the following theorem from [13].

Theorem 2.1 (Theorems 2.3, 2.4, and 2.6 of [13]). Assume that E is a smooth connected
manifold without boundary and assume that for some α > 0 , U ∈ C(2+α)(E) and
C ∈ C(1+α)(E) are such that div(Ce−U/β) = 0. Then π is the invariant measure of the
process Xε

t and the following hold.

i. Let µ(dx) = p(x)dx be a measure with positive density p ∈ C(2+α)(E). Then we have

I1/ε(µ) = I0(µ) +
1

ε2
K(µ) ,

where the functionalK(µ) is positive and strictly positive if and only if div (p(x)C(x)) 6=
0. It takes the explicit form

K(µ) =
1

2

∫
E

|∇ξ(x)|2 dµ(x) ,

where ξ is the unique solution (up to a constant) of the equation div [p (C +∇ξ)] = 0.

ii. We have Ĩf, 1εC(`) ≥ Ĩf,0(`) and generically the inequality is strict: for f ∈ C(α)(E)

we have Ĩf, 1εC(`) = Ĩf,0(`) if and only if there exists G invariant under the vector
field C such that

γ̂(`)f = H(G+ U) ,

where H(G+ U) = e−(G+U)L0e
G+U with L0 = β∆−∇U∇.
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iii. For the asymptotic variance we have

σ2
f,1/ε ≤ σ

2
f,0 ,

with strict inequality if Ĩf, 1εC(`) > Ĩf,0(`) in a neighborhood of f̄ =
∫
E
f(x)π(dx),

but excluding f̄ . More generally the map |ε| 7→ σ2
f, 1ε

is a monotone increasing

function and thus its limit as ε→ 0 exists.

For notational convenience we shall write, from now on,

σ2
f (ε) = σ2

f, 1ε
,

and, without loss of generality, we may and will assume that f̄ = 0. We want to
characterize the behavior of the asymptotic variance as ε ↓ 0, namely to find limε↓0 σ

2
f (ε),

and to connect it with the limiting behavior of the trajectories Xε
t as ε ↓ 0.

Notice that we can write

σ2
f (ε) = 2

∫ ∞
0

Eπ [f(Xε
0)f(Xε

t )] dt = 2

∫
E

Φε(x)f(x)π(dx) ,

where Φε(x) is the unique solution (up to constants) of the Poisson equation

− LεΦε(x) = f(x) , (2.3)

with
∫
E

Φε(x)π(dx) = 0. Here Lε is the infinitesimal generator of the process Xε
t given

by (2.1). Dissipativity of the operator Lε implies that

σ2
f (ε) = 2

∫
E

Φε(x)f(x)π(dx) = 2

∫
E

Φε(x)(−LεΦε(x))π(dx) ≥ 0.

It is easy to see that as ε→ 0, the solution to (2.3) becomes constant on the stream
lines of C(x). In particular, if we multiply (2.3) by ε and then take ε → 0, we formally
obtain that C(x) · ∇Φ(x) = 0. Making this rigorous is the purpose of Sections 3 and 4.
Note that this heuristic argument makes it immediately clear that for f ∈ L2(π)

if [Ker(C · ∇) = {0}] =⇒ [σ2
f (0) = 0].

Hence, we next investigate what happens in the non-trivial case, i.e., when Ker(C ·
∇) 6= {0}. Our goal is to relate the behavior of the variance as ε → 0 with that of the
process Xε

t . It turns out that as ε→ 0, the behavior of the process Xε
t can be decomposed

into fast motion on the constant potential surface and slow motion in the orthogonal
direction. Using averaging principle, see for example [2, 7, 8, 9], we can identify the
limiting behavior of the slow component and then compute σ2

f (0) = limε→0 σ
2
f (ε). To

be more precise, the slow component of the motion can be characterized in the limit
as ε → 0 as an one-dimensional Markov process on a graph and σ2

f (0) turns out to be
associated with the asymptotic variance of an estimation problem on the graph itself.

The precise behavior of the process Xε
t as ε → 0 has been investigated in [7, 9].

We will state the precise assumptions and results in Section 3. However, let us briefly
review the result here. Following [9], we consider a finite graph Γ, which represents the
structure of the level sets of the potential function U on E. To construct the graph we
identify the points that belong to the connected components of each of the level sets
of U . We assume that U has finitely many non-degenerate critical points and that each
connected level set component of U contains at most one critical point. In that way, each
of the domains that is bounded by the separatrices gets mapped into an edge of the
graph. At the same time the separatrices gets mapped to the vertexes of Γ. In particular,
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exterior vertexes correspond to minima of U , whereas interior vertexes correspond to
saddle points of U . Edges of Γ are indexed by I1, · · · , Im. Each point on Γ is indexed by a
pair y = (z, i) where z is the value of U on the level set corresponding to y and i is the
edge number containing y. Clearly the pair y = (z, i) forms a global coordinate on Γ. Let
Q : E 7→ Γ with Q(x) = (U(x), i(x)) be the corresponding projection on the graph.

Consider the process Xε
t on E to be the solution to (3.3). As we describe in Section 3,

the additional noise that appears in (3.3) is added for regularization reasons and the limit
does not depend on it. Moreover, the additional regularizing noise is not needed if C(x)

generates an ergodic dynamical system with a unique invariant measure within each
connected component of the level sets of U . It is proven in Theorem 2.1 of [7] and in
Theorem 2.2 of [9] (if C is an Hamiltonian vector field) that the process Q(Xε

t ) converges
to a certain Markov process on Γ with continuous trajectories, which is exponentially
mixing. The precise result will be stated in Section 3, but roughly speaking it goes as
follows.

Theorem 2.2 ([7, 9]). Let us assume that Conditions 3.1, 3.2 and 3.3 hold. Then, for
any 0 < T <∞, the process Y εt = Q(Xε

t ), where Xε
t satisfies (3.3), converges weakly in

C([0, T ],Γ) to a Markov process, denoted by Yt, on Γ with continuous trajectories, which
is exponentially mixing.

We remark here that the classical Freidlin-Wentzell theory, see [9], assumes that the
diffusion is on Rd with lim|x|→∞ U(x) =∞. But the results apply in the compact case as
well.

Based on Theorem 2.2, we can then establish the limiting behavior of the asymptotic
variance as ε ↓ 0 and then make connections to estimation problems on the graph. In
particular we have the following result which is discussed and proven in Section 4.

Theorem 2.3. Let us assume that Conditions 3.1, 3.2 and 3.3 hold and let Yt be the
continuous Markov process on the graph Γ indicated in Theorem 3.5. Let f ∈ C2+α(E)

such that f̄ = 0. For (z, i) ∈ Γ, define f̂(z, i) to be the average of f on the graph Γ over
the corresponding connected component of the level set U (see equation (3.6) for precise
definition). Then, we have that σ2

f (0) = limε→0 σ
2
f (ε), where

σ2
f (0) = 2

∫ ∞
0

Eµ

[
f̂(Y0)f̂(Yt)

]
dt (2.4)

and µ = π ◦ Γ−1 is the invariant measure of the process Y on Γ.

Theorem 2.3 is proven in Section 4. It is straightforward to see that this is the
asymptotic variance of an ergodic average on the graph. In particular, we have

σ2
f (0) = lim

t→∞
tVar

(
1

t

∫ t

0

f̂(Ys)ds

)
. (2.5)

Remark 2.4. For completeness purposes, we briefly recall here the result of [12] that is
related to the present situation. When the irreversible perturbation is of the form 1

εC with

C chosen such that div(Ce−U/β) = 0, Theorem 4.3 of [12] states that σ2
f (0) = 2PL−1/20 f .

Here L0 is the infinitesimal generator of the process Xt in (1.2) and P is the projection

on Ker
(
iL−1/20 (C · ∇)L−1/20

)
.

The methods of [12] are analytical based on an analysis of the spectrum of the op-
erator and of the related spectral measure. The methods of our paper are dynamic,
formula (2.4) is derived using an averaging principle and it is valid under the constraint
divC = C∇U = 0. Since the methodologies for deriving the two results are very differ-
ent, one naturally obtains different equivalent expressions for the limiting asymptotic
variance. It is of great interest to understand how one can go from one formulation to
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the other, at least in the case divC = C∇U = 0. Doing so, would then also allow one
to connect the projection operators that appear in [12] with objects such as diffusions
processes on graphs.

3 The averaging problem

In this section we discuss the behavior of the process Xε
t as ε ↓ 0. Such problems

have been studied in [2, 8, 7, 9] and we recall here the results which are relevant to us.
It turns out that as ε→ 0, the behavior of the process Xε

t can be decomposed into fast
motion on the constant potential surface and slow motion in the orthogonal direction.

Let us consider the level set

d(z) = {x ∈ E : U(x) = z} (3.1)

and denote by di(z) the connected components of d(z), i.e.,

d(z) =
⋃
i

di(z) . (3.2)

Then, we let Γ be the graph which is homeomorphic to the set of connected compo-
nents di(z) of the level sets d(z). Exterior vertexes correspond to minima of U , whereas
interior vertexes correspond to saddle points of U . The edges of Γ are indexed by
I1, · · · , Im. Each point on Γ is indexed by a pair y = (z, i) where z is the value of U on
the level set corresponding to y and i is the edge number containing y. Clearly the pair
y = (z, i) forms a global coordinate on Γ. Let Q : E 7→ Γ with Q(x) = (U(x), i(x)) be the
corresponding projection on the graph. For an edge Ik and a vertex Oj we write Ik ∼ Oj
if Oj lies at the boundary of the edge Ik. We endow the tree Γ with the natural topology.
It is known that Γ forms a graph with interior vertexes of order two or three, see for
example [9].

Let us next consider Xε
t with an additional artificial noise component in the fast

dynamics, i.e.,

dXε
t =

[
−∇U(Xε

t )dt+
√

2βdWt

]
+

[
1

ε
C̃(Xε

t )dt+

√
κ

ε
σ(Xε

t )dW
o
t

]
, (3.3)

where W and W o are independent standard Wiener processes, and we have defined

C̃(x) = C(x) +
κ

2

d∑
j=1

∂
[
σσT (x)

]
j,i

∂xj
.

If κ = 0 then we get the process Xε
t that we have been considering until now.

We make several technical assumptions on C(x), U(x) and σ(x) in order to guarantee
that the averaging principle applies. We make these assumptions in order to guarantee
that the fast process has a unique invariant measure and will have U as a smooth first
integral. If κ = 0 then the fast motion is the deterministic dynamical system ẋt = C(xt)

and Xε
t is a random perturbation of this dynamical system. For example, if d is even we

can take C to be the Hamiltonian vector field C(x) = ∇̄U(x). If κ > 0 we have random
perturbations of diffusion processes with a conservation law. In order to guarantee the
existence of a unique invariant measure for the fast dynamics we assume:

Condition 3.1. In dimension d = 2, we take κ ≥ 0. In dimension d > 2, we either assume
that the dynamical system ẋt = C(xt) has a unique invariant measure on each connected
component di(z), in which case κ ≥ 0, or otherwise we assume that κ > 0.

As far as the potential function U(x) and the perturbation C(x) are concerned, we
shall assume:
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Condition 3.2. i. There exists a > 0 such that U ∈ C(2+a)(E) and C ∈ C(1+a)(E).

ii. divC(x) = 0 and C(x) · ∇U(x) = 0.

iii. U has a finite number of critical points x1, · · · , xm and at these points the Hessian
matrix is non-degenerate.

iv. There is at most one critical point for each connected level set component of U .

v. If xk is a critical point of U , then there exists dk > 0 such that C(x) ≤ dk|x− xk|.
vi. If d = 2 and κ = 0, then C(x) = 0 implies ∇U(x) = 0 and for any saddle point xk of

U(x), there exists a constant ck > 0 such that |C(x)| ≥ ck|x− xk|.
In regards to the additional artificial perturbation by the noise W o

t , i.e., when κ > 0,
we assume:

Condition 3.3. i. The matrix σ(x)σT (x) is non-negative definite, symmetric with
smooth entries.

ii. σ(x)σT (x)∇U(x) = 0 for all x ∈ E.

iii. For any x ∈ E such that ξ · ∇U(x) = 0 we have that λ1(x)|ξ|2 ≤ ξTσ(x)σT (x)ξ ≤
λ2(x)|ξ|2 where λ1(x) > 0 if ∇U(x) 6= 0 and there exists a constant K such that
λ2(x) < K for all x ∈ E. Moreover if xk is a critical point for U , then there are
positive constants k1, k2 such that for all x in a neighborhood of xk

λ1(x) ≥ k1|x− xk|2, and λ2(x) ≤ k2|x− xk|2.

iv. Let λi,k be the eigenvalues of the Hessian of U(x) at the critical points xk where
k = 1, · · · ,m and i = 1, · · · , d. Then we assume that κ < (K maxi,k λi,k)

−1.

Obviously Condition 3.3 is relevant in the case d > 2 and if C(x) does not generate
an ergodic dynamical system (since otherwise we can just take κ = 0). In the case κ > 0,
the procedure of incorporating an appropriate artificial noise in the system, allows to
single out the correct averaging that should be done in the system. We remark here that
the end result does not depend on the additional regularizing noise, since σ(x) does not
appear in the limiting dynamics.

It is clear that the dynamics can be decomposed in a fast component and a slow
component. The fast motion corresponds to the infinitesimal generator

L̂g(x) = C̃(x)∇g(x) +
κ

2
tr
[
σσT (x)∇2g(x)

]
.

Let us write X̂t for the diffusion process that has infinitesimal generator L̂. Conditions
3.2 and 3.3 guarantee that with probability one, if the initial point of X̂ is in a connected
component di(z), then X̂t ∈ di(z) for all t ≥ 0. Indeed, by Itô formula we have

U(X̂t) = U(X̂0) +

∫ t

0

L̂U(X̂s)ds+

∫ t

0

∇U(X̂s)σ(X̂s)dWs.

Since C(x)∇U(x) = 0 and σ(x)σT (x)∇U(x) = 0 we obtain with probability one∫ t
0
L̂(X̂s)ds = 0. The quadratic variation of the stochastic integral is also zero, due to

σ(x)σT (x)∇U(x) = 0, which implies that with probability one
∫ t
0
∇U(X̂s)σ(X̂s)dWs = 0.

Thus, we indeed get that for all t ≥ 0 X̂t ∈ di(z) given that the initial point belongs to
the particular connected component di(z).

Let us turn now our attention to invariant measures. Let m(x) be a smooth invariant
density with respect to Lebesgue measure for the process X̂t. Then, the proof of Lemma
2.3 of [7] and the fact that t ≥ 0 X̂t ∈ di(z) if X̂0 ∈ di(z) imply that if (z, i) ∈ Γ is not
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a vertex, there exists a unique invariant measure µz,i concentrated on the connected
component di(z) of d(z) which takes the form

µz,i(A) =
1

Ti(z)

∮
A

m(x)

|∇U(x)|
`(dx) , (3.4)

where Ti(z) =
∮
di(z)

m(x)
|∇U(x)|`(dx). Notice that if (z, i) ∈ Γ is not a vertex, then the invariant

density on di(z) is

mz,i(x) =
m(x)

Ti(z) |∇U(x)|
, x ∈ di(z). (3.5)

We remark here that in the case κ > 0, it is relatively easy to see that independently
of the form of the matrix σ(x)σT (x), the fact that div(C) = 0 implies that the Lebesgue
measure is invariant for the diffusion process corresponding to the operator L̂. Hence,
in that case any constant function is an invariant density. Also, in the case d = 2 and
κ = 0, one immediately obtains from Condition 3.2 that m(x) = |∇U(x)|

|C(x)| , see Proposition
2.1 in [7].

Given a sufficiently smooth function f(x), define its average over the related con-
nected component of the level set of U(x) by

f̂(z, i) =

∮
di(z)

f(x)mz,i(x)`(dx) =
1

Ti(z)

∮
di(z)

f(x)

|∇U(x)|
m(x)`(dx) (3.6)

Let us consider the process Q(Xε
t ) = (U(Xε

t ), i(X
ε
t )) and consider its limiting behavior.

We write L0 for the infinitesimal generator of the process Xt given by (1.2). Let us set

L̂0U(z, i) =

∮
di(z)

L0U(x)mz,i(x)`(dx) =
1

Ti(z)

∮
di(z)

L0U(x)

|∇U(x)|
m(x)`(dx),

Â(z, i) =

∮
di(z)

2β|∇U(x)|2Ti(z)mz,i(x)`(dx) =

∮
di(z)

2β∇U(x) · ∇U(x)

|∇U(x)|
m(x)`(dx)

and then consider the one-dimensional process Yt which within the branch Ii is governed
by the infinitesimal generator

LYi g(z) = L̂0U(z, i)g′(z) +
1

2

Â(z, i)

Ti(z)
g′′(z)

Within each edge Ii of Γ, Q(Xε
t ) converges as ε ↓ 0 to a process with infinitesimal

generator LYi . In order to uniquely define the limiting process, we need to specify the
behavior at the vertexes of the tree, which amounts to imposing restrictions on the
domain of definition of the generator, say LY , of the Markov process.

Definition 3.4. We say that g belongs in the domain of definition of LY , denoted by D,
of the diffusion Y·, if

i. The function g(z) is twice continuously differentiable in the interior of an edge Ii.

ii. The function z 7→ LYi g(z) is continuous on Γ.

iii. At each interior vertex Oj with edges Ik that meet at Oj , the following gluing
condition holds ∑

k:Ik∼Oj

±bjkDkg(Oj) = 0

where, if γjk is the separatrices curves that meet at Oj , we have set

bjk =

∮
γjk

2β |∇U(x)|2

|∇U(x)|
m(x)`(dx) = 2β

∮
γjk

|∇U(x)|m(x)`(dx).
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Here one chooses + or − depending on whether the value of U increases or de-
creases respectively along the edge Ik as we approach Oj . Moreover Dk represents
the derivative in the direction of the edge Ik.

Moreover, within each edge Ii the process Yt is a diffusion process with infinitesimal
generator LYi .

Consider now the process Yt that has the aforementioned LY as its infinitesimal
generator with domain of definition D, as defined in Definition 3.4. Such a process is a
continuous strong Markov process, e.g., Chapter 8 of [9].

Then, for any T > 0, Q(Xε
t ) converges weakly in C([0, T ]; Γ) to the process Yt as ε ↓ 0.

In particular, we have the following theorem.

Theorem 3.5 (Theorem 2.1 of [7]). Let Xε
t be the process that satisfies (3.3). Assume

Conditions 3.1, 3.2 and 3.3. Let T > 0 and consider the Markov process {Yt, t ∈ [0, T ]}
as defined in Definition 3.4. We have

Q(Xε
· )→ Y·, weakly in C([0, T ]; Γ), as ε ↓ 0. (3.7)

It is important to note that the limiting process Yt does not depend on σ(x). Next,
we show that in our case of interest and for every i = 1, · · · ,m, the operator LYi which
governs the motion of the limiting process within the Ii branch of the graph takes a more
explicit form. Let us denote Gi(z) = int(di(z)). Notice that by Gauss theorem we have

L̂0U(z, i) =
1

Ti(z)

∮
di(z)

L0U(x)∣∣∇̄U(x)
∣∣m(x)`(dx) =

1

Ti(z)

∮
di(z)

− |∇U(x)|2 + β∆U(x)

|∇U(x)|
m(x)`(dx)

=
1

Ti(z)

[
−
∫
Gi(z)

div (m(x)∇U(x)) dx+ β

∮
di(z)

∆U(x)

|∇U(x)|
m(x)`(dx)

]
,

and similarly

Âi(z) =

∮
di(z)

2β∇U(x) · ∇U(x)∣∣∇̄U(x)
∣∣ m(x)`(dx) = 2β

∫
Gi(z)

div (m(x)∇U(x)) dx .

Next, we notice that

d

dz

∫
Gi(z)

∆U(x)m(x)dx =

∮
di(z)

∆U(x)

|∇U(x)|
m(x)`(dx).

Hence, we can write

L̂0U(z) =
1

Ti(z)

[
−
∫
Gi(z)

L∗0m(x)dx+
1

2
Â′i(z)

]
,

where L∗0 is the formal adjoint operator to L0. Thus, the infinitesimal generator LYi , can
be written equivalently as

LYi g(z) =
1

Ti(z)

[
−
∫
Gi(z)

L∗0m(x)dx

]
g′(z) +

1

2Ti(z)

d

dz

{
Âi(z)g

′(z)
}
.

In particular, if the Lebesgue measure is the invariant measure (e.g., in the case
κ > 0), then m(x) is a constant. By denoting Mi(z) =

∫
Gi(z)

∆U(x)dx > 0, we can then

rewrite LYi in the more explicit form

LYi g(z) = − 1

Ti(z)
Mi(z)g

′(z) +
β

Ti(z)

d

dz
{Mi(z)g

′(z)}

=
−Mi(z) + βM ′i(z)

Ti(z)
g′(z) + β

M(z)

Ti(z)
g′′(z).
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4 Limiting behavior of the asymptotic variance

In this section we identify σ2
f (0) = limε↓0 σ

2
f (ε) using the averaging results of Section

3. In particular, we prove the representation of Theorem 2.3.
Recall that without loss of generality we assume f̄ = 0. Our starting point is the

formula

σ2
f (ε) = 2

∫ ∞
0

Eπ [f(Xε
0)f(Xε

s)] ds,

where the process Xε
t is the unique strong solution of (3.3). Standard PDE arguments,

e.g., Section 3.2 of [7], show that for any point (z, i) ∈ Ii that is not a vertex, the PDE

− L̂u(x) = f(x)− f̂(U(x), i(x)), for x ∈ di(z) (4.1)

has a unique solution (up to constants) C2+α′
solution with α′ ∈ (0, α). We fix the free

constant by setting û(z, i) = 0. Then, the solution u(x) can be written as

u(x) =

∫ ∞
0

Ex

[
f(X̂s)− f̂(U(X̂s), i(X̂s))

]
ds.

Moreover, there exist constants λ = λ(z, i) > 0 such that for x ∈ di(z),

|u(x)| ≤ 2

λ
sup

x∈di(z)

∣∣∣f(x)− f̂(U(x), i(x))
∣∣∣ . (4.2)

Let us consider θ > 0 small and for an edge Ii of the graph set

Iθi = {(z, i) ∈ Ii : dist((z, i), ∂Ii) > θ}

and define
τi = min{t > 0 : Q(Xε

t ) /∈ Iθi )} .

Then, by applying Itô formula to the solution of (4.1) with stochastic process Xε
t one

immediately gets that for any T <∞, for any initial point x that does not belong to any
of the separatrices of U and for every Ii

lim
ε↓0

sup
t∈[0,T ]

Ex

[∫ t∧τi

0

(
f(Xε

s)− f̂(U(Xε
s), i(X

ε
s))
)
ds

]
= 0 , (4.3)

uniformly in x ∈ Di(z) = {x ∈ Rd : Q(x) ⊂ int(Ii)}. Indeed, applying Itô formula to u(x)

with x = Xε
s, we have

u(Xε
t ) = u(x0) +

∫ t

0

[
−∇U(Xε

s)∇u(Xε
s) +

1

ε
L̂u(Xε

s) + β∆u(Xε
s)

]
ds

+

∫ t

0

√
2β∇u(Xε

s)dWs +

√
κ

ε

∫ t

0

∇u(Xε
s)σ(Xε

s)dW
o
s

and recalling that u(x) is solution to (4.1) we get∫ t∧τi

0

(
f(Xε

s)− f̂(U(Xε
s), i(X

ε
s))
)
ds = ε

[
u(x0)− u(Xε

t∧τi)
]

+ ε

∫ t∧τi

0

[−∇U∇u+ β∆u] (Xε
s)ds

+ ε

∫ t∧τi

0

√
2β∇u(Xε

s)dWs +
√
κε

∫ t∧τi

0

∇u(Xε
s)σ(Xε

s)dW
o
s .

Taking expected value, the right hand side of this inequality goes to zero as ε ↓ 0,
by (4.2) and because continuity of the integrands implies that Riemann integrals are
bounded. Hence, the averaging result (4.3) follows immediately.
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At the same time, by the results of [7, 9] the limiting process Yt spends time of
Lebesgue measure zero at the interior and exterior vertexes. For ζ > 0 and for a vertex
of the graph Oj , let us define

Dj(±ζ) =
{
x ∈ Rd : U(Oj)− ζ < U(x) < U(Oj) + ζ

}
.

If Oj is an exterior vertex of Γ, then for every η > 0, there exists ζ > 0 such that for
sufficiently small ε and for all x ∈ Dj(±ζ) we have that (Lemma 3.6 in [7])

Exτ
ε
j (±ζ) < η ,

where τ εj (±ζ) is the first exit time of Xε
t from Dj(±ζ). The behavior for an interior vertex

is similar. Lemma 3.7 of [7] implies that if Oj is an interior vertex, then for every η > 0,
and for all sufficiently small ζ > 0

Exτ
ε
j (±ζ) < ηζ

for sufficiently small ε and for all x ∈ Dj(±ζ). Recall now that Q(x) = (U(x), i(x)). Then,
(4.3) and the fact that the process Yt spends time of Lebesgue measure zero at all
vertexes, imply that for any t <∞

lim
ε↓0

∫ t

0

Eπ [f(Xε
0)f(Xε

s)] ds = lim
ε↓0

∫ t

0

Eπ

[
f(Xε

0)f̂(U(Xε
s), i(X

ε
s)
]
ds

= lim
ε↓0

∫ t

0

Eπ

[
f̂(Q(Xε

0))f̂(Q(Xε
s))
]
ds . (4.4)

Since, the invariant measure of Xε
t is the Gibbs measure π, we have that the invariant

measure of Y εt = Q(Xε
t ) and of Yt on the graph is the projection of the Gibbs measure

π on Γ. Denoting this invariant measure by µ, we have that for any Borel set γ ⊂ Γ,
µ(γ) = π(Γ−1(γ)). Thus, by the weak convergence of Theorem 3.5 we have that for any
t <∞

lim
ε↓0

∫ t

0

Eπ [f(Xε
0)f(Xε

s)] ds =

∫ t

0

Eµ

[
f̂(Y0)f̂(Ys)

]
ds. (4.5)

The strong Markov processes Xε
t and Yt, on E and Γ respectively, are uniform mixing.

This implies that, by selecting t > 0 to be large enough, we can make the integrals∫ ∞
t

Eπ [f(Xε
0)f(Xε

s)] ds and

∫ ∞
t

Eµ

[
f̂(Y0)f̂(Ys)

]
ds

arbitrarily small. Therefore, we indeed obtain that

lim
ε→0

σ2
f (ε) = σ2

f (0) = 2

∫ ∞
0

Eµ

[
f̂(Y0)f̂(Ys)

]
ds,

concluding the proof of Theorem 2.3.

5 Numerical Simulations

In this section, we explore numerically the behavior of the process under growing
perturbations of the drift. In the examples below we fix β = 0.1.

The first example that we study is a simple 2-dimensional example where the potential
U has a single critical point. In particular, we define U(x, y) = 1

2x
2 + 1

2y
2. Let C(x, y) =

S∇U(x, y), where S is the standard 2×2 antisymmetric matrix, i.e., S12 = 1 and S21 = −1.
In Figure 1, we see that the more irreversibility one adds (in the sense of increasing
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the δ = 1/ε parameter in the perturbation δC(x, y)), the faster the process explores the
phase space. Since, it is perhaps convenient to think in terms of 1/ε and not ε, we set
δ = 1/ε.

Furthermore, notice that what the theory predicts is also shown in the numerical
simulations. Namely, we observe fast motion long the level sets of the potential and slow
motion in the orthogonal direction.
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Figure 1: On the left: reversible case, i.e. δ = 0. On the right: irreversible case with
δ = 10. In both cases β = 0.1.

Next, we consider a two-dimensional SDE with two asymptotically stable points. In
particular, we define the potential U(x, y) = 1

4 (x2 − 1)2 + 1
2y

2 and we consider growing
perturbation δC(x, y) with C(x, y) = S∇U(x, y). Here, δ ∈ R and S is the standard 2× 2

antisymmetric matrix.
Notice that the potential function U(x, y) has two local minima in (−1, 0) and (1, 0)

and a local maximum at (0, 0). In Figures 2 and 3, we plot the x−component of the (x, y)

trajectory versus time. We see that the more irreversibility one adds (in the sense of
increasing the δ parameter in the perturbation δC(x, y)), the faster the process moves
along the level sets of the potential. As Figures 2 and 3 show, in the present case, this
means faster switches between the two metastable states.

Lastly, to get a sense of the magnitude of the variance reduction, we take the
observable f(x, y) = x2 + y2 (still U(x, y) = 1

4 (x2 − 1)2 + 1
2y

2) and we use the standard

batch means method, see [1], to estimate the asymptotic variance of t−1
∫ t
0
f(Xs) ds, see

Figure 4.
We present in Table 1, variance estimates for different values of δ = 1/ε and time

horizon t. These numerical values are part of the values that were used to plot Figure
4. It is clear that the variance reduction for this particular example is at the order of
at least 2 magnitudes. Moreover, by Theorem 2.3, it is clear that for small ε > 0, the
variance estimate can be also considered as an approximation to the asymptotic variance
of the corresponding estimation problem on the graph, see (2.5).
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