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Abstract

In this note the almost sure convergence of stationary, ϕ-mixing sequences of random variables
with values in real, separable Banach spaces according to summability methods is linked to
the fulfillment of a certain integrability condition generalizing and extending the results for
i.i.d. sequences. Furthermore we give via Baum-Katz type results an estimate for the rate of
convergence in these laws.

1 Introduction and main result

Let (Ω,A, IP ) be a probability space rich enough so that all random variables used in the
sequel can be defined on this space.
If X0, X1, . . . is a sequence of independent, identically distributed (i.i.d.) real valued random
variables, then the almost sure (a.s.) convergence of such a sequence according to certain
summability methods is equivalent to the fulfillment of certain integrability conditions on X0,
see e.g.[5, 6, 12, 19, 24].
Some of the above results have been extended to sequences of stationary, ϕ-mixing sequences of
real-valued random variables [3, 5, 22, 28] and to i.i.d. Banach space-valued random variables
[4, 9, 14, 15, 18, 25].
The aim of this paper is to prove a general result linking convergence according to summability
methods with integrability conditions for stationary, ϕ-mixing random variables taking values
in a real separable Banach space (IB, ‖.‖) equipped with its Borel σ-algebra.
A result of this type has useful statistical applications, e.g. to the empirical distribution
function, to the likelihood functions, to strong convergence of density estimators and to least
square regression with fixed design [25, 27, 31].
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Before we state our main result we give the minimal amount of necessary definitions. We
start out with the relevant summability methods ( for general information on summability see
[13, 29, 32]).
Let (pn) be a sequence of real numbers such that

(1.1)


p0 > 0, pn ≥ 0, n = 1, 2, . . ., and the power series

p(t) :=
∞∑
n=0

pnt
n has radius of convergence R ∈ (0,∞].

We say that a sequence (sn) is summable to s by the power series method (P ), briefly
sn → s (P ), if 

ps(t) =
∞∑
n=0

snpnt
n converges for |t| < R

and σp(t) =
ps(t)

p(t)
→ s for t→ R− .

Observe that the classical Abel (pn ≡ 1) and Borel methods (pn = 1/n!) are in the class of
power series methods. We assume throughout the following regularity condition

(1.2) pn ∼ exp{−g(n)} (n→∞)

with a real-valued function g(.), which has the following properties, see [8],

(C)


g ∈ C2[t0,∞) with t0 ∈ IN ;
g′′(t) is positive and non-increasing with lim

t→∞
g′′(t) = 0;

G(t) := t2g′′(t) is non-decreasing on [t0,∞).

As the corresponding family of matrix methods we use the generalized Nörlund methods,
see [20] for a general discussion. We say a sequence (sn) is summable to s by the generalized
Nörlund method (N, p∗κ, p), briefly sn → s (N, p∗κ, p), if

σκn :=
1

p
∗(κ+1)
n

n∑
ν=0

p∗κn−νpνsν → s (n→∞),

where we define the convolution of a sequence (pn) by

p∗1n := pn and p∗κn :=
n∑
ν=0

p
∗(κ−1)
n−ν pν , for κ = 2, 3, . . . .

In order to define two more especially in probability theory widely used summability methods,
we need a few function classes.
We call a measurable function f : (0,∞)→ (0,∞)

(i) self-neglecting, if f is continuous, o(t) at ∞, and

f(t + uf(t))/f(t) → 1 (t→∞), ∀u ∈ IR.

We write briefly: f ∈ SN.
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(ii) of bounded increase, if

f(λt)/f(t) ≤ Cλα0 (1 ≤ λ ≤ Λ, t ≥ t0)

with suitable constants Λ > 1, C, t0, α0. We write briefly: f ∈ BI.

(iii) bounded decrease, if

f(λt)/f(t) ≥ Cλβ0 (1 ≤ λ ≤ Λ, t ≥ t0)

with suitable constants Λ > 1, C, t0, β0. We write briefly: f ∈ BD.

(iv) regular varying with index ρ, if

f(λt)/f(t) → λρ (t→∞) ∀λ > 0.

We write briefly: f ∈ Rρ.

For properties and relations of these classes see N.H.Bingham et al. [7], §§1.5, 1.8, 2.1, 2.2,
2.3.
We call a sequence (sn) summable by the moving average (Mφ), briefly sn → s (Mφ), if

1

uφ(t)

∑
t<n≤t+uφ(t)

sn → s (t→∞) ∀u > 0,

with φ ∈ SN . The above convergence is locally uniform in u (N.H.Bingham et al., [7], §2.11).
Finally we call a sequence (sn) summable by the generalized Valiron method (Vφ), briefly
sn → s (Vφ), if

1√
2πφ(t)

∞∑
n=0

sn exp

{
−(t − n)2

2φ(t)2

}
→ s (t→∞),

with φ ∈ SN .
For a general discussion of these methods and a general equivalence Theorem see [20, 30]. As a
measure of dependence we use a strong mixing condition. We write Fmn := σ(Xk : n ≤ k ≤ m)
for the canonical σ-algebra generated by Xn, . . . , Xm and define the ϕ− mixing coefficient by

ϕn := sup
k≥1

sup
A∈Fk

1
,IP (A)6=0

B∈F∞
k+n

|IP (B|A) − IP (B)| .

We say, that a sequence X0, X1, . . . is ϕ-mixing, if ϕn → 0 for n→∞.
We can now state our main result

Theorem. Let {Xn} be a stationary ϕ-mixing sequence of random variables taking values
in the Banach space IB and assume that ϕ1 < 1/4.
Moreover let (pn) be a sequence of real numbers satisfying condition (1.2) and pn/pn+1 is non-
decreasing.
If φ(.) = 1/

√
g′′(.) has an absolutely continuous inverse ψ(.) = φ←(.) with positive derivative

ψ′ ∈ BI ∩BD with β0 > 0, then the following are equivalent

(M) IE(ψ(‖X‖)) <∞, E(X) = µ (in the Bochner sense);
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(A1)
∞∑
n=1

n−1(ψ(n + 1)− ψ(n))IP

(
max

1≤k≤n
‖Sk − kµ‖ > εn

)
<∞ ∀ε > 0;

(A2)
∞∑
n=1

n−1(ψ(n + 1)− ψ(n))IP (‖Sn − nµ‖ > εn) <∞ ∀ε > 0;

(S1) Xn → µ (Mφ) a.s.;

(S2) Xn → µ (Vφ) a.s.;

(S3) Xn → µ (N, p∗κ, p) a.s. ∀κ ∈ IN ;

(S4) Xn → µ (P ) a.s..

Remark 1.

(i) As an example consider the Borel case, i.e. pn = 1/n!. These weights satisfy (1.2) with
function g(t) = t log t− t+ 1

2
log(2π) (use Stirlings formula). We then get φ(t) =

√
t and

ψ(t) = t2. Hence we can use the Theorem with moment condition IE(‖X‖2) < ∞. For
the i.i.d. case we therefore obtain the results proved in [25], Theorem 4. Observe that
the matrix methods in (S3) are the Euler methods.

(ii) Using g(t) = −tα, 0 < α < 1 resp. g(t) = tβ , 1 < β < 2 in (1.2) we find φ(t) = c(α)t1−
α
2

and ψ(t) = c̃(α)t
2

2−α resp. φ(t) = c(β)t1−
β
2 and ψ(t) = c̃(β)t

2
2−β and therefore get via

(M) ⇔ (A1) ⇔ (A2) Theorem 1 in [25] and via (M) ⇔ (S1) ⇔ (S2) Theorem 3.2 in
[14] resp. Theorem 1.2 in [15] in the i.i.d. case.

(iii) For the case of real-valued random variables the Theorem was proved in [22] using
techniques from [3, 5, 28].

(iv) The case of Abel’s method, pn ≡ 1, is not directly included, but it can be viewed
as a limiting case, compare [8]. For the real-valued mixing case the equivalence of
(M) ⇔ (S3) ⇔ (S4) has basically been proved in Theorem 6 in [3] and in the i.i.d.
Banach-valued case in [9]. Observe that the matrix method in (S3) is Cesàro’s method.

(v) Let Y1, Y2, . . . be ϕ-mixing and uniformly distributed on (0, 1) and Fn(t) = n−1
∑n
i=1 1[Yi≤t]

be the empirical distribution function based on Y1, Y2, . . . Yn. As in Lai [25] the above
theorem might be extended to discuss the specific behaviour of Fn(t) − t for t near 0
and 1. Likewise one can use the theorem to discuss certain likelihood functions (see also
[25]).

(vi) The above theorem can also be used to obtain results on strong convergence of kernel
estimators in non-parametric statistics in the spirit of Liebscher [27] (see also [23] for
results of Erdős-Rényi-Shepp type related to kernel estimators).

(vii) Consider the problem of least square regression with fixed design (for a precise formula-
tion of the problem and background see [31], §3.4.3.1). In that context stochastic pro-

cesses of the form {n− 1
2
∑n
i=1 θ(xi)ei : θ ∈ Θ} play a central role (typically xi ∈ IRd,Θ is

a set of functions with θ : IRd → IR and the error terms ei are i.i.d.). Imposing regularity
conditions on Θ the theorem can be used to discuss the speed of convergence of the above
process (even if independence is replaced by the appropriate ϕ-mixing condition).
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2 Auxiliary results

We start with an application of the Feller-Chung lemma for events generalizing a result for
i.i.d. real-valued random variables in [12], Lemma 2.

Lemma 1. Let {Yn} and {Zn} be sequences of IB-valued random variables. Set Kn1 :=
σ(Yi; 1 ≤ i ≤ n) and assume

ϕ := ϕ(Kn1 , σ(Zn)) = sup
n

sup
A∈Kn

1
,IP(A)6=0,

B∈σ(Zn)

|IP (B|A) − IP (B)| < 1.

Then ‖Zn‖
p→ 0 and Yn + Zn

a.s.→ 0 imply Yn
a.s.→ 0.

The proof follows the lines of Lemma 2 in [12] using only standard properties of ϕ-mixing
sequences, e.g. Lemma 1.1.1 in [17].

As a key result we now prove a Lévy-type inequality using techniques from [25], Lemma 1,
[28] Lemma 3.2.

Lemma 2. Let {Xn} be a sequence of IB-valued random variables such that ϕ1 < 1/4. Let
{X′n} be an independent copy of {Xn} and consider the symmetrized sequence {Xs

n}, such that
for every n Xs

n = Xn −X′n. Denote by Ssn =
∑n
k=1X

s
k . Then we have for every ε > 0

IP

(
max

1≤k≤n
‖Ssk‖ > ε

)
≤
(

1

2
− 2ϕ1

)−1

IP (‖Ssn‖ > ε).

Proof:

According to Bradley [10] Theorem 3.2 the ϕ-mixing coefficients for {Xs
n}, which we denote

by {ϕsn}, cannot exceed twice the size of the ϕ-mixing coefficients for {Xn}. So we have
ϕsn ≤ 2ϕn ∀n. Now we can basically follow the proof of Lemma 1 in [25] with the only
modification being that we use the definition of {ϕsn} instead of independence. We outline
the main steps. For notational convenience we assume, that {Xn} itself is the symmetrized
sequence.

First assume that Xk = (X
(1)
k , . . . , X

(d)
k ) is a finite dimensional random vector. Let S

(j)
k :=

X
(j)
1 + . . .+X

(j)
k . Then we claim:

IP

(
max

1≤j≤d
max

1≤k≤n

∣∣∣S(j)
k

∣∣∣ > ε

)
≤
(

1

2
− 2ϕ1

)−1

IP

(
max

1≤j≤d

∣∣∣S(j)
n

∣∣∣ > ε

)
.

Define the stopping times

τj := inf
{

1 ≤ k ≤ n : S
(j)
k > ε

}
and σj := inf

{
1 ≤ k ≤ n : S

(j)
k < −ε

}
,

with inf ∅ = n+ 1. For k = 1, . . . , n consider the following sets

A
(j)
k := {τj = k ≤ min{min{τν , σν} : ν 6= j}, k < σj} ;

B
(j)
k :=

{
σj = k ≤ min{σν : ν 6= j}, k < min

1≤l≤d
τl

}
.
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Observe that for 1 ≤ k ≤ n we have A
(j)
k , B

(j)
k ∈ σ(X1, . . .Xk) ∀j. Now it follows that

IP

(
max

1≤j≤d
max

1≤k≤n

∣∣∣S(j)
k

∣∣∣ > ε

)
≤

n∑
k=1

IP

 d⋃
j=1

A
(j)
k

+
n∑
k=1

IP

 d⋃
j=1

B
(j)
k


≤

n∑
k=1

d∑
j=1

IP
(
C

(j)
k

)
+

n∑
k=1

d∑
j=1

IP
(
D

(j)
k

)
,

where we define

C
(1)
k := A

(1)
k , . . . C

(j)
k := A

(j)
k ∩

(
A

(1)
k ∪ . . . ∪A

(j−1)
k

)c
, 2 ≤ j ≤ d;

D
(1)
k := B

(1)
k , . . . D

(j)
k := B

(j)
k ∩

(
B

(1)
k ∪ . . .∪B

(j−1)
k

)c
, 2 ≤ j ≤ d.

Again C
(j)
k , D

(j)
k ∈ σ(X1, . . .Xk). Using the mixing condition (instead of independence as in

Lai’s Lemma) we get for k < n, 1 ≤ j ≤ d

IP (C
(j)
k ) ≤

(
1

2
− 2ϕ1

)−1

IP
(
C

(j)
k ∩

{
(X

(j)
k+1 + . . .+X(j)

n ) ≥ 0
})

≤
(

1

2
− 2ϕ1

)−1

IP
(
C

(j)
k ∩

{
S(j)
n > ε

})
.

Obviously

IP (C(j)
n ) ≤

(
1

2
− 2ϕ1

)−1

IP
(
C(j)
n ∩

{
S(j)
n > ε

})
.

With the same arguments we get for 1 ≤ j ≤ d, 1 ≤ k ≤ n

IP (D
(j)
k ) ≤

(
1

2
− 2ϕ1

)−1

IP
(
D

(j)
k ∩

{
S(j)
n < −ε

})
.

Hence

IP

(
max

1≤j≤d
max

1≤k≤n

∣∣∣S(j)
k

∣∣∣ > ε

)

≤
(

1

2
− 2ϕ

)−1 n∑
k=1

d∑
j=1

IP

(
C

(j)
k ∩

{
max

1≤ν≤d

∣∣∣S(ν)
n

∣∣∣ > ε

})

+

(
1

2
− 2ϕ

)−1 n∑
k=1

d∑
j=1

IP

(
D

(j)
k ∩

{
max

1≤ν≤d

∣∣∣S(ν)
n

∣∣∣ > ε

})
≤

(
1

2
− 2ϕ

)−1

IP

(
max

1≤j≤d

∣∣∣S(j)
n

∣∣∣ > ε

)
.

Turning to the general case we find, since IB is separable, a countable, dense subset D :=
{f1, f2, . . .} of IB′ with

‖b‖ = sup {|fn(b)| : fn ∈ D}
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for all b ∈ IB, see [16] p.34. Since {Xn} is a symmetrized sequence, so is {f(Xn)} for all
f ∈ IB′ with ϕ-mixing coefficients not exceeding the mixing coefficients of {Xn} (see [10],
p.170). Therefore

IP

(
max

1≤k≤n
‖Sk‖ > ε

)
= IP

(
max

1≤k≤n
sup
d≥1
|fd(Sk)| > ε

)
= lim

N→∞
IP

(
max

1≤k≤n
max

1≤d≤N
|fd(Sk)| > ε

)
≤

(
1

2
− 2ϕ1

)−1

lim
N→∞

IP

(
max

1≤d≤N
|fd(Sn)| > ε

)
=

(
1

2
− 2ϕ1

)−1

IP (‖Sn‖ > ε).

2

3 A reduction principle

We now state and prove a general reduction principle which allows us to deduce results for
IB-valued random variables from the corresponding results for real-valued random variables.
Let (V ) be a summability method with weights cn(λ) ≥ 0, n = 0, 1, . . . ; λ > 0 a discrete or

continuous parameter
∞∑
n=0

cn(λ) = 1 ∀λ. Denote the (V )-transform of a sequence (sn) by

Vs(λ) :=
∞∑
n=0

cn(λ)sn.

We say sn → s (V ), if Vs(λ)→ s (λ→∞).
Assume that if {Xn} is a stationary ϕ-mixing sequence of real-valued random variables with
mixing coefficient ϕ1 < 1/4 and if ψ is a function as in our Theorem, then

IE(ψ(|X|)) <∞, IE(X) = µ ⇒ VX(λ)→ µ a.s..

Under these assumptions we have

Proposition. If {Xn} is a stationary ϕ-mixing sequence of IB-valued random variables
with ϕ1 < 1/4, then

IE(ψ(‖X‖)) <∞, IE(X) = µ ( Bochner ) implies Xn → µ (V ) a.s..

Proof:
Since IB is separable, we can find a dense sequence (bn), n ≥ 1. For each n ≥ 1 define

A1n :=
{
b ∈ IB : ‖b− b1‖ < 1

n

}
;

Ain :=
{
b ∈ IB : ‖b− bi‖ < 1

n

}
∩Ac1n ∩ . . .∩Aci−1,n; i = 2, 3, . . . .

Hence for each n (Ani)
∞
i=1 is a partition of IB.
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Define for m, n ≥ 1 the mappings τn, σ
(1)
mn, σ

(2)
mn by:

τn(b) = bi if b ∈ Ain, i ≥ 1;

σ(1)
mn(b) =

{
bi

0
if

b ∈ Ain, i ≥ m+ 1,

b ∈
m⋃
i=1

Ain;

σ
(2)
mn(b) =

{
bi

0
if

b ∈ Ain, 1 ≤ i ≤m,

b 6∈
m⋃
i=1

Ain.

Hence τn(b) = σ
(1)
mn(b) + σ

(2)
mn(b) for each m, n ≥ 1 and

‖b− τn(b)‖ ≤ 1

n
∀b ∈ IB.

For the real-valued random variable ‖τn(Xk)‖ with fixed k and n we have

IE(ψ(‖τn(Xk)‖)) <∞

and therefore likewise

IE(ψ(‖σ(1)
mn(Xk)‖)) <∞ and IE(ψ(‖σ(2)

mn(Xk)‖)) <∞.

Since ‖σmn(.)‖ : IB → [0,∞) is measurable, it follows by [10], p.170 and [11], Proposition

6.6, p.105, that the sequence
{
‖σ(1)

mn(Xk)‖
}
, k = 0, 1, . . . is stationary and satisfies the same

mixing condition as {Xn}. The assumed strong law for real-valued random variables therefore

implies the almost sure (V )-convergence of
{
‖σ(1)

mn(Xk)‖
}

to

ξ(1)
mn = IE(‖σ(1)

mn(Xk)‖).

Since IE(‖X‖) <∞ we furthermore get

ξ(1)
mn = IE(‖σ(1)

mn(Xk)‖) =
∑

i≥m+1

‖bi‖IP (ω ∈ Ω : X(ω) ∈ Ain)→ 0 (m→∞).

Consider now the sequence
{

1{bi}(σ
(2)
mn(Xk))

}
of 0− 1-valued random variables. Using again

[10], p.170 and [11], Proposition 6.6, p.105, we see that this sequence is also stationary and
satisfies the mixing condition. This sequence converges in the (V )-sense almost sure to

ξmni = IP (ω ∈ Ω, X(ω) ∈ Ain), if i ≤m, or to ξmni = 0 if i ≥ m+ 1.

Since we have

σ(2)
mn(Xk) =

m∑
i=1

bi1{bi}(σ
(2)
mn(Xk))
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it furthermore follows, that σ
(2)
mn(Xk) is almost sure (V ) summable for each pair m, n ≥ 1 to

ξ(2)
mn =

m∑
i=1

biξmni.

Define
Emn :=

{
ω ∈ Ω : ‖σ(1)

mn(Xk(ω))‖, k ≥ 1 is (V)-summable to ξ(1)
mn

}
,

Fmn :=
{
ω ∈ Ω : σ

(2)
mn(Xk(ω)), k ≥ 1 is (V)-summable to ξ

(2)
mn

}
and D :=

⋂
m

⋂
n

⋂
p

⋂
q(Fmn∩Epq). Observe that IP (D) = 1. For ω ∈ D we show that Xk(ω)

is a Cauchy-sequence. For ε > 0 choose N ≥ 1 such that N ≥ 8/ε. Since ξ
(1)
mN converges to 0,

we can find a M ≥ 1 such that ξ
(1)
MN < ε/8. Finally using the (V )-convergence of (‖σ(1)

MN(Xk)‖)
and (σ

(2)
MN(Xk)) we can choose a λ0 > 0, such that∣∣∣∣∣

∞∑
k=0

ck(λ)‖σ(1)
MN(Xk(ω))‖ − ξ(1)

MN

∣∣∣∣∣ < ε

8
if λ ≥ λ0 and∥∥∥∥∥

∞∑
k=0

ck(λ)σ
(2)
MN (Xk(ω)) − ξ(2)

MN

∥∥∥∥∥ < ε

8
if λ ≥ λ0.

Using the triangle inequality we get∥∥∥∥∥
∞∑
k=0

ck(λ)Xk(ω) − ξ(2)
MN

∥∥∥∥∥
≤

∥∥∥∥∥
∞∑
k=0

ck(λ) (Xk(ω) − τN(Xk(ω)))

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
k=0

ck(λ)
(
τN (Xk(ω)) − σ(2)

MN(Xk(ω))
)∥∥∥∥∥− ξ(1)

MN

+ ξ
(1)
MN +

∥∥∥∥∥
∞∑
k=0

ck(λ)
(
σ

(2)
MN(Xk(ω)) − ξ(2)

MN

)∥∥∥∥∥
≤ 1

N
+

{ ∞∑
k=0

ck(λ)
∥∥∥σ(1)

MN(Xk(ω))
∥∥∥ − ξ(1)

MN

}
+
ε

8
+
ε

8
≤ ε

2
.

Hence if λ1, λ2 ≥ λ0 we get∥∥∥∥∥
∞∑
k=0

ck(λ1)Xk(ω)−
∞∑
k=0

ck(λ2)Xk(ω)

∥∥∥∥∥ < ε

and VX(ω)(λ) is a Cauchy-sequence in IB. Since IB is complete (V )-summability of {Xn}
follows.
For simple random variables we immediately see from our proof, that the (V )-limit is the
expected value. Using the approximating property of simple functions, see [16], pp.76-82, the
same is true in the general case i.e. Xn → µ = IE(X) (V ) a.s.. 2

Remark 2. For the special case of Borel summability of i.i.d. random variables the result
has been proved in [9] Theorem 2.3.
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4 Proof of the main results

Proof of (M)⇒ (A1):
W.l.o.g. we can assume that the random variables are centered at expectation. First assume
that IP (X ∈ {b1, b2, . . . bd}) = 1 with d ∈ IN. For i = 1, 2, . . .d consider the real-valued random
variables

Z
(i)
k := 1{Xk=bi} − IP (Xk = bi), S(i)

n :=
n∑
k=1

Z
(i)
k .

By [10], p.170 and [11], Proposition 6.6. p. 105, the sequence {Z(i)
n } is stationary and satisfies

the above mixing condition. Furthermore, since IE(ψ(|Z(i)
k |)) < ∞ and IE(Z

(i)
k ) = 0 we can

use the Baum-Katz-type law (see [22], Theorem) and get:

∞∑
n=1

n−1(ψ(n + 1)− ψ(n))IP

(
max
k≤n
|S(i)
k | > εn

)
<∞ ∀ε > 0.

Now since IE(Xk) = 0 and

Xk =
d∑
i=1

bi1{Xk=bi} =
d∑
i=1

bi1{Xk=bi} −
d∑
i=1

biIP (Xk = bi) =
d∑
i=1

Z
(i)
k bi,

it follows that

‖Sn‖ =

∥∥∥∥∥
n∑
k=1

Xk

∥∥∥∥∥ =

∥∥∥∥∥∥
n∑
j=1

d∑
k=1

Z
(i)
k bi

∥∥∥∥∥∥ =

∥∥∥∥∥
d∑
i=1

S(i)
n bi

∥∥∥∥∥ ≤ d max
1≤i≤d

‖bi‖ |S(i)
n |.

Therefore
‖Sn‖ ≤ Cd max

1≤i≤d
|S(i)
n |.

This implies the following upper bound

IP

(
max
k≤n
‖Sk‖ > εn

)
≤ IP

(
max
k≤n

max
1≤i≤d

|S(i)
k | >

ε

Cd
n

)
≤

d∑
i=1

IP

(
max
k≤n
|S(i)
k | >

ε

Cd
n

)
and the claim is proved using [22] in the finite dimensional case.
Now assume that IP (X ∈ {b1, b2, . . .}) = 1.
Since IE(ψ(‖X‖)) <∞ and hence IE(‖X‖) <∞, we find for ε > 0 a d ∈ IN with

∞∑
ν=d+1

‖bν‖IP (X = bν) < ε.

Consider the set A := {b1, b2, . . .bd} and define random variables

X′k := Xk1A(Xk)− IE(Xk1A(Xk)), X′′k := Xk −X′k
with partial sums S′n and S′′n. Now the X′k assume only finitely many values and the se-
quence {X′n} is stationary and satisfies the mixing condition. Furthermore IE(X′) = 0 and
IE(ψ(‖X′‖)) <∞. Using the first part of the proof it follows that

∞∑
n=1

n−1(ψ(n + 1)− ψ(n))IP

(
max
j≤n
‖S′k‖ > εn

)
<∞ ∀ε > 0.
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Furthermore {‖X′′n‖} is a stationary ϕ-mixing sequence of real-valued random variables with
IE(‖X′′n‖) < ε and IE(ψ(‖X′′n‖)) <∞. Hence

∞∑
n=1

n−1(ψ(n + 1) − ψ(n))IP

(
max
k≤n
‖S′′k‖ > 2εn

)

≤
∞∑
n=1

n−1(ψ(n + 1) − ψ(n))IP

(
n∑
k=1

‖X′′k ‖ > 2εn

)

≤
∞∑
n=1

n−1(ψ(n + 1) − ψ(n))IP

(
n∑
k=1

(‖X′′k ‖ − IE(‖X′′k ‖) > εn

)
<∞,

using again the Baum-Katz-type law in [22] for the partial sums S̃n =
n∑
k=1

(‖X′′k ‖− IE(‖X′′k ‖)).

Since Xk = X′k +X′′k we have Sn = S′n + S′′n and the claim follows.
In the general case there exists a countable, dense subset {b1, b2, . . .} of IB. Given ε > 0 we
define for ν = 1, 2, . . .

Aν := {b ∈ IB : ‖b− bν‖ < ε}

and B1 := A1, Bν := Aν ∩ Ac1 ∩ . . . ∩ Acν−1. Hence IB is the countable union of the disjunct
sets Bν . Let

X′k :=
∞∑
ν=1

bν1Bν (Xk)−
∞∑
ν=1

bνIP (Xk ∈ Bν), X′′k := Xk −X′k.

Now the X′k assume countably many values and IE(X′k) = 0 and IE(ψ(‖X′k‖)) < ∞, using
ψ ∈ BI. Since {X′k} is also stationary and mixing it follows that

∞∑
n=1

n−1(ψ(n + 1)− ψ(n))IP

(
max
k≤n
‖S′k‖ > εn

)
<∞ ∀ε > 0.

Now consider

‖X′′k ‖ = ‖Xk −X′k‖ ≤ ε+

∥∥∥∥∥
∞∑
ν=1

bνIP (Xk ∈ Bν)

∥∥∥∥∥
≤ ε+

∞∑
ν=1

∫
Bν

‖Xk − bν‖dIP < 2ε,

using IE(X) = 0 (B). Hence

max
k≤n
‖S′′k ‖ ≤

n∑
k=1

‖X′′k ‖ ≤ 2nε,

and the claim follows.

The implication (A1)⇒ (A2) is trivial.

Proof of (A2)⇒ (S1):
This follows by repeating line by line the corresponding real-valued case proof in [22], see also
the proof of Theorem 3, p.449 in [6], with the only modification is using ‖.‖ for |.|.



38 Electronic Communications in Probability

The implications (M)⇒ (S2), (M)⇒ (S3), (M)⇒ (S4) follow directly from our Proposition
and the corresponding real-valued result in [22]
To prove the reversed implication (Si) ⇒ (M), i = 1, 2, 3, 4 we use the following

Lemma 3. Assume that (V ) is a summability method with weights which have the following
localization property

(L) sup
λ∈[0,∞)

cn(λ) = cn(λn) ∀n = 0, 1, 2, . . .,

with a non-decreasing sequence λn → ∞ (n → ∞). Let {Xn} be a stationary, ϕ-mixing
IB-valued random variables and ϕ1 < 1/4 and {Xs

n} the symmetrized sequence. Then

Xs
n → 0 (V ) a.s. ⇒

∞∑
n=1

IP (cn(λn)‖Xs
n‖ > ε) <∞ ∀ε > 0.

Proof:
Define

Ym :=
m∑
n=0

cn(λm)Xs
n and Zm :=

∞∑
n=m+1

cn(λm)Xs
n.

We have Ym + Zm → 0 a.s.. Using Lemma 2 we get for ε > 0

IP (‖Zm‖ > ε) ≤ (
1

2
− 2ϕ1)−1IP (‖Ym + Zm‖ > ε)→ 0 (m→∞).

Hence by Lemma 1
Ym → 0 a.s. (m→∞).

We repeat the argument for Ym−1 and cm(λm)Xs
m and get

cm(λm)Xs
m → 0 a.s. (m→∞).

By the Borel-Cantelli Lemma for ϕ-mixing sequences of random variables, see [17], Proposition
1.1.3 we get

∞∑
n=1

IP (cn(λn)‖Xs
n‖ > ε) <∞ ∀ε > 0.

2

Returning to the proof of (Si) ⇒ (M), i = 1, 2, 3, 4 we observe, that for the summability
methods (Mφ), (Vφ), (N, p∗κ, p), (P ) generated by a weight sequence (pn), satisfying (1.2), the

condition (L) holds true with cn(λn) ∼ 1/φ(λn) and φ(t) = 1/
√
g′′(t) [23, 30].

Let {X′n} be an independent copy of {Xn} and {Xs} be the symmetrized sequence with
Xs
n = Xn −X′n, ∀n Then Xs

n → 0 (V ) a.s..
Hence using Lemma 3 and the above asymptotic we get

∞∑
n=1

IP (‖Xs
n‖ > εφ(n)) <∞, ∀ε > 0

and therefore
IE(ψ(‖Xs‖)) <∞.
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We denote by m = med(‖X‖) the median. Using the inequality IP (‖X‖ > t + m) ≤
2IP (‖Xs‖ > t) ∀t > 0 from [26], p.150. and Tonelli’s Theorem we get

IE(ψ(‖X‖)) =

∫ ∞
0

ψ′(t)IP (‖X‖ > t)dt ≤ m+CIE(ψ(‖Xs‖)) <∞,

where also ψ′ ∈ BI is used in the inequality. That IE(X) = 0 (B) follows from the first part
of the Theorem. 2

Remark 3. We outline a direct proof of (A2)⇒ (M), see [21].
Consider again the symmetrized sequence {Xs

n} with Xs
n = Xn − X′n and partial sums

Ssn =
n∑
k=1

Xs
k . Since {‖Ssn‖ > εn} ⊆

{
‖Sn‖ > ε

2n
}
∪
{
‖S′n‖ > ε

2n
}

we get the inequality

IP (‖Ssn‖ > εn) ≤ 2IP
(
‖Sn‖ > ε

2
n
)
. Hence (A2) is also true for the symmetrized sequence.

By Lemma 2 (A1) follows, that is

∞∑
n=1

n−1(ψ(n + 1)− ψ(n))IP

(
max
k≤n
‖Ssk‖ > εn

)
<∞ ∀ε > 0.

From {max1≤k≤n ‖Xs
k‖ > 2εn} ⊆ {max1≤k≤n ‖Ssk‖ > εn} this implies

∞∑
n=1

n−1(ψ(n + 1)− ψ(n))IP

(
max
k≤n
‖Xs

k‖ > εn

)
<∞ ∀ε > 0.

Using the method of associated random variable (see [21] Lemma 3.2.2 or [28], proof of Theorem
1) we can assume, that the Xs

n are mutually independent and

IE(ψ(‖Xs‖)) <∞

follows from [25], Theorem 1. Now (M) follows as in the first proof. 2

Remark 4. For i.i.d. real-valued random variables our Theorem above is complemented by
an Erdős-Rényi-Shepp type law, see [23], which is proved by using a result on large deviations
of the above convergence. In the case of i.i.d. random variables taking values in a Banach
space such a result is only known for the (C1)-method resp. (Mφ)-method with φ(t) = t, see
[1, 2]. Hence in the case of our general summability methods this interesting question remains
subject to further research.
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