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Abstract

In this paper, we consider the circular Cauchy distribution µx on the unit circle S
with index 0 ≤ |x| < 1 and we study the spectral gap and the optimal logarithmic
Sobolev constant for µx, denoted respectively by λ1(µx) and CLS(µx). We prove that

1
1+|x| ≤ λ1(µx) ≤ 1 while CLS(µx) behaves like log(1 + 1

1−|x| ) as |x| → 1.
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0.1 Circular Cauchy distribution

Let S be the unit circle in R2 with the Riemannian structure induced by R2 and
write ∇S for the spherical gradient. For any x ∈ R2 with |x| < 1, we consider the
probability measure µx on S which has density

h(x, y) =
1

2π

1− |x|2

|y − x|2
, y ∈ S

with respect to the arc length µ on the unit circle S. The form of the density h makes µx
known as circular Cauchy distribution or wrapped Cauchy distribution (see [10, 11]).

On the one hand, it enjoys the following property: if f is an integrable function on
S, then f̃(x) =

∫
S
f(y)dµx(y) solves the following Cauchy problem:{

4u = 0, in B(0, 1)

u|S = f,

where B(0, 1) = {y||y| < 1} is the unit ball in R2. For this reason, µx is also called the
harmonic probability associated with x on S. Obviously µ0 = µ.

On the other hand, due to the connection with Brownian motion as first identified
by Kakutani [9], harmonic probabilities play an important role in probability theory.
Indeed, if Px denotes the probability distribution of a standard two-dimensional Brow-
nian motion Bt starting from x, and τ the first time for Bt to hit S, µx is nothing but the
distribution of Bτ under Px (see [7]).
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The circular Cauchy distribution

Furthermore, consider the following Möbius Markov process (see [10]):

Wn =
Wn−1 + β

β̄Wn−1 + 1
εn, n = 1, 2, · · · ,

where β = (x1, x2) ∈ B(0, 1) and β̄ = (x2, x1). Suppose that W0 is a constant or a random
variable which takes values in S and (εn)n≥1 are independent identically distributed
random variables taking values in S with common distribution µx0 for some x0 ∈ B(0, 1)

fixed. Define

x =


|x0| − 1 +

√
(1− |x0|)2 + 4|x0||β|2

2|β|2
β, if 0 < |β| < 1;

0, |β| = 0.

Kato [10] proved that µx is the unique invariant probability of the Möbius Markov
process (Wn)n≥1.

The aim of this paper is to estimate the spectral gap and logarithmic Sobolev con-
stants of µx.

Let λ1(µx) be the spectral gap of the circular Cauchy distribution µx associated with
the Dirichlet form

Eµx(f, f) =

∫
S

|∇Sf |2dµx, ∀ f : S → R smooth function,

which has a classical variational formula

λ1(µx) = inf{Eµx(f, f)

Varµx(f)
: f non constant }, (0.1)

where Varµx(f) =
∫
S
f2dµx − (

∫
S
fdµx)2 is the variance of f with respect to µx. The

constant λ1(µx) is thus the best constant in the following Poincaré inequality

CVarµx(f) ≤ Eµx(f, f).

We say µx satisfies a logarithmic Sobolev inequality if there exists a non-negative
constant C such that for any smooth function f : S → R,

Entµx(f2) ≤ 2C

∫
S

|∇Sf |2dµx,

where
Entµx(f2) := µx(f2 log f2)− µx(f2) log(µx(f2))

is the entropy of f2 under µx.We will denote by CLS(µx) the optimal logarithmic Sobolev
constant of µx.

An effective method to prove Poincaré or logarithmic Sobolev inequalities is the
Bakry-Émery curvature-dimension criterion [1]. It gives, in particular, that λ1(µ) =

CLS(µ) = 1. It is classical for the Poincaré inequality and for logarithmic Sobolev in-
equality as in [8]. Nevertheless, this criterion cannot be applied for all x as the gener-
alized curvature is not bounded from below when x tends to the unit circle. Another
natural approach would be to use the Brownian motion interpretation of µx together
with stochastic calculus, as in [12], for which the stopping time τ was involved. In de-
tail, in [12] with this method, G. Schechtman and M. Schmuckenschläger proved that
harmonic measures µnx on Sn−1 with n ≥ 3 and |x| < 1 had a uniform Gaussian concen-
tration.

In [3], with F. Barthe, we used another method to work on harmonic measures µnx
on the unit spheres Sn−1. Precisely, we took advantage of the fact that the density of
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The circular Cauchy distribution

the harmonic measures only depends on one coordinate, based on which, we proved
respectively that

min{λ1(ν|x|,n), n− 2} ≤ λ1(µnx) ≤ λ1(ν|x|,n) (0.2)

and

CLS(ν|x|,n) ≤ CLS(µnx) ≤ max{CLS(ν|x|,n),
1

n− 2
}. (0.3)

Here ν|x|,n is the image probability of µnx by the map y → d(y, e1) with e1 the first
component of the canonical basis in Rn. From this comparison, we proved that for
harmonic measures µnx on Sn−1 with n ≥ 3, λ1(µnx) satisfied n−2

2 ≤ λ1(µnx) ≤ n − 1 and
the optimal logarithmic Sobolev constant CLS(µnx) satisfied

1

2(n− 1)
log(1 +

2

n(1− |x|)
) ≤ CLS(µnx) ≤ C

n
log(1 +

1

1− |x|
)

with C a positive universal constant.

However when n = 2, for the circular Cauchy distribution µx, n−2 = 0, the inequali-
ties (0.2), (0.3) do not apply. So in this paper, we follow the main idea of [3] while adjust
the estimates.

Our main results are the following:

Theorem 0.1. For any x ∈ R2 with 0 ≤ |x| < 1, the following statements hold:

(a) The spectral gap λ1(µx) satisfies

1

1 + |x|
≤ λ1(µx) ≤ 1 = λ1(µ).

(b) The optimal constant CLS(µx) satisfies

max{1, 1

2
log(1 +

1

1− |x|
)} ≤ CLS(µx) ≤ 8π log(1 +

e2π

2(1− |x|)
) + 2.

Remark 0.2. The estimate for λ1(µx) is sharp since when x = 0, the lower and upper
bounds coincide with λ1(µ) = 1.

Remark 0.3. Since the diameter of the unit circle S is π, the result in [15] ensures that
for any f : S → R with µx(f2) = 1, one has

W 2
d (f2µx, µx) ≤ 4(8 log 2 + π)Entµx(f2),

that is to say µx satisfies the so called L2-transportation inequalities W2H introduced by
Talagrand [13]. Here W 2

d (ν, µ) is the L2-Wasserstein distance between ν and µ, which is
defined as

W 2
d (ν, µ) = inf

π

∫
S2

d2(x, y)dπ(x, y),

with π the coupling of ν and µ. However by Theorem 0.1, when x approaches S, the

optimal logarithmic Sobolev constant explodes with speed log(1 +
1

1− |x|
). That is, the

circular Cauchy distribution µx is a natural counter-example to declare the real gap
between logarithmic Sobolev and W2H inequalities as in [3, 4, 14].
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The circular Cauchy distribution

1 Prelimilaries

Given any x ∈ S, it can be written as x = (cos θ, ω sin θ), where θ ∈ [0, π] is the
geodestic distance d(x, e1) between x and the first component of the canonical basis in
R2, and ω ∈ {−1, 1}. We then consider the path γ0 defined as

γ0(t) = (cos(θ + t), ω sin(θ + t)), t ∈ R,

which is a path on S satisfying γ0(0) = x and |γ′0(0)| = 1, then ∇Sf(x) = (f ◦ γ0)′(0).

For θ ∈ (0, π), define

S(θ) := {x ∈ S; d(x, e1) = θ} = {(cos θ, ω sin θ), ω ∈ {−1, 1}} .

The conditional probability µθ on S(θ) is a Bernoulli distribution with parameter 1/2.

Lemma 1.1. Let M be a probability measure on S with

M(dy) =
1

2π
ϕ(d(y, e1))µ(dy), y ∈ S,

where ϕ is non-negative and measurable. Let ν be the image probability of M by the
map y → d(y, e1), which is a probability on the interval [0, π].

We have respectively

(1). The corresponding spectral gaps satisfy

min{λ1(ν), λDD(ν)} ≤ λ1(M) ≤ λ1(ν).

(2). Similarly, the optimal logarithmic Sobolev constants satisfy

CLS(ν) ≤ CLS(M) ≤ CLS(ν) +
1

λDD(ν)
.

Here λ1(ν) is the spectral gap of ν and λDD(ν) is the first eigenvalue of ν with
Dirichlet boundary conditions at 0 and π, which has a classical variational formula
as

λDD(ν) := inf

{∫ π
0

(f ′)2dν

ν(f2)
: f(0) = f(π) = 0, f non constant

}
.

Proof. Let F be any every smooth function F : [0, π] → R, and apply the Poincaré in-
equality for M to the function f(x) = F (d(x, e1)) = F (arccosx). By definition VarM (f) =

Varν(F ). If x 6= ±e1, f is differentiable M − a.e., moreover,

|∇Sf |2(x) = |(f ◦ γ0)′(0)|2.

Clearly, f(γ0(t)) = f(cos(θ + t), sin(θ + t)ω) = F (θ + t) and (f ◦ γ0)′(0) = F ′(θ). So,

|∇Sf |2(x) = (F ′(θ))2 = (F ′(d(x, e1)))2,

which implies
∫
S
|∇Sf |2dM =

∫ π
0

(F ′)2dν. It holds by the classical variational formula
(0.1) that λ1(M) ≤ λ1(ν) since the family of non constant functions f : S → R is larger
than that of non constant functions F : [0, π]→ R.

Replacing the Variaance by Entropy, we get CLS(ν) ≤ CLS(M).

For the lower bound of λ1(M), we use the notations presented at the beginning of
this section.

For any f measurable on S, we have

F (θ) :=

∫
S(θ)

f(cos θ, ω sin θ)dµθ =
1

2
f(cos θ, sin θ) +

1

2
f(cos θ,− sin θ)
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and

g(θ) :=

∫
S(θ)

f(cos θ, ω sin θ)ωdµθ =
1

2
f(cos θ, sin θ)− 1

2
f(cos θ,− sin θ). (1.1)

It is clear that g satisfies g(0) = g(π) = 0. Observe that

VarM (f) = Varν(F ) +

∫ π

0

Varµθ (f |S(θ))dν(θ) = Varν(F ) + ν(g2).

Therefore

VarM (f) ≤ 1

λ1(ν)

∫ π

0

(F ′)2dν +
1

λDD(ν)

∫ π

0

g′2dν

≤ max

{
1

λ1(ν)
,

1

λDD(ν)
,

}∫ π

0

{(∫
S(θ)

(f ◦ γ0)′(0)dµθ

)2

+

(∫
S(θ)

(f ◦ γ0)′(0)ωdµθ

)2}
dν

=
1

min{λ1(ν), λDD(ν)}

∫ π

0

∫
S(θ)

(f ◦ γ0)′(0))
2
dµθdν(θ)

=
1

min{λ1(ν), λDD(ν)}

∫
S

|∇Sf |2dM,

.

which immediately offers λ1(M) ≥ min{λ1(ν), λDD(ν)}.
Given smooth function f : S → R, define G2(θ) :=

∫
S(θ)

f2(cos θ, ω sin θ)dµ(θ). Notice
then that

EntM (f2) = Entν

(∫
S(θ)

f2dµθ

)
+

∫ π

0

Entµθ (f
2|S(θ))dν(θ)

≤ Entν(G2) +
1

2

∫ π

0

(f(cos θ, sin θ)− f(cos θ,− sin θ))2dν(θ)

≤ 2CLS(ν)

∫ π

0

(G′(θ))2dν(θ) +
2

λDD(ν)

∫ π

0

(g′(θ))2dν(θ),

(1.2)

where g is given in (1.1) and the first inequality is true since the optimal logarithmic
Sobolev constant for the Bernoulli distribution with parameter 1/2 is 1.

By definition,

2G(θ)G′(θ) = 2

∫
S(θ)

f(cos θ, ω sin θ)(f ◦ γ0)′(0)dµθ,

which implies

(G′(θ))2 =

(∫
S(θ)

f(cos θ, ω sin θ)(f ◦ γ0)′(0)dµθ

)2

G2(θ)

≤

∫
S(θ)

f2(cos θ, ω sin θ)dµθ

G2(θ)

∫
S(θ)

(
(f ◦ γ0)′(0)

)2

dµθ

=

∫
S(θ)

(
(f ◦ γ0)′(0)

)2
dµθ.

And similarly we have

g′(θ)2 ≤
∫
S(θ)

(
(f ◦ γ0)′(0)

)2
dµθ.
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Thus from (1.2),

EntM (f2) ≤ 2(CLS(ν) +
1

λDD(ν)
)

∫
S

|∇Sf |2dM, (1.3)

where implies immediately that

CLS(µx) ≤ CLS(ν) +
1

λDD(ν)
.

The proof is complete now.

2 Proof of Theorem 0.1

By rotation invariance of the unit circle, without loss of generality, take x = ae1. Let
νa be the image probability of µx by the map y → d(y, e1). Precisely,

dνa(θ) =
1

π

1− a2

1 + a2 − 2a cos θ
dθ =: ha(θ)dθ, θ ∈ [0, π]. (2.1)

When a = 0, ν0 is the uniform probability on [0, π], whose spectral gap and optimal
logarithmic Sobolev constant are known to be 1.

Consider the associated Dirichlet form of νa

Ea(f, f) =

∫ π

0

(f ′)2dνa =

∫ π

0

f(−Laf)dνa,

where the generator La is given as for any f ∈ C2([0, π]),

Laf(θ) = f ′′(θ)− 2a sin θ

1 + a2 − 2a cos θ
f ′(θ).

Proof of the item (a) of Theorem 0.1. Take f(θ) = cos θ, we have

νa(f) =
1− a2

π

∫ π

0

cos θ

1 + a2 − 2a cos θ
dθ =

1− a2

2aπ

∫ π

0

(−1 +
1 + a2

1 + a2 − 2a cos θ
)dθ

= −1− a2

2a
+

1 + a2

2a
= a,

(2.2)

νa(f2) =
1− a2

π

∫ π

0

cos2 θ

1 + a2 − 2a cos θ
dθ

=
1− a2

π

∫ π/2

0

(
cos2 θ

1 + a2 − 2a cos θ
+

cos2(π − θ)
1 + a2 − 2a cos(π − θ)

)dθ

=
1− a2

π

∫ π/2

0

2(1 + a2) cos2 θ

(1 + a2)2 − 4a2 cos2 θ

=
1− a4

2a2π

∫ π/2

0

(−1 +
(1 + a2)2

(1 + a2)2 − 4a2 cos2 θ
)dθ

= −1− a4

4a2
+

(1 + a2)2

4a2
=

1 + a2

2
,

(2.3)

which implies

Ea(f, f) =

∫ π

0

sin2 θdνa = 1− νa(f2) =
1− a2

2
= νa(f2)− (νa(f))2.
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Thereby by classical variational formula (0.1),

λ1(νa) ≤ Ea(f, f)

Vara(f)
= 1. (2.4)

For the upper bound of 1/λ1(νa), we turn to Chen’s original variational formula of
λ1(ν) (see [5]). Precisely, it is

λ1(νa)−1 = inf
ρ∈F

sup
x∈[0,π]

1 + a2 − 2a cosx

ρ′(x)

∫ π

x

ρ(y)− νa(ρ)

1 + a2 − 2a cos y
dy, (2.5)

where F is the set of strictly increasing functions on [0, π].

Choose then ρ(θ) = − cos θ + a a strictly increasing function on [0, π] with νa(ρ) = 0

by (2.2). By the expression (2.5), we have

1

λ1(νa)
≤ sup
θ∈(0,π)

1 + a2 − 2a cos θ

sin θ

∫ π

θ

(− cos ξ + a)

1 + a2 − 2a cos ξ
dξ

= sup
θ∈(0,π)

1 + a2 − 2a cos θ

2a sin θ

(
π − θ − 2 arctan

(
1− a
1 + a

cot(
θ

2
)

))
= sup
θ∈(0,π)

1 + a2 − 2a cos θ

a sin θ

(
arctan

(
cot(

θ

2
)

)
− arctan

(
1− a
1 + a

cot(
θ

2
)

))

≤ sup
θ∈(0,π)

1 + a2 − 2a cos θ

a sin θ

(1− 1−a
1+a ) cot( θ2 )

1 + ( 1−a
1+a cot( θ2 ))2

= 1 + a,

where the first equality is due to∫ π

θ

1

1 + a2 − 2a cos θ
=

2

1− a2
arctan

(
1− a
1 + a

cot(
θ

2
)

)
(2.6)

and the last but second inequality holds since

arctanx− arctan y ≤ (x− y)(arctan y)′, ∀ 0 ≤ y < x ≤ π/2.

To estimate λDD(νa), we take ρ(θ) = sin θ on [0, π], which satisfies

ρ(0) = ρ(π) = 0, ρ′(θ)|θ∈(0,π/2) > 0 and ρ′(θ)|θ∈(π/2,π) < 0.

Therefore it follows from Theorem 1.1 in [6] that

1

λDD(νa)
≤ sup
x∈(0,π/2)

1

sinx

∫ x

0

(1 + a2 − 2a cos y)dy

∫ π/2

x

sinu

1 + a2 − 2a cosu
du

∨ sup
x∈(π/2,π)

1

sinx

∫ π

x

(1 + a2 − 2a cos y)dy

∫ x

π/2

sinu

1 + a2 − 2a cosu
du

≤ sup
x∈(0,π/2)∪(π/2,π)

1 + a2 − 2a cosx

cosx

∫ π/2

x

sinu

1 + a2 − 2a cosu
du

= sup
x∈(0,π/2)∪(π/2,π)

1 + a2 − 2a cosx

2a cosx
log(

1 + a2

1 + a2 − 2a cosx
)

= sup
|t|<2a/(1+a2)

(1− 1

t
) log(1− t) =

(1 + a)2

2a
log

(1 + a)2

1 + a2
,

(2.7)

where the second inequality follows from the proportional property and the last equality
holds since (1− 1

t ) log(1− t) is decreasing on t ∈ [−1, 1].
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Finally, we have for any x with 0 ≤ |x| = a < 1,

1

1 + a
= min{ 2a

(1 + a)2 log (1+a)2

1+a2

,
1

1 + a
} ≤ λ1(µx) ≤ 1.

The proof of the item (a) of Theorem 0.1 is complete.
Proof of the item (b) of Theorem 0.1. Recall that for the function f := cos, in the

third section, it was proved that νa(f) = a, νa(f2) = (1 + a2)/2 and Ea(f, f) = (1− a2)/2.

Define g = (1− f)/(1− a), then

νa(g) = 1, νa(g2) =
3− a

2(1− a)
, Ea(g, g) =

Ea(f, f)

(1− a)2
=

1 + a

2(1− a)
.

Therefore with the help of an elementary inequality Entνa(g2) ≥ νa(g2) log(νa(g2)) (see
[3]), we have

2CLS(νa) ≥ Enta(g2)

Ea(g, g)
≥ 3− a

1 + a
log(1 +

1 + a

2(1− a)
) ≥ log(1 +

1

1− a
). (2.8)

Next we work on the upper bound. It is clear that θa := 2 arctan 1−a
1+a is the median of

νa since by (2.6),

1− a2

π

∫ π

θa

1

1 + a2 − 2a cos θ
=

2

π
arctan(

1− a
1 + a

cot(
θa
2

)) =
1

2
.

Define

B−(a) := sup
α∈(0,θa)

∫ α

0

dθ

1 + a2 − 2a cos θ
log

(
1 +

e2π

(1− a2)
∫ α
0

1
1+a2−2a cos θdθ

)

·
∫ θa

α

(1 + a2 − 2a cos θ)dθ,

B+(a) := sup
α∈(θa,π)

∫ π

α

dθ

1 + a2 − 2a cos θ
log

(
1 +

e2π

(1− a2)
∫ π
α

1
1+a2−2a cos θdθ

)

·
∫ α

θa

(1 + a2 − 2a cos θ)dθ.

By the equality (2.6) and
x

1 + x2
≤ arctanx ≤ x, we have

sinα

1 + a2 − 2a cosα
≤
∫ π

α

1

1 + a2 − 2a cos θ
dθ ≤ 2

(1 + a)2 sin α
2

(2.9)

and ∫ α

0

1

1 + a2 − 2a cos θ
dθ ≤ π

1− a2
− sinα

1 + a2 − 2a cosα
≤ π

1− a2
. (2.10)

On the one hand, by the monotonicity of x log(1 + b
x ) in x > 0 for any b > 0 and (2.9),

we obtain

B+(a) ≤ sup
α∈(θa,π)

2

(1 + a)2 sin(α2 )
log

(
1 +

e2π(1 + a)

2(1− a)

)(
(1 + a2)α− 2a sinα

)
≤ 4

(1 + a)2
log

(
1 +

e2π(1 + a)

2(1− a)

)
sup

α∈(θa/2,π/2)

(1 + a2)α

sinα

=
2π(1 + a2)

(1 + a)2
log(1 +

e2π(1 + a)

2(1− a)
)

≤2π log(1 +
e2π

2(1− a)
).
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On the other hand, combining the inequality (2.10), the monotonicity of x log(1 + b
x ) for

b > 0 fixed and the fact that

2

π
θa ≤ sin θa =

2 tan(θa/2)

1 + tan2(θa/2)
=

1− a2

1 + a2
,

we have
B−(a) ≤ π

1− a2
log(1 + e2)

(
(1 + a2)θa − a sin θa

)
≤π log(1 + e2)

θa
sin θa

≤ π2

2
log(1 + e2).

By Theorem 3 in [2],

CLS(νa) ≤ 4 max{B+(a), B−(a)} ≤ 8π log(1 +
e2π

2(1− a)
). (2.11)

The proof is complete due to (2.8),(2.11) and the classical result

CLS(µx) ≥ 1

λ1(µx)
≥ 1.
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