Electron. Commun. Probab. **19** (2014), no. 10, 1–9. DOI: 10.1214/ECP.v19-3071 ISSN: 1083-589X

ELECTRONIC COMMUNICATIONS in PROBABILITY

Logarithmic Sobolev and Poincaré inequalities for the circular Cauchy distribution*

Yutao Ma[†] Zhengliang Zhang[‡]

Abstract

In this paper, we consider the circular Cauchy distribution μ_x on the unit circle S with index $0 \leq |x| < 1$ and we study the spectral gap and the optimal logarithmic Sobolev constant for μ_x , denoted respectively by $\lambda_1(\mu_x)$ and $C_{\rm LS}(\mu_x)$. We prove that $\frac{1}{1+|x|} \leq \lambda_1(\mu_x) \leq 1$ while $C_{\rm LS}(\mu_x)$ behaves like $\log(1+\frac{1}{1-|x|})$ as $|x| \to 1$.

Keywords: circular Cauchy distribution; spectral gap; logarithmic Sobolev inequality. **AMS MSC 2010:** 60E15; 39B62; 26Dxx. Submitted to ECR on October 11, 2013, final version accorded on February 8, 2014.

Submitted to ECP on October 11, 2013, final version accepted on February 8, 2014.

0.1 Circular Cauchy distribution

Let S be the unit circle in \mathbb{R}^2 with the Riemannian structure induced by \mathbb{R}^2 and write ∇_S for the spherical gradient. For any $x \in \mathbb{R}^2$ with |x| < 1, we consider the probability measure μ_x on S which has density

$$h(x,y) = \frac{1}{2\pi} \frac{1 - |x|^2}{|y - x|^2}, \quad y \in S$$

with respect to the arc length μ on the unit circle *S*. The form of the density *h* makes μ_x known as circular Cauchy distribution or wrapped Cauchy distribution (see [10, 11]).

On the one hand, it enjoys the following property: if f is an integrable function on S, then $\tilde{f}(x) = \int_{S} f(y) d\mu_x(y)$ solves the following Cauchy problem:

$$\begin{cases} \triangle u = 0, & \text{in } B(0,1) \\ u|_S = f, \end{cases}$$

where $B(0,1) = \{y | |y| < 1\}$ is the unit ball in \mathbb{R}^2 . For this reason, μ_x is also called the harmonic probability associated with x on S. Obviously $\mu_0 = \mu$.

On the other hand, due to the connection with Brownian motion as first identified by Kakutani [9], harmonic probabilities play an important role in probability theory. Indeed, if \mathbb{P}^x denotes the probability distribution of a standard two-dimensional Brownian motion B_t starting from x, and τ the first time for B_t to hit S, μ_x is nothing but the distribution of B_{τ} under \mathbb{P}^x (see [7]).

^{*}Support: NSFC 11371283, 11201040, 11101313, 11101040, YETP0264, 985 Projects and the Fundamental Research Funds for the Central Universities.

[†]School of Math. Sci. & Lab. Math. Com. Sys., Beijing Normal University, China. E-mail: mayt@bnu.edu.cn

[‡]Department of Mathematics and Statistics, Wuhan University, China. E-mail: zhlzhang.math@whu.edu.cn

The circular Cauchy distribution

Furthermore, consider the following Möbius Markov process (see [10]):

$$W_n = \frac{W_{n-1} + \beta}{\bar{\beta}W_{n-1} + 1} \varepsilon_n, \quad n = 1, 2, \cdots,$$

where $\beta = (x_1, x_2) \in B(0, 1)$ and $\overline{\beta} = (x_2, x_1)$. Suppose that W_0 is a constant or a random variable which takes values in S and $(\varepsilon_n)_{n\geq 1}$ are independent identically distributed random variables taking values in S with common distribution μ_{x_0} for some $x_0 \in B(0, 1)$ fixed. Define

$$x = \begin{cases} \frac{|x_0| - 1 + \sqrt{(1 - |x_0|)^2 + 4|x_0||\beta|^2}}{2|\beta|^2}\beta, & \text{if } 0 < |\beta| < 1; \\ 0, & |\beta| = 0. \end{cases}$$

Kato [10] proved that μ_x is the unique invariant probability of the Möbius Markov process $(W_n)_{n>1}$.

The aim of this paper is to estimate the spectral gap and logarithmic Sobolev constants of μ_x .

Let $\lambda_1(\mu_x)$ be the spectral gap of the circular Cauchy distribution μ_x associated with the Dirichlet form

$$\mathcal{E}_{\mu_x}(f,f) = \int_S |\nabla_S f|^2 d\mu_x, \quad \forall \ f:S \to \mathbb{R} \quad \text{smooth function},$$

which has a classical variational formula

$$\lambda_1(\mu_x) = \inf\{\frac{\mathcal{E}_{\mu_x}(f,f)}{\operatorname{Var}_{\mu_x}(f)} : f \text{ non constant }\},\tag{0.1}$$

where $\operatorname{Var}_{\mu_x}(f) = \int_S f^2 d\mu_x - (\int_S f d\mu_x)^2$ is the variance of f with respect to μ_x . The constant $\lambda_1(\mu_x)$ is thus the best constant in the following Poincaré inequality

$$C \operatorname{Var}_{\mu_x}(f) \leq \mathcal{E}_{\mu_x}(f, f).$$

We say μ_x satisfies a logarithmic Sobolev inequality if there exists a non-negative constant C such that for any smooth function $f: S \to \mathbb{R}$,

$$\operatorname{Ent}_{\mu_x}(f^2) \le 2C \int_S |\nabla_S f|^2 d\mu_x$$

where

$$\operatorname{Ent}_{\mu_x}(f^2) := \mu_x(f^2 \log f^2) - \mu_x(f^2) \log(\mu_x(f^2))$$

is the entropy of f^2 under μ_x . We will denote by $C_{\text{LS}}(\mu_x)$ the optimal logarithmic Sobolev constant of μ_x .

An effective method to prove Poincaré or logarithmic Sobolev inequalities is the Bakry-Émery curvature-dimension criterion [1]. It gives, in particular, that $\lambda_1(\mu) = C_{\rm LS}(\mu) = 1$. It is classical for the Poincaré inequality and for logarithmic Sobolev inequality as in [8]. Nevertheless, this criterion cannot be applied for all x as the generalized curvature is not bounded from below when x tends to the unit circle. Another natural approach would be to use the Brownian motion interpretation of μ_x together with stochastic calculus, as in [12], for which the stopping time τ was involved. In detail, in [12] with this method, G. Schechtman and M. Schmuckenschläger proved that harmonic measures μ_x^n on S^{n-1} with $n \geq 3$ and |x| < 1 had a uniform Gaussian concentration.

In [3], with F. Barthe, we used another method to work on harmonic measures μ_x^n on the unit spheres S^{n-1} . Precisely, we took advantage of the fact that the density of

the harmonic measures only depends on one coordinate, based on which, we proved respectively that

$$\min\{\lambda_1(\nu_{|x|,n}), n-2\} \le \lambda_1(\mu_x^n) \le \lambda_1(\nu_{|x|,n})$$
(0.2)

and

$$C_{\rm LS}(\nu_{|x|,n}) \le C_{\rm LS}(\mu_x^n) \le \max\{C_{\rm LS}(\nu_{|x|,n}), \frac{1}{n-2}\}.$$
 (0.3)

Here $\nu_{|x|,n}$ is the image probability of μ_x^n by the map $y \to d(y,e_1)$ with e_1 the first component of the canonical basis in \mathbb{R}^n . From this comparison, we proved that for harmonic measures μ_x^n on S^{n-1} with $n \ge 3$, $\lambda_1(\mu_x^n)$ satisfied $\frac{n-2}{2} \le \lambda_1(\mu_x^n) \le n-1$ and the optimal logarithmic Sobolev constant $C_{\mathrm{LS}}(\mu_x^n)$ satisfied

$$\frac{1}{2(n-1)}\log(1+\frac{2}{n(1-|x|)}) \le C_{\rm LS}(\mu_x^n) \le \frac{C}{n}\log(1+\frac{1}{1-|x|})$$

with C a positive universal constant.

However when n = 2, for the circular Cauchy distribution μ_x , n - 2 = 0, the inequalities (0.2), (0.3) do not apply. So in this paper, we follow the main idea of [3] while adjust the estimates.

Our main results are the following:

Theorem 0.1. For any $x \in \mathbb{R}^2$ with $0 \le |x| < 1$, the following statements hold:

(a) The spectral gap $\lambda_1(\mu_x)$ satisfies

$$\frac{1}{1+|x|} \le \lambda_1(\mu_x) \le 1 = \lambda_1(\mu).$$

(b) The optimal constant $C_{\rm LS}(\mu_x)$ satisfies

$$\max\{1, \frac{1}{2}\log(1 + \frac{1}{1 - |x|})\} \le C_{\text{LS}}(\mu_x) \le 8\pi \log(1 + \frac{e^2\pi}{2(1 - |x|)}) + 2.$$

Remark 0.2. The estimate for $\lambda_1(\mu_x)$ is sharp since when x = 0, the lower and upper bounds coincide with $\lambda_1(\mu) = 1$.

Remark 0.3. Since the diameter of the unit circle S is π , the result in [15] ensures that for any $f: S \to \mathbb{R}$ with $\mu_x(f^2) = 1$, one has

$$W_d^2(f^2\mu_x, \mu_x) \le 4(8\log 2 + \pi) \operatorname{Ent}_{\mu_x}(f^2),$$

that is to say μ_x satisfies the so called L^2 -transportation inequalities W_2H introduced by Talagrand [13]. Here $W_d^2(\nu, \mu)$ is the L^2 -Wasserstein distance between ν and μ , which is defined as

$$W_d^2(\nu,\mu) = \inf_{\pi} \int_{S^2} d^2(x,y) d\pi(x,y),$$

with π the coupling of ν and μ . However by Theorem 0.1, when x approaches S, the optimal logarithmic Sobolev constant explodes with speed $\log(1 + \frac{1}{1 - |x|})$. That is, the circular Cauchy distribution μ_x is a natural counter-example to declare the real gap between logarithmic Sobolev and W_2H inequalities as in [3, 4, 14].

1 Prelimilaries

Given any $x \in S$, it can be written as $x = (\cos \theta, \omega \sin \theta)$, where $\theta \in [0, \pi]$ is the geodestic distance $d(x, e_1)$ between x and the first component of the canonical basis in \mathbb{R}^2 , and $\omega \in \{-1, 1\}$. We then consider the path γ_0 defined as

$$\gamma_0(t) = (\cos(\theta + t), \omega \sin(\theta + t)), \ t \in \mathbb{R},$$

which is a path on S satisfying $\gamma_0(0) = x$ and $|\gamma'_0(0)| = 1$, then $\nabla_S f(x) = (f \circ \gamma_0)'(0)$. For $\theta \in (0, \pi)$, define

$$S(\theta) := \left\{ x \in S; d(x, e_1) = \theta \right\} = \left\{ (\cos \theta, \omega \sin \theta), \ \omega \in \{-1, 1\} \right\}.$$

The conditional probability μ_{θ} on $S(\theta)$ is a Bernoulli distribution with parameter 1/2.

Lemma 1.1. Let M be a probability measure on S with

$$M(dy) = \frac{1}{2\pi}\varphi(d(y, e_1))\mu(dy), \ y \in S,$$

where φ is non-negative and measurable. Let ν be the image probability of M by the map $y \to d(y, e_1)$, which is a probability on the interval $[0, \pi]$.

We have respectively

(1). The corresponding spectral gaps satisfy

$$\min\{\lambda_1(\nu), \lambda^{DD}(\nu)\} \le \lambda_1(M) \le \lambda_1(\nu)$$

(2). Similarly, the optimal logarithmic Sobolev constants satisfy

$$C_{\rm LS}(\nu) \le C_{\rm LS}(M) \le C_{\rm LS}(\nu) + \frac{1}{\lambda^{DD}(\nu)}.$$

Here $\lambda_1(\nu)$ is the spectral gap of ν and $\lambda^{DD}(\nu)$ is the first eigenvalue of ν with Dirichlet boundary conditions at 0 and π , which has a classical variational formula as

$$\lambda^{DD}(\nu) := \inf \left\{ \frac{\int_0^{\pi} (f')^2 d\nu}{\nu(f^2)} : \ f(0) = f(\pi) = 0, \ f \text{ non constant} \right\}.$$

Proof. Let F be any every smooth function $F : [0, \pi] \to \mathbb{R}$, and apply the Poincaré inequality for M to the function $f(x) = F(d(x, e_1)) = F(\arccos x)$. By definition $\operatorname{Var}_M(f) = \operatorname{Var}_{\nu}(F)$. If $x \neq \pm e_1$, f is differentiable M - a.e., moreover,

$$|\nabla_S f|^2(x) = |(f \circ \gamma_0)'(0)|^2.$$

Clearly, $f(\gamma_0(t)) = f(\cos(\theta + t), \sin(\theta + t)\omega) = F(\theta + t)$ and $(f \circ \gamma_0)'(0) = F'(\theta)$. So,

$$|\nabla_S f|^2(x) = (F'(\theta))^2 = (F'(d(x, e_1)))^2,$$

which implies $\int_{S} |\nabla_{S} f|^{2} dM = \int_{0}^{\pi} (F')^{2} d\nu$. It holds by the classical variational formula (0.1) that $\lambda_{1}(M) \leq \lambda_{1}(\nu)$ since the family of non constant functions $f: S \to \mathbb{R}$ is larger than that of non constant functions $F: [0, \pi] \to \mathbb{R}$.

Replacing the **Variaance** by **Entropy**, we get $C_{\rm LS}(\nu) \leq C_{\rm LS}(M)$.

For the lower bound of $\lambda_1(M)$, we use the notations presented at the beginning of this section.

For any f measurable on S, we have

$$F(\theta) := \int_{S(\theta)} f(\cos\theta, \omega\sin\theta) d\mu_{\theta} = \frac{1}{2} f(\cos\theta, \sin\theta) + \frac{1}{2} f(\cos\theta, -\sin\theta)$$

ECP 19 (2014), paper 10.

The circular Cauchy distribution

and

$$g(\theta) := \int_{S(\theta)} f(\cos\theta, \omega\sin\theta) \omega d\mu_{\theta} = \frac{1}{2} f(\cos\theta, \sin\theta) - \frac{1}{2} f(\cos\theta, -\sin\theta).$$
(1.1)

It is clear that g satisfies $g(0) = g(\pi) = 0$. Observe that

$$\operatorname{Var}_{M}(f) = \operatorname{Var}_{\nu}(F) + \int_{0}^{\pi} \operatorname{Var}_{\mu_{\theta}}(f|_{S(\theta)}) d\nu(\theta) = \operatorname{Var}_{\nu}(F) + \nu(g^{2}).$$

Therefore

$$\begin{aligned} \operatorname{Var}_{M}(f) &\leq \frac{1}{\lambda_{1}(\nu)} \int_{0}^{\pi} (F')^{2} d\nu + \frac{1}{\lambda^{DD}(\nu)} \int_{0}^{\pi} g'^{2} d\nu \\ &\leq \max\left\{\frac{1}{\lambda_{1}(\nu)}, \frac{1}{\lambda^{DD}(\nu)}, \right\} \int_{0}^{\pi} \left\{ \left(\int_{S(\theta)} (f \circ \gamma_{0})'(0) d\mu_{\theta}\right)^{2} + \left(\int_{S(\theta)} (f \circ \gamma_{0})'(0) \omega d\mu_{\theta}\right)^{2} \right\} d\nu \\ &= \frac{1}{\min\{\lambda_{1}(\nu), \lambda^{DD}(\nu)\}} \int_{0}^{\pi} \int_{S(\theta)} (f \circ \gamma_{0})'(0))^{2} d\mu_{\theta} d\nu(\theta) \\ &= \frac{1}{\min\{\lambda_{1}(\nu), \lambda^{DD}(\nu)\}} \int_{S} |\nabla_{S} f|^{2} dM, \end{aligned}$$

which immediately offers $\lambda_1(M) \ge \min\{\lambda_1(\nu), \lambda^{DD}(\nu)\}.$ Given smooth function $f: S \to \mathbb{R}$, define $G^2(\theta) := \int_{S(\theta)} f^2(\cos \theta, \omega \sin \theta) d\mu(\theta)$. Notice then that

$$\operatorname{Ent}_{M}(f^{2}) = \operatorname{Ent}_{\nu}\left(\int_{S(\theta)} f^{2} d\mu_{\theta}\right) + \int_{0}^{\pi} \operatorname{Ent}_{\mu_{\theta}}(f^{2}|_{S(\theta)}) d\nu(\theta)$$

$$\leq \operatorname{Ent}_{\nu}(G^{2}) + \frac{1}{2} \int_{0}^{\pi} (f(\cos\theta, \sin\theta) - f(\cos\theta, -\sin\theta))^{2} d\nu(\theta) \qquad (1.2)$$

$$\leq 2C_{\mathrm{LS}}(\nu) \int_{0}^{\pi} (G'(\theta))^{2} d\nu(\theta) + \frac{2}{\lambda^{DD}(\nu)} \int_{0}^{\pi} (g'(\theta))^{2} d\nu(\theta),$$

where g is given in (1.1) and the first inequality is true since the optimal logarithmic Sobolev constant for the Bernoulli distribution with parameter 1/2 is 1.

By definition,

$$2G(\theta)G'(\theta) = 2\int_{S(\theta)} f(\cos\theta, \omega\sin\theta)(f\circ\gamma_0)'(0)d\mu_{\theta},$$

which implies

$$(G'(\theta))^{2} = \frac{\left(\int_{S(\theta)} f(\cos\theta, \omega\sin\theta)(f \circ \gamma_{0})'(0)d\mu_{\theta}\right)^{2}}{G^{2}(\theta)}$$
$$\leq \frac{\int_{S(\theta)} f^{2}(\cos\theta, \omega\sin\theta)d\mu_{\theta}}{G^{2}(\theta)} \int_{S(\theta)} \left((f \circ \gamma_{0})'(0)\right)^{2}d\mu_{\theta}$$
$$= \int_{S(\theta)} \left((f \circ \gamma_{0})'(0)\right)^{2}d\mu_{\theta}.$$

And similarly we have

$$g'(\theta)^2 \leq \int_{S(\theta)} \left((f \circ \gamma_0)'(0) \right)^2 d\mu_{\theta}.$$

ECP 19 (2014), paper 10.

Page 5/9

Thus from (1.2),

$$\operatorname{Ent}_{M}(f^{2}) \leq 2(C_{\mathrm{LS}}(\nu) + \frac{1}{\lambda^{DD}(\nu)}) \int_{S} |\nabla_{S}f|^{2} dM,$$
(1.3)

where implies immediately that

$$C_{\rm LS}(\mu_x) \le C_{\rm LS}(\nu) + \frac{1}{\lambda^{DD}(\nu)}$$

The proof is complete now.

2 Proof of Theorem 0.1

By rotation invariance of the unit circle, without loss of generality, take $x = ae_1$. Let ν_a be the image probability of μ_x by the map $y \to d(y, e_1)$. Precisely,

$$d\nu_a(\theta) = \frac{1}{\pi} \frac{1-a^2}{1+a^2-2a\cos\theta} d\theta =: h_a(\theta)d\theta, \ \theta \in [0,\pi].$$
(2.1)

When $a = 0, \nu_0$ is the uniform probability on $[0, \pi]$, whose spectral gap and optimal logarithmic Sobolev constant are known to be 1.

Consider the associated Dirichlet form of ν_a

$$\mathcal{E}_a(f,f) = \int_0^\pi (f')^2 d\nu_a = \int_0^\pi f(-\mathcal{L}_a f) d\nu_a,$$

where the generator \mathcal{L}_a is given as for any $f \in C^2([0,\pi])$,

$$\mathcal{L}_a f(\theta) = f''(\theta) - \frac{2a\sin\theta}{1 + a^2 - 2a\cos\theta} f'(\theta).$$

Proof of the item (a) of Theorem 0.1. Take $f(\theta) = \cos \theta$, we have

$$\nu_{a}(f) = \frac{1-a^{2}}{\pi} \int_{0}^{\pi} \frac{\cos\theta}{1+a^{2}-2a\cos\theta} d\theta = \frac{1-a^{2}}{2a\pi} \int_{0}^{\pi} (-1+\frac{1+a^{2}}{1+a^{2}-2a\cos\theta}) d\theta$$

= $-\frac{1-a^{2}}{2a} + \frac{1+a^{2}}{2a} = a,$ (2.2)

$$\nu_{a}(f^{2}) = \frac{1-a^{2}}{\pi} \int_{0}^{\pi} \frac{\cos^{2}\theta}{1+a^{2}-2a\cos\theta} d\theta$$

$$= \frac{1-a^{2}}{\pi} \int_{0}^{\pi/2} \left(\frac{\cos^{2}\theta}{1+a^{2}-2a\cos\theta} + \frac{\cos^{2}(\pi-\theta)}{1+a^{2}-2a\cos(\pi-\theta)}\right) d\theta$$

$$= \frac{1-a^{2}}{\pi} \int_{0}^{\pi/2} \frac{2(1+a^{2})\cos^{2}\theta}{(1+a^{2})^{2}-4a^{2}\cos^{2}\theta}$$

$$= \frac{1-a^{4}}{2a^{2}\pi} \int_{0}^{\pi/2} \left(-1 + \frac{(1+a^{2})^{2}}{(1+a^{2})^{2}-4a^{2}\cos^{2}\theta}\right) d\theta$$

$$= -\frac{1-a^{4}}{4a^{2}} + \frac{(1+a^{2})^{2}}{4a^{2}} = \frac{1+a^{2}}{2},$$
(2.3)

which implies

$$\mathcal{E}_a(f,f) = \int_0^\pi \sin^2 \theta d\nu_a = 1 - \nu_a(f^2) = \frac{1 - a^2}{2} = \nu_a(f^2) - (\nu_a(f))^2.$$

ECP 19 (2014), paper 10.

Page 6/9

Thereby by classical variational formula (0.1),

$$\lambda_1(\nu_a) \le \frac{\mathcal{E}_a(f,f)}{\operatorname{Var}_a(f)} = 1.$$
(2.4)

For the upper bound of $1/\lambda_1(\nu_a)$, we turn to Chen's original variational formula of $\lambda_1(\nu)$ (see [5]). Precisely, it is

$$\lambda_1(\nu_a)^{-1} = \inf_{\rho \in \mathcal{F}} \sup_{x \in [0,\pi]} \frac{1 + a^2 - 2a\cos x}{\rho'(x)} \int_x^\pi \frac{\rho(y) - \nu_a(\rho)}{1 + a^2 - 2a\cos y} dy,$$
(2.5)

where \mathcal{F} is the set of strictly increasing functions on $[0, \pi]$.

Choose then $\rho(\theta) = -\cos \theta + a$ a strictly increasing function on $[0, \pi]$ with $\nu_a(\rho) = 0$ by (2.2). By the expression (2.5), we have

$$\begin{aligned} \frac{1}{\lambda_1(\nu_a)} &\leq \sup_{\theta \in (0,\pi)} \frac{1+a^2-2a\cos\theta}{\sin\theta} \int_{\theta}^{\pi} \frac{(-\cos\xi+a)}{1+a^2-2a\cos\xi} d\xi \\ &= \sup_{\theta \in (0,\pi)} \frac{1+a^2-2a\cos\theta}{2a\sin\theta} \left(\pi-\theta-2\arctan\left(\frac{1-a}{1+a}\cot(\frac{\theta}{2})\right)\right) \\ &= \sup_{\theta \in (0,\pi)} \frac{1+a^2-2a\cos\theta}{a\sin\theta} \left(\arctan\left(\cot(\frac{\theta}{2})\right) - \arctan\left(\frac{1-a}{1+a}\cot(\frac{\theta}{2})\right)\right) \\ &\leq \sup_{\theta \in (0,\pi)} \frac{1+a^2-2a\cos\theta}{a\sin\theta} \frac{(1-\frac{1-a}{1+a})\cot(\frac{\theta}{2})}{1+(\frac{1-a}{1+a}\cot(\frac{\theta}{2}))^2} \\ &= 1+a, \end{aligned}$$

where the first equality is due to

$$\int_{\theta}^{\pi} \frac{1}{1 + a^2 - 2a\cos\theta} = \frac{2}{1 - a^2} \arctan\left(\frac{1 - a}{1 + a}\cot(\frac{\theta}{2})\right)$$
(2.6)

and the last but second inequality holds since

$$\arctan x - \arctan y \le (x - y)(\arctan y)', \quad \forall \ 0 \le y < x \le \pi/2.$$

To estimate $\lambda^{DD}(\nu_a)$, we take $\rho(\theta) = \sin \theta$ on $[0, \pi]$, which satisfies

$$\rho(0) = \rho(\pi) = 0, \rho'(\theta)|_{\theta \in (0,\pi/2)} > 0 \text{ and } \rho'(\theta)|_{\theta \in (\pi/2,\pi)} < 0.$$

Therefore it follows from Theorem 1.1 in [6] that

$$\frac{1}{\lambda^{DD}(\nu_{a})} \leq \sup_{x \in (0,\pi/2)} \frac{1}{\sin x} \int_{0}^{x} (1+a^{2}-2a\cos y) dy \int_{x}^{\pi/2} \frac{\sin u}{1+a^{2}-2a\cos u} du
\vee \sup_{x \in (\pi/2,\pi)} \frac{1}{\sin x} \int_{x}^{\pi} (1+a^{2}-2a\cos y) dy \int_{\pi/2}^{x} \frac{\sin u}{1+a^{2}-2a\cos u} du
\leq \sup_{x \in (0,\pi/2) \cup (\pi/2,\pi)} \frac{1+a^{2}-2a\cos x}{\cos x} \int_{x}^{\pi/2} \frac{\sin u}{1+a^{2}-2a\cos u} du$$

$$= \sup_{x \in (0,\pi/2) \cup (\pi/2,\pi)} \frac{1+a^{2}-2a\cos x}{2a\cos x} \log(\frac{1+a^{2}}{1+a^{2}-2a\cos x})
= \sup_{|t|<2a/(1+a^{2})} (1-\frac{1}{t}) \log(1-t) = \frac{(1+a)^{2}}{2a} \log\frac{(1+a)^{2}}{1+a^{2}},$$

where the second inequality follows from the proportional property and the last equality holds since $(1 - \frac{1}{t})\log(1 - t)$ is decreasing on $t \in [-1, 1]$.

ECP 19 (2014), paper 10.

Finally, we have for any x with $0 \le |x| = a < 1$,

$$\frac{1}{1+a} = \min\{\frac{2a}{(1+a)^2 \log \frac{(1+a)^2}{1+a^2}}, \frac{1}{1+a}\} \le \lambda_1(\mu_x) \le 1.$$

The proof of the item (a) of Theorem 0.1 is complete.

Proof of the item (b) of Theorem 0.1. Recall that for the function $f := \cos$, in the third section, it was proved that $\nu_a(f) = a$, $\nu_a(f^2) = (1 + a^2)/2$ and $\mathcal{E}_a(f, f) = (1 - a^2)/2$. Define g = (1 - f)/(1 - a), then

$$\nu_a(g) = 1, \quad \nu_a(g^2) = \frac{3-a}{2(1-a)}, \quad \mathcal{E}_a(g,g) = \frac{\mathcal{E}_a(f,f)}{(1-a)^2} = \frac{1+a}{2(1-a)}$$

Therefore with the help of an elementary inequality $\operatorname{Ent}_{\nu_a}(g^2) \ge \nu_a(g^2) \log(\nu_a(g^2))$ (see [3]), we have

$$2C_{\rm LS}(\nu_a) \ge \frac{\operatorname{Ent}_a(g^2)}{\mathcal{E}_a(g,g)} \ge \frac{3-a}{1+a}\log(1+\frac{1+a}{2(1-a)}) \ge \log(1+\frac{1}{1-a}).$$
(2.8)

Next we work on the upper bound. It is clear that $\theta_a := 2 \arctan \frac{1-a}{1+a}$ is the median of ν_a since by (2.6),

$$\frac{1-a^2}{\pi} \int_{\theta_a}^{\pi} \frac{1}{1+a^2-2a\cos\theta} = \frac{2}{\pi}\arctan(\frac{1-a}{1+a}\cot(\frac{\theta_a}{2})) = \frac{1}{2}.$$

Define

$$B_{-}(a) := \sup_{\alpha \in (0,\theta_{a})} \int_{0}^{\alpha} \frac{d\theta}{1+a^{2}-2a\cos\theta} \log\left(1+\frac{e^{2}\pi}{(1-a^{2})\int_{0}^{\alpha}\frac{1}{1+a^{2}-2a\cos\theta}d\theta}\right)$$
$$\cdot \int_{\alpha}^{\theta_{a}} (1+a^{2}-2a\cos\theta)d\theta,$$
$$B_{+}(a) := \sup_{\alpha \in (\theta_{a},\pi)} \int_{\alpha}^{\pi} \frac{d\theta}{1+a^{2}-2a\cos\theta} \log\left(1+\frac{e^{2}\pi}{(1-a^{2})\int_{\alpha}^{\pi}\frac{1}{1+a^{2}-2a\cos\theta}d\theta}\right)$$
$$\cdot \int_{\theta_{a}}^{\alpha} (1+a^{2}-2a\cos\theta)d\theta.$$

By the equality (2.6) and $\frac{x}{1+x^2} \le \arctan x \le x$, we have

$$\frac{\sin \alpha}{1 + a^2 - 2a \cos \alpha} \le \int_{\alpha}^{\pi} \frac{1}{1 + a^2 - 2a \cos \theta} d\theta \le \frac{2}{(1 + a)^2 \sin \frac{\alpha}{2}}$$
(2.9)

and

$$\int_0^\alpha \frac{1}{1+a^2-2a\cos\theta} d\theta \le \frac{\pi}{1-a^2} - \frac{\sin\alpha}{1+a^2-2a\cos\alpha} \le \frac{\pi}{1-a^2}.$$
 (2.10)

On the one hand, by the monotonicity of $x \log(1 + \frac{b}{x})$ in x > 0 for any b > 0 and (2.9), we obtain

$$\begin{split} B_{+}(a) &\leq \sup_{\alpha \in (\theta_{a},\pi)} \frac{2}{(1+a)^{2} \sin(\frac{\alpha}{2})} \log\left(1 + \frac{e^{2}\pi(1+a)}{2(1-a)}\right) \left((1+a^{2})\alpha - 2a\sin\alpha\right) \\ &\leq \frac{4}{(1+a)^{2}} \log\left(1 + \frac{e^{2}\pi(1+a)}{2(1-a)}\right) \sup_{\alpha \in (\theta_{a}/2,\pi/2)} \frac{(1+a^{2})\alpha}{\sin\alpha} \\ &= \frac{2\pi(1+a^{2})}{(1+a)^{2}} \log(1 + \frac{e^{2}\pi(1+a)}{2(1-a)}) \\ &\leq 2\pi \log(1 + \frac{e^{2}\pi}{2(1-a)}). \end{split}$$

ECP 19 (2014), paper 10.

Page 8/9

The circular Cauchy distribution

On the other hand, combining the inequality (2.10), the monotonicity of $x \log(1 + \frac{b}{x})$ for b > 0 fixed and the fact that

$$\frac{2}{\pi}\theta_a \leq \sin\theta_a = \frac{2\tan(\theta_a/2)}{1+\tan^2(\theta_a/2)} = \frac{1-a^2}{1+a^2},$$

we have

$$B_{-}(a) \leq \frac{\pi}{1-a^{2}} \log(1+e^{2}) \left((1+a^{2})\theta_{a} - a\sin\theta_{a} \right)$$
$$\leq \pi \log(1+e^{2}) \frac{\theta_{a}}{\sin\theta_{a}} \leq \frac{\pi^{2}}{2} \log(1+e^{2}).$$

By Theorem 3 in [2],

$$C_{\rm LS}(\nu_a) \le 4 \max\{B_+(a), B_-(a)\} \le 8\pi \log(1 + \frac{e^2\pi}{2(1-a)}).$$
 (2.11)

The proof is complete due to (2.8),(2.11) and the classical result

$$C_{\mathrm{LS}}(\mu_x) \ge \frac{1}{\lambda_1(\mu_x)} \ge 1.$$

References

- Bakry D. and Émery M.: Diffusions hypercontractivies, In Sém. Proba. XIX, LNM, 1123, Springer (1985), 177-206. MR-0889476
- [2] Barthe, F. and Roberto, C.: Sobolev inequalities for probability measures on the real line, Studia Mathematica, 159 (3), (2003), 481-497. MR-2052235
- [3] Barthe, F., Ma, Y-T. and Zhang, Z.: Logarithmic Sobolev inequalities for harmonic measures on spheres. J. Math. Pures Appl., (2013) DOI:10.1016/j.matpur.2013.11.008
- [4] Cattiaux, P. and Guillin, A.: On quadratic transportation cost inequalities. J. Math. Pures Appl., 86, (2006), 342-361. MR-2257848
- [5] Chen, M. F.: Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci. Sin. (A), 42(8), (1999), 805-815. MR-1738551
- [6] Chen, M.F., Zhang, Y.H. and Zhao, X.L.: Dual variational formulas for the first Dirichlet eigenvalue on half-line, *Sci. China*, 46(6), (2003), 847-861. MR-2029196
- [7] Durrett, R.: Brownian Motion and Martingales in analysis, Wordsworth, 1984.
- [8] Émery, M. and Yukich, J.: A simple proof of logarithmic Sobolev inequality on the circle. Séminaire de probabilités, 97, (1975), 1061-1083.
- [9] Kakutani, S.: On Brownian motion in *n*-space. Proc. Imp. Acad. Tokyo, 20 (9), (1944), 648-652.
- [10] Kato, S.: A Markov process for circular data, J. R. Statist. Soc. 72(5), (2010), 622-672.
- [11] McCullagh, P.: Möbius transformation and Cauchy parameter estimation. Ann. Statist., 24, (1996), 787-808.
- [12] Schechtman, G. and Schmuckenschläger, M.: A concentration inequality for harmonic measures on the sphere, *Geometric aspects of funct. analysis* (Israel, 1992-1994): 255-273, *Oper. Theory Adv. Appl.*, **77**, (1995), Birkhäuser, Basel, 60-65 (31B99). MR-1353465
- [13] Talagrand, M.: Transportation cost for Gaussian and other product measures, Geom. Funct. Anal., 6, (1996), 587-600. MR-1392331
- [14] Zhang, Z.L., Ma, Y-T. and Lei, L.: Logarithmic Sobolev inequalities for Moebius measures on spheres. Submitted, 2013.
- [15] Zhang, Z.L., and Miao, Y.: An equivalent condition between Poincaré inequality and T₂transportation cost inequality. Acta Appl. Math., 110(1), (2012), 39-46. MR-2601641

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)

Economical model of EJP-ECP

- Low cost, based on free software (OJS¹)
- Non profit, sponsored by IMS 2 , BS 3 , PKP 4
- Purely electronic and secure (LOCKSS⁵)

Help keep the journal free and vigorous

- Donate to the IMS open access fund⁶ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

¹OJS: Open Journal Systems http://pkp.sfu.ca/ojs/

 $^{^2\}mathrm{IMS:}$ Institute of Mathematical Statistics <code>http://www.imstat.org/</code>

³BS: Bernoulli Society http://www.bernoulli-society.org/

⁴PK: Public Knowledge Project http://pkp.sfu.ca/

⁵LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/

⁶IMS Open Access Fund: http://www.imstat.org/publications/open.htm