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Abstract

We show that the local limit of unicellular maps whose genus is proportional to
the number of edges is a supercritical geometric Galton-Watson tree conditioned to
survive. The proof relies on enumeration results obtained via the recent bijection
given by the second author together with Féray and Fusy.
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1 Introduction

Recently, the last author of this note studied the large scale structure of random
unicellular maps whose genus grows linearly with their size [12]. Our goal here is to
identify explicitly the local limit of the latter as a super-critical geometric Galton-Watson
tree conditioned to survive.

Motivated by the theory of two-dimensional quantum gravity, the study of local lim-
its (also known as Benjamini-Schramm limits [4]) of random planar maps and graphs
has been rapidly developing over the last years, since the introduction of the Uniform
Infinite Planar Triangulation (UIPT) by Angel & Schramm [2]. The UIPT is defined as
the local limit in distribution (see definition below) of uniform random triangulations of
the sphere, when their size tends to infinity.

It is natural to expect (see [8]) that, for any fixed g ≥ 1, the UIPT is also the local
limit of uniform random triangulations of a surface of genus g when their size tends to
infinity (note that the situation is totally different for scaling limits, where the genus
affects the topology of the limiting surface [5]). However, one expects to obtain a totally
different picture if one lets the genus of the maps grow linearly with their size. In this
case, the limiting average degree is strictly greater than in the planar case, so that
some kind of “hyperbolic” behavior is expected, see [1, 3, 12]. In this note, we take
a step in the study of this hyperbolic regime, by studying the local limit of unicellular
maps whose genus is proportional to their size.
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The local limit of unicellular maps in high genus

Recall that a map is a proper embedding of a finite connected graph into a compact
orientable surface considered up to oriented homeomorphisms, and such that the con-
nected components of the complement of the embedding (called faces) are topological
disks. Loops and multiple edges are allowed, i.e. our graphs are actually multigraphs.
As usual, all the maps considered here are rooted, that is given with a distinguished
oriented edge.

Alternatively, a (rooted) map can be seen as a (rooted) graph together with a cyclic
orientation of the edges around each vertex. This allows us to view any connected
subgraph of a map as a map structure, obtained by restriction of the cyclic order. (This
can also be done in terms of the embedding, but the surface must be modified to make
all faces topological disks.) In particular, we can define the ball Br(m) to be the rooted
map obtained from m by keeping all the edges and vertices which are at distance less
than or equal to r from the origin of the root edge of m. One can then define the local
topology [2, 4] between two maps m,m′ (of arbitrary genera) using the metric

dloc(m,m
′) = e− sup{r : Br(m) ≈ Br(m′)},

where we write M ≈M ′ if M is isomorphic to M ′ as maps.
A unicellular map (or: one-face map) is a map with only one face. This class at-

tracted much attention, both because of its remarkable enumerative and combinatorial
properties (see, e.g. [6] and references therein), and because unicellular maps are the
fundamental building blocks in the study of general maps on surfaces and their scaling
limits (see, e.g. [7, 5]). In the planar case g = 0, unicellular maps are nothing more than
trees. For n ≥ 1 and g ≥ 0 denote by Ug,n the set of all unicellular maps with n edges
and genus g. An application of Euler’s characteristic formula shows that v = n+1− 2g,
where v is the number of vertices of the map. In particular Ug,n = ∅ as soon as 2g > n.
For g ≤ n/2 we shall denote by Ug,n a random map, uniformly distributed over Ug,n.

We write Geom(ξ) to denote a random variable which follows the geometric distri-
bution with parameter ξ ∈ (0, 1). In other words,

P(Geom(ξ) = k) = (1− ξ)k−1ξ for k ≥ 1.

For any ξ ∈ (0, 1) we shall use Tξ to denote the Galton-Watson tree with offspring distri-
bution Geom(ξ)− 1. We denote by T∞ξ the tree Tξ conditioned to be infinite. For ξ < 1/2

this tree is super-critical and hence the conditioning is in the classical sense. We define
T∞1/2 to be the limit as n→∞ of the critical tree T1/2 conditioned to have n edges. This
limit is known to exist in a much more general setting, see [10].

Theorem 1. Assume gn is such that gn/n → θ with θ ∈ [0, 1/2). Then we have the
following convergence in distribution for the local topology:

Ugn,n
(d)−−−−→
n→∞

T∞ξθ ,

where ξθ =
1−βθ

2 , and βθ is the unique solution in β ∈ [0, 1) of

1

2

(
1

β
− β

)
log

1 + β

1− β
= (1− 2θ). (1.1)

For θ = 0, the genus is much smaller than the size of the map, so it is not surprising
that the local limit is the same as that of a critical tree conditioned to survive.

Note that the mean of the geometric offspring distribution in Theorem 1 is given by
(1 + βθ)/(1− βθ) > 1 and in particular the Galton-Watson tree is supercritical.

In order to prove Theorem 1 we first determine the root degree distribution of uni-
cellular maps using the bijection of [6]. This is done in Section 2, where we also obtain
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The local limit of unicellular maps in high genus

an asymptotic formula for #Ug,n. This enables us to compute in Section 3.1 the proba-
bility that the ball of radius r around the root in Ugn,n is equal to any given tree. In [12]
it is shown that the local limit of unicellular maps is supported on trees. However, we
do not rely on this result. In Section 3.2 we show that the probabilities computed below
are sufficient to characterize the local limit of Ug,n.

2 Enumeration and root degree distribution

We begin be describing a bijection from [6] between unicellular maps and trees
with some additional structure. A C-decorated tree is a plane tree together with a
permutation on its vertices whose cycles all have odd length, carrying an additional
sign {±1} associated with each cycle. The underlying graph of a C-decorated tree
is the graph obtained from the tree by identifying the vertices in each cycle of the
permutation to a single vertex. Hence if the tree has n edges and the permutation has v
cycles, the underlying graph has n edges and v vertices (recall that we allow loops and
multiple edges). We also note that at any vertex v of the tree which is a fixed point of
the permutation, the cyclic order on the edges around v in the tree and in the resulting
unicellular map are the same. This will be of use in our analysis of the case g = o(n).

Theorem 2 ([6]). Unicellular maps with n edges and genus g are in 2n+1 to 1 cor-
respondence with C-decorated trees with n edges and s = n + 1 − 2g cycles. This
correspondence preserves the underlying graph.

Using this correspondence we will obtain the two main theorems of this section,
Theorems 3 and 4. Before stating these theorems we introduce a probability distribu-
tion on the odd integers that will play an important role in the sequel. For β ∈ (0, 1), we
let Xβ be a random variable taking its values in the odd integers, whose law is given
by:

P(Xβ = 2k + 1) :=
1

Zβ

β2k+1

2k + 1
,

where

Zβ =
∑
k≥0

β2k+1

2k + 1
=

1

2
log

1 + β

1− β
= arctanhβ.

It is easy to check that eq. (1.1) is equivalent to

E[Xβ ] =
1

Zβ

β

1− β2
=

1

1− 2θ
. (2.1)

Theorem 3. Assume gn ∼ θn where θ ∈ (0, 1/2). Let βn be such that E[Xβn ] =
n
sn

+

o
(
n−1/2

)
and sn = n+ 1− 2gn. As n tends to infinity we have

#Ugn,n ∼ Aθ
(2n)!

n!sn!
√
sn

(Zβn)
sn

4gnβn+1
n

,

where Aθ =
2√

2πVar(Xβθ )
.

Note that βn → βθ. If gn = θn+ o(
√
n) we may take βn to be just βθ and not depend

on n.

Proof. For s, n ≥ 1, let Ls(n+1) be the set of partitions of n+1 having s parts, all of odd
size. Recall that if λ is a partition of n+1, the number of permutations having cycle-type
λ is given by

(n+ 1)!∏
imi!imi

,
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The local limit of unicellular maps in high genus

where for i ≥ 1, mi = mi(λ) is the number of parts of λ with size equal to i. Therefore
by Theorem 2, the number of unicellular maps of genus gn with n edges is given by

#Ugn,n = Cat(n)
2sn

2n+1

∑
λ∈Lsn (n+1)

(n+ 1)!∏
imi!imi

, (2.2)

where Cat(n) = (2n)!
n!(n+1)! is the nth Catalan number, i.e. the number of rooted plane trees

with n edges, the sum counts permutations, and the powers of 2 are from the signs on
cycles of the permutation and since the correspondence is 2n+1 to 1. This is known as
the Lehman-Walsh formula ([13]).

Now, let β ∈ (0, 1) and let X1, X2, . . . , Xs be i.i.d. copies of Xβ . By the local central
limit theorem [11, Chap.7], if n + 1 = sE[Xβ ] + o(

√
s) has the same parity as s, then

P(
∑
i≤sXi = n+ 1) ∼ As−1/2 where A = 2/

√
2πVar(Xβ). The additional factor 2 comes

from the fact that the support of Xi are odd numbers. On the other hand, we have

P

∑
i≤s

Xi = n+ 1

 =
∑

k1+···+ks=n+1

ki odd

∏
i

βki

Zβ · ki

=
βn+1

(Zβ)s

∑
λ∈Ls(n+1)

s!∏
imi!imi

, (2.3)

since s!∏
imi!

is the number of distinct ways to order of the parts of the partition λ.

Therefore if, as in the statement of the theorem, we pick βn so that E[Xβn ] =

(n + 1)/sn + o(1/
√
n), noticing that βn → βθ and Var(Xβn) → Var(Xβθ ), it follows from

eq. (2.2) and the last considerations that

#Ugn,n ∼
1

22gn
Cat(n)

(n+ 1)!

sn!

(Zβn)
s
n

βn+1
n

Aθs
−1/2
n .

The following theorem gives an asymptotic enumeration of unicellular maps of high
genus with a prescribed root degree.

Theorem 4 (Root degree distribution). Assume gn ∼ θn with θ ∈ (0, 1/2), and let βθ be
the solution of eq. (1.1). Then for every d ∈ N we have

P (Ugn,n has root degree d) −−−−→
n→∞

(
1− β2

θ

4

)
(1 + βθ)

d − (1− βθ)d

2dβθ
.

Equivalently, the degree of the root of Ugn,n converges in distribution to an independent
sum Geom( 1+βθ2 ) + Geom(1−βθ2 )− 1.

Proof. As in the proof of Theorem 3, we see that the length of a uniformly chosen cycle
in a uniform random C-decorated tree with n edges and n+1− 2gn cycles is distributed
as the random variable X1 conditioned on the fact that X1 + · · ·+Xs = n+1, where the
Xi’s are i.i.d. copies of Xβ for any choice of β ∈ (0, 1), and s = n+ 1− 2gn. This follows
by writing down the required probability distributions and using eqs. (2.2) and (2.3) and
Theorem 2. Using the local central limit theorem, we see that with βn chosen according
to Theorem 3, when n tends to infinity, this random variable converges in distribution
to Xβθ .

Since the permutation is independent of the tree, the probability that a cycle con-
tains the root vertex is proportional to its size. Therefore the size of the cycle containing
the root vertex converges in distribution to a size-biased version of Xβθ , which is a ran-
dom variableK with distribution P(K = 2k+1) = (1−β2

θ )β
2k
θ , i.e.K = 2Geom(1−β2

θ )−1.
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The local limit of unicellular maps in high genus

Now by Theorem 2, conditionally on the fact that the cycle containing the root vertex
has length 2k + 1, the root degree in Ugn,n is distributed as

∑2k
i=0Di, where D0 if the

degree of the root of a random plane tree of size n, and (Di)i>0 are the degrees of
2k uniformly chosen distinct vertices of the tree. It is classical, and easy to see, that
when n tends to infinity the variables (Di)i>0 converge in distribution to independent
Geom(1/2) random variables, while D0 converges to Y + Y ′− 1, where Y, Y ′ are further
independent Geom(1/2) variables. All geometric variables here are also independent of
K.

From this it is easy to deduce that when n tends to infinity, the root degree in Ugn,n
converges in law to

∑K
i=0 Yi − 1 where K is as above and the Yi’s are independent

Geom(1/2) variables. Since the probability that the sum of ` i.i.d. Geom(1/2) random
variables equals m is 2−m

(
m−1
`−1
)
, we thus obtain that for all d ≥ 1, the probability that

the root vertex has degree d tends to:

1− β2
θ

βθ

∑
k≥0

β2k+1
θ 2−d−1

(
d

2k + 1

)
=

1− β2
θ

4βθ

(1 + βθ)
d − (1− βθ)d

2d
.

Remark 5. It may be possible to prove Theorem 4 using the enumeration results for
unicellular maps by vertex degrees found in [9], although this would require some com-
putations. Here we prefer to prove it using the bijection of [6], since the proof is quite
direct and gives a good understanding of the probability distribution that arises. This
is also the reason we prove Theorem 3 from the bijection, rather than starting directly
from the Lehman-Walsh formula (2.2).

We now comment on a “paradox” that the reader may have noticed. For any rooted
graph G and any r ≥ 0 we denote by Br(G) the set of vertices which are at distance less
than r from the origin of the graph. In Ug,n the mean degree can be computed as

lim
r→∞

1

#Br(Ug,n)

∑
u∈Br(Ug,n)

deg(u) =
2n

v
−−−−→
n→∞

2(1− 2θ)−1.

However, if one interchanges limn→∞ and limr→∞ a different larger result appears.
Indeed, easy arguments about Galton-Watson processes show that in T∞ξθ we have

lim
r→∞

1

#Br(T∞ξθ )

∑
u∈Br(T∞ξθ )

deg(u) =
2

1− βθ
.

2.1 The low genus case

Proof of Theorem 1 for θ = 0. As noted, the case g = 0 is well known. We argue here
that the local limit for g = o(n) is the same as for g = 0. Indeed, the permutation on
the tree contains n + 1 − 2g cycles, and so has at most 3g non-fixed points. (If cycles
of length 2 were allowed this would be 4g.) Since the permutation is independent of
the tree, and since the ball of radius r in the tree distance is tight, the probability that
any vertex in the ball is in a non-trivial cycle is o(1) (with constant depending on r). In
particular, the local limit of the unicellular map and of the tree are the same.

3 The local limit

3.1 Surgery

Throughout this subsection, we fix integers n, g ≥ 0. Let t be a rooted plane tree of
height r ≥ 1 with k edges and exactly d vertices at height r.
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The local limit of unicellular maps in high genus

Lemma 6. For any n, g, k, d, r ≥ 0 we have

#
{
m ∈ Ug,n : Br(m) = t

}
= #

{
m ∈ Ug,n−k+d with root degree d

}
.

Proof. The lemma follows from a surgical argument illustrated in Fig. 1: if m ∈ Ug,n is
such that Br(m) = t we can replace the r-neighborhood of the root by a star made of
d edges which diminishes the number of edges of the map by k − d and turns it into a
map of Ug,n−k+d having root degree d. To be precise, consider the leaf of t first reached
in the contour around t. The edge to this leaf is taken to be the root of the new map.

Figure 1: Illustration of the surgical operation

It is clear that this operation is invertible. To see that it is a bijection between the
two sets in question we need to establish that it does not change the genus or number of
faces in a map. One way to see this is based on an alternative description of the surgery,
namely that it contracts every edge of t except those incident to the leaves, and it is
easy to see that edge contraction does not change the number of faces or genus of a
map.

3.2 Identifying the limit

Recall that for ξ ∈ (0, 1) we denote by Tξ the law of a Galton-Watson tree with
Geom(ξ) − 1 offspring distribution. Note that when ξ ∈ (0, 1/2) the mean offspring
is strictly greater than 1 and so the process is supercritical, and recall that T∞ξ is Tξ
conditioned to survive. Plane trees can be viewed as maps, rooted at the edge from the
root to its first child. For every r ≥ 0, if t is a (possibly infinite) plane tree we denote by
Br(t) the rooted subtree of t made of all the vertices at height less than or equal to r.

Proposition 7. Fix ξ ∈ (0, 1/2). For any tree t of height exactly r having k edges and
exactly d vertices at maximal height, we have

P
(
Br(T

∞
ξ ) = t

)
=

(
ξ(1− ξ)

)k+1−d(
(1− ξ)d − ξd

)
1− 2ξ

.

Note that the probability of observing t does not depend on r, but only on the number
of edges and vertices where t is connected to the rest of Tξ.

Proof. Since ξ ∈ (0, 1/2) the Galton-Watson process is supercritical and by standard re-
sult the extinction probability pdie is strictly less than 1 and is the root of x =

∑
k≥0 x

k(1−
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The local limit of unicellular maps in high genus

ξ)kξ in (0, 1). Hence

pdie =
ξ

1− ξ
.

Next, fix a tree t of height exactly r with k edges and d vertices at height r. By the
definition of Tξ if ku denotes the number of children of the vertex u in t we have

P(Br(Tξ) = t) =
∏
u

(1− ξ)kuξ = (1− ξ)kξk+1−d

where the product is taken over all the vertices of t which are at height less than r.
Conditioned on the event {Br(Tξ) = t}, by the branching property, the probability that
the tree survives forever is (1 − pddie). Combining the pieces, we get the statement of
the proposition.

Proof of Theorem 1 for θ ∈ (0, 1/2). Under the assumptions of Theorem 1, fix r and let
t be a rooted oriented tree of height exactly r having k edges and exactly d vertices at
height r. By Lemma 6 we have

P(Br(Ugn,n) = t) =
#{m ∈ Ugn,n−k+d with root degree d}

#Ugn,n

=
#Ugn,n−k+d

#Ugn,n
· P(root degree of Ugn,n−k+d = d).

Applying Theorem 4 we have

P(root degree of Ugn,n−k+d = d) −−−−→
n→∞

(
1− β2

θ

4βθ

)
(1 + βθ)

d − (1− βθ)d

2d
. (3.1)

On the other hand, since n/s = (n−k+d)/(s−k+d)+o(1/
√
n) we can apply Theorem 3

for the asymptotic of #Ugn,n−k+d and #Ugn,n with the same sequence (βn) and get that

#Ugn,n−k+d
#Ugn,n

∼
(2n+ 2d− 2k)!n!s!Zd−kβn

(2n)!(n+ d− k)!(s+ d− k)!βd−kn

.

Since d, k are fixed, and using the facts that βn → βθ, Zβn → Zβθ and s/n → (1 − 2θ),
the last display is also equivalent to

#Ugn,n−k+d
#Ugn,n

∼
(
βθ(1− 2θ)

4Zβθ

)k−d
=

(
1− β2

θ

4

)k−d
, (3.2)

by the definition of βθ in eq. (2.1). Plugging (3.1) and (3.2) together and using Proposi-
tion 7 we find that

P(Br(Ugn,n) = t) −−−−→
n→∞

P(Br(T
∞
ξθ
) = t),

with ξθ = (1− βθ)/2.
Finally, note that the law of Br(T∞ξθ ) is a probability measure on the set of finite plane

trees. It follows that Br(Ugn,n) is tight, and converges in distribution to Br(T∞ξθ ). Since
r is arbitrary, this completes the proof of the Theorem.

4 Questions and remarks

Planarity. A consequence of Theorem 1 is that Ugn,n is locally a tree (hence planar)
near its root. More precisely, the length of a minimal non-trivial cycle containing the
root edge diverges in probability as n → ∞. A much stronger statement has been
proved in [12] where quantitative estimates on cycle lengths are obtained. As noted
above, our proof does not rely on this result and our approach is softer. Note that our
method of proof only requires to prove convergences of the quantities P(Br(Ugn,n) = t)

when t is a tree since we were able to identify these limits as coming from a probability
measure on infinite trees.
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Open questions. We gather here a couple of possible extensions of our work.

Question 1. Find more precise asymptotic formulae for #Ug,n as g, n→∞. Theorem 3
gives a first order approximation.

Question 2. Quantify the convergence of Ugn,n to Tξθ . In particular, let rn = o(log n). Is
it possible to couple Ugn,n with Tξθ so that Brn(Ugn,n) = Brn(Tξθ ) with high probability?
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