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Abstract

Internal Diffusion Limited Aggregation (IDLA) is a model that describes the growth
of a random aggregate of particles from the inside out. Shellef proved that IDLA
processes on supercritical percolation clusters of integer-lattices fill Euclidean balls,
with high probability. In this article, we complete the picture and prove a limit-shape
theorem for IDLA on such percolation clusters, by providing the corresponding upper
bound.

The technique to prove upper bounds is new and robust: it only requires the
existence of a “good” lower bound. Specifically, this way of proving upper bounds on
IDLA clusters is more suitable for random environments than previous ways, since it
does not harness harmonic measure estimates.
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1 Introduction

The Internal Diffusion Limited Aggregation (IDLA) model was introduced by Diaconis
and Fulton in [7], and gives a protocol for recursively building a random aggregate
of particles. At each step, the first vertex visited outside the current aggregate by a
random walk started at the origin is added to the aggregate. This simulates the growth
of an aggregate of particles from the inside out.

In a number of settings, this model is known to have a deterministic limit-shape,
meaning that a random aggregate with a large number of particles has a typical shape.
On Zd, Lawler, Bramson and Griffeath [13] were the first to identify this limit-shape, in
the case of simple random walks, as an Euclidean ball. Their result was later sharpened
by Lawler [12], and was recently drastically improved with the simultaneous works of
Asselah and Gaudillère [2, 3] and Jerison, Levine and Sheffield [10, 11, 9]. On other
graphs, current knowledge is less precise. On groups with polynomial growth, the exis-
tence of the limiting shape is unknown, although Blachère gave bounds on the cluster
[5]. On finitely generated groups with exponential growth, with a suitable metric, a
limit-shape result was proved by Blachère and Brofferio [6]. Huss also studied IDLA for
a large class of random walks on general non-amenable graphs in [8].
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Containing internal diffusion limited aggregation

Another interesting question about IDLA is whether the limit-shape is robust to small
perturbations of the underlying graph; For example, on the infinite cluster of supercrit-
ical percolation cluster of Zd. Shellef proved a sharp inner bound for the IDLA model on
the infinite cluster [14]. Figure 1 presents the IDLA aggregate built on the supercritical
bond percolation cluster.

Figure 1: IDLA aggregate with 6,300 particles on the supercritical percolation cluster
on Z2 (edges are deleted w.p. 0.4). Red points are in the aggregate, green points are in
the cluster, and blue points are outside the cluster.

To prove the existence of a limit-shape on the supercritical percolation cluster on
Zd, it thus remains to show a sharp outer bound on IDLA. We provide such an outer
bound, relying on Shellef’s inner bound.

Theorem 1.1. Fix d > 0 and p > pc(Z
d) and let ω be the infinite cluster of percolation

on Zd with parameter p, conditioned on the origin o belonging to ω. Let Bo(n) be the
Euclidean ball of radius n centered at the origin. Let bo(n) = |ω ∩Bo(n)|, the size of the
part of the cluster that is in Bo(n). Let Abo(n)(o) be IDLA generated by bo(n) particles
started at the origin. Then, for every ε > 0 and a.s. every ω, the IDLA on ω a.s. satisfies:

Bo((1− ε)n) ⊂ Abo(n)(o) ⊂ Bo((1 + ε)n) ∀ n large enough.

More generally, Theorem 1.2 below states that given a sharp inner bound on IDLA
for a graph (with some regularity assumptions), a sharp outer bound exists as well. The
inner and outer bounds together prove the almost sure convergence to a limit-shape.
The regularity assumptions are quite mild, and the theorem should be useful in great
generality. Since the percolation cluster satisfies the necessary regularity assumptions,
Theorem 1.2 implies Theorem 1.1. We also mention other environments that satisfy
the regularity assumptions, like Cayley graphs with polynomial growth (more details
follow).
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Containing internal diffusion limited aggregation

Let us mention that, despite the fact that the upper bound on Zd is not intrinsically
harder than the lower bound, they invoke different ingredients. The lower bound usu-
ally harnesses estimates on the Green function, while the upper bound requires the use
of upper bounds on harmonic measures. The Green function is fairly well understood in
several (random) environments such as supercritical percolation, random conductances
with elliptic condition, and so forth. This is not the case for harmonic measures. The
techniques developed in this article allow to bypass this difficulty. Our main result re-
lates an upper bound on IDLA directly to a lower bound. Roughly speaking, we show
that if one knows that balls of a certain metric are contained in the aggregate, and not
many particles are left over, then one can deduce an upper bound and shape theorem.

1.1 Definition of IDLA

Let G be a graph. Let S ⊂ G be a finite subset of G. In order to define IDLA, first
define adding one particle started at x to an existing aggregate S. For x ∈ G, denote
by A(S;x) the IDLA aggregate obtained as follows: Let ξ = (ξ(0), ξ(1), . . .) be a random
walk on G started at ξ(0) = x and let tS be the first time this walk is not in S. Define

A(S;x) := S ∪ {ξ(tS)} .

It is standard to consider a slightly more general process, where the growth of the
aggregate is stopped at certain stopping times, e.g., upon exiting a set T . Denote by
A(S;x 7→ T ) the aggregate obtained by letting a particle randomly walk from x, but
pausing it if it exits T , which is defined as follows. Let ξ be a random walk on G started
at x. Let tS be the first time this walk is not in S as above, and let tT be the first time ξ
exits T . Define

A(S;x 7→ T ) := S ∪ {ξ(tS ∧ (tT − 1))} .

To keep track of the position of a paused particle, define

P (S;x 7→ T ) =

{
ξ(tT ) if tT ≤ tS ,
⊥ otherwise,

so ⊥ means that the particle has settled before exiting T and will never reach its com-
plement.

Given vertices x1, . . . , xk in G and a set T , define A(S;x1, . . . , xk 7→ T ) to be the IDLA
aggregate formed from an existing aggregate S by k particles, started at x1, . . . , xk,
and paused upon exiting T . That is, define inductively: S0 = S, Sj = A(Sj−1, xj 7→ T )

for j ∈ {1, . . . , k}, and A(S;x1, . . . , xk 7→ T ) = Sk. Again, to keep track of paused
particles, define P (S;x1, . . . , xk 7→ T ) to be the sequence of particles paused in this
process; Formally, if pj = P (Sj−1;xj 7→ T ) for j ∈ {1, . . . , k}, then P (S;x1, . . . , xk 7→ T )

is the sequence (pj : pj 6=⊥). When particles are not stopped, we define the aggregate
similarly and we denote it by A(S;x1, . . . , xk).

One reason to keep track of these paused particles is the so called Abelian property
of IDLA:

A(S;x1, . . . , xk) has the same distribution as

A
(
A(S;x1, . . . , xk 7→ T );P (S;x1, . . . , xk 7→ T )

)
. (1.1)

Equation (1.1) says that in order to sampleA(S, x1, . . . , xk), one can sampleA(S;x1, . . . , xk 7→
T ) while pausing particles upon exiting T and keeping track of them via P (S;x1, . . . , xk 7→
T ), and then restart the paused particles on the obtained aggregate A(S;x1, . . . , xk 7→
T ). For more details, see [7, 13].
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We are mostly interested in n particles starting at just one point. For an integer
n ≥ 0, by An(x) we denote the IDLA aggregate with n particles started at x, that is,

An(x) = A(∅;x, . . . , x︸ ︷︷ ︸
n times

).

We also focus on pausing particles according to a metric ρ. Define the ball of radius
r around x to be Bx(r) = {y : ρ(x, y) < r}, and denote its size by bx(r) = |Bx(r)|. As
above, set

An(x 7→ r) = A(∅;x, . . . , x 7→ Bx(r))

and
Pn(x 7→ r) = P (∅;x, . . . , x 7→ Bx(r)).

1.2 Assumptions

We now make a few assumptions. The first two assumptions are independent of the
IDLA process. We will always compare the IDLA cluster to a ball for a certain metric ρ
on G, on which we now make a few hypotheses. Assume that ρ satisfies the following
assumptions:

Continuity (C): the metric is dominated by the graph distance dG on G: there exists
c > 0 such that

ρ(x, y) ≤ c · dG(x, y) ∀ x, y ∈ G.

Regular volume growth (V G): there exist c, d > 0 such that for every n > 0,

1

c
rd ≤ |Bx(r)| ≤ crd ∀ x ∈ Bo(n) and n1/d

3

≤ r ≤ n.

The conditions on r and n allow to consider inhomogeneous environments. Keep in
mind that the percolation cluster contains arbitrary finite graphs infinitely often.

We will also make the following assumption on IDLA:

Weaker lower bound (wLB): there exists α > 0 such that for every n > 0,

P[Bx(r) ⊂ Abx(r/α)(x 7→ r)] ≥ α ∀ x ∈ Bo(n+ r) and n1/d
3

≤ r ≤ n.

In words, with noticeable probability, when releasing order bx(r) particles at x the ag-
gregate contains Bx(r). This assumption is easy to verify for many IDLA processes. In
order to prove the existence of a limiting shape, we will assume a stronger lower bound
for the aggregate grown around the origin, as we will see in the next section.

1.3 Main results

The first theorem relates a lower bound to an upper bound in well-behaved environ-
ments.

Theorem 1.2. Let G be a graph and ρ be a metric on G satisfying conditions (C), (V G)

and (wLB). Then, there exists a constant c1 > 0 such that for any ε > 0,

P
[
Abo(n)(o) 6⊂ Bo((1 + ε)n) i.o.

]
≤ P

[
|Abo(n)(o 7→ n)| < bo(n)(1− c1εd) i.o.

]
.

The previous theorem is especially useful when a lower bound is known. Indeed,
although we need a statement stronger than a simple lower bound, the usual proofs of
lower bounds always yield the fact that the IDLA process (almost) fills all large enough
balls when stopped on their boundary:
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Lower bound (LB): |Abo(n)(o 7→ n)|/bo(n) converges almost surely to 1.

Note that (LB) implies not only that the aggregate eventually contains a large ball,
but also that the aggregate contains a large ball, even when stopped upon exiting a
(slightly bigger) ball.

Corollary 1.3. Let G be a graph and ρ a metric on G satisfying conditions (C), (V G),
(wLB), and (LB), then for every ε > 0, a.s.

Abo(n)(o) ⊂ Bo((1 + ε)n) ∀ n large enough.

Even though the main application of the theorem above and its corollary will be in
the case of supercritical percolation, they apply in great generality and we believe that
they will be useful in future works on IDLA.

2 An upper bound on IDLA on percolation clusters

Let us prove that Theorem 1.2 and its corollary imply Theorem 1.1. In this case, ρ
will be the Euclidean distance. By Theorem 1.2, we only need to check that (C), (V G),
(wLB) and (LB) are satisfied:

(C) Since ρ ≤ dω deterministically, property (C) is satisfied for every ω with the con-
stant 1.

(VG) Barlow proved in [4] that (V G) is satisfied for the distance dω for almost every
environment. A classical result of [1] easily implies that for almost every environ-
ment ω, there exists c1 = c1(ω) > 0 such that for every n > 0,

ρ(x, y) ≤ dω(x, y) ≤ c1ρ(x, y) ∀ x, y ∈ Bo(n) : c1 log n ≤ ρ(x, y) ≤ n (2.1)

so that (V G) is also satisfied for ρ with a possibly different constant (the result
also follows from [4]).

(wLB) In [14], Shellef proved that for any ε > 0, there exists η > 0 such that the
following holds for almost every environment ω: there exists c2 = c2(ω) > 0 such
that

P
[
Bo((1− ε)n) ⊂ Abo(n)(o 7→ n)

]
≥ 1− c2

nd+2

and Pp[c2 ≥ λ] ≤ e−λη for all λ > 0. All together, this implies that for almost every
environment ω, there exists c3 = c3(ω) > 0 such that for every n > 0,

P
[
Bx((1− ε)r) ⊂ Abx(r)(x 7→ r) ∀x ∈ Bo(n) and n1/d

3

≤ r ≤ n
]
≥ 1− c3

n
. (2.2)

The condition (wLB) follows readily. The result in Shellef deals with the event
Bo((1 − ε)n) ⊂ Abo(n)(o) (particles are not stopped at distance n), but the proof
actually implies this stronger result.

(LB) Finally, note that the comparison between distances (2.1) and (V G) imply that

bo(n)− bo((1− ε)n) ≤ c4ε
dbo(n)

for some constant c4 = c4(ω) > 0 depending on the environment, so that (2.2)
implies (LB) for almost every environment.
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3 Proof of Theorem 1.2

From now on, we fix a graph G satisfying (C), (V G) and (wLB). Constants in the
proof always depend only on the constants involved in (C), (V G) and (wLB), i.e. c, d
and α.

The following lemma shows that a lower bound on the aggregate implies a lower
bound on hitting probabilities. It is a general statement not invoking any of the condi-
tions (C), (V G) or (wLB). In the following, we make a slight abuse of notations: ξ will
denote a random walk as well as its trace.

Lemma 3.1. Let Q ⊂ B ⊂ G and x ∈ B. Let ξ be a random walk started at x and
stopped on exiting B. For any t > 0,

P[ξ ∩Q 6= ∅] ≥ P[B ⊂ At(x 7→ B)] · |Q|/t.

The above lemma is most useful when t is chosen so that P[B ⊂ At(x 7→ B)] is of order
1.

Proof. Let ξ1, . . . , ξt be the t independent random walks started at x and stopped on
exiting B that generate the aggregate At(x 7→ B). Let J ∈ {1, . . . , t} be a uniformly
chosen index independent of the random walks. Consider the set Γ of j ∈ {1, . . . , t} so
that ξj hits Q before exiting B. Since Q ⊂ B, the inclusion B ⊂ At(x 7→ B) implies
|Γ| ≥ |Q|. Since J is independent of ξ1, . . . , ξt,

P[ξJ ∩Q 6= ∅ | B ⊂ At(x 7→ B)] ≥ P[J ∈ Γ | B ⊂ At(x 7→ B)] ≥ |Q|/t.

The lemma follows since the distribution of ξJ is that of a random walk started at x and
stopped when exiting B.

By assumption on G, we can hence get the following hitting probability estimate,
which states that a random walk hits a set, whose complement has size at most εrd,
with a probability that is bounded away from zero.

Lemma 3.2. There exist ε, η > 0 such that for large enough n and n1/(d(d+1)) < r < n,
the following holds. Let x ∈ Bo(n) and let S ⊂ Bo(n+ r) be so that |S \Bo(n)| ≤ εrd. Let
ξ be a random walk started at x and stopped upon exiting Bo(n+ r). Then,

P
[
ξ ∩

(
Bo(n+ r) \ (S ∪Bo(n))

)
6= ∅
]
≥ η.

Proof. For every path γ from inside Bo(n) to outside Bo(n+r), let y(γ) be the first vertex
on γ so that ρ(y(γ), Bo(n)) ≥ r/2. Denote by Y the set of all y(γ) for such paths γ. Every
path from x to outside Bo(n + r) must hit Y . By Markov’s property, it thus suffices to
prove the theorem for starting points y ∈ Y . Fix y ∈ Y .

Let B = By(r/3) and Q = B \ S. By (V G) and by assumption on S,

|Q| ≥ 1

c
(r/3)d − εrd ≥ 1

c
(r/4)d,

with ε = 4−d/c. By (wLB) with t = by(r/(3α)),

P[B ⊂ At(y 7→ r/3)] ≥ α.

Let ξ be a random walk started at y and stopped on exiting B. Lemma 3.1 and (V G)

imply that

P[ξ ∩Q 6= ∅] ≥ α (r/4)d

cby(r/(3α))
≥ α(α/4)d/c2 =: η.
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Note that r/2 ≤ ρ(y,Bo(n)) ≤ r/2 + c thanks to the definition of Y and (C). Therefore,
ρ(y,G \ Bo(n + r)) ≥ r − r/2 − c > r/3 for n large, and so B ⊂ Bo(n + r) \ Bo(n). We
deduce

P
[
ξ ∩

(
Bo(n+ r) \ (S ∪Bo(n))

)
6= ∅
]
≥ P[ξ ∩Q 6= ∅] ≥ η.

After analyzing the behavior of a single particle, we can analyze the behavior of
the whole aggregate. The following lemma says that, with high probability, a constant
fraction of the aggregate is absorbed in a wide enough (yet still very fine) annulus.

Lemma 3.3. There exist δ > 0 and p < 1 such that for all n large enough, for all
n1/(d+1) < k < n and x1, . . . , xk ∈ Bo(n), and for all S ⊂ Bo(n),

P
[
|A(S;x1, . . . , xk 7→ Bo(n+ k1/d)) \ S| ≤ δk

]
≤ pk.

Proof. Let r = k1/d. Fix ε, η as in Lemma 3.2. Let ξ1, . . . , ξk be the random walks started
at x1, . . . , xk that generates the aggregate. Let k′ = bεkc ≤ εrd. For j ∈ {1, . . . , k′},
denote

Aj = A(S;x1, . . . , xj 7→ Bo(n+ r)).

Since |Aj \Bo(n)| ≤ j ≤ εrd, Lemma 3.2 implies that for all j ∈ {1, . . . , k′},

P
[
ξj+1 ∩

(
Bo(n+ r) \Aj

)
6= ∅ | Aj

]
≥ η.

Therefore, |A(S;x1, . . . , xk 7→ Bo(n+r))\S| dominates a (k′, η)-binomial random variable.
Thus, there exist δ > 0 and p < 1 depending only on ε, η such that

P
[
|A(S;x1, . . . , xk 7→ Bo(n+ r)) \ S| ≤ δk

]
≤ pk.

We now turn to the proof of Theorem 1.2. The proof consists of inductively con-
structing a sequence of aggregates Aj by pausing the particles at different distances
nj from the origin. If kj is the number of paused particles, we choose the next distance
nj+1, at which we pause the particles again, in terms of nj and kj . We iterate this pro-
cedure until there are less than n1/(d+1) paused particles. At this point, there are too
few particles to matter.

Proof of Theorem 1.2. Fix n > 0. Define Aj , nj , Pj , kj as follows:

• Let n0 = n and A0 = Abo(n)(o 7→ n). Let P0 = Pbo(n)(o 7→ n) and let k0 = |P0|.
• For j ≥ 0, define

nj+1 =

{
nj + k

1/d
j if kj > n1/(d+1),

∞ otherwise.

Let Aj+1 = A(Aj ;Pj 7→ Bo(nj+1)). Let Pj+1 = P (Aj ;Pj 7→ Bo(nj+1)) and let
kj+1 = |Pj+1|.

Let J be the (random) first time at which kJ ≤ n1/(d+1). By construction, Aj = AJ+1 for
any j ≥ J + 1. The Abelian property (1.1) guarantees that AJ+1 and Abo(n)(o) have the
same law.

By construction, AJ ⊂ Bo(nJ). Since kJ ≤ n1/(d+1) and ρ is continuous (C), the kJ
last particles cannot grow long arms. Formally, AJ+1 ⊂ Bo(nJ + cn1/(d+1)).

Since J ≤ n, by Lemma 3.3, for some δ = δ(α, c, d) < 1,

P[∃ 1 ≤ j ≤ J : kj > (1− δ)jk0] ≤ P[∃ 1 ≤ j ≤ J : kj > (1− δ)kj−1] ≤ npn
1/(d+1)

.
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This implies that with probability at least 1− npn1/(d+1)

,

nJ = n+ k
1/d
0 + · · ·+ k

1/d
J−1 ≤ n+ k

1/d
0 · 1

1− (1− δ)1/d
,

and if nJ + Cn1/(d+1) > (1 + ε)n, then k1/d0 > (εn− Cn1/(d+1))(1− (1− δ)1/d). So, using
(V G), for any ε > 0,{

Abo(n)(o) 6⊂ Bo((1 + ε)n)
}
⊆
{
k0 > c1ε

dbo(n)
}
∪
{
∃ 1 ≤ j ≤ J : kj > (1− δ)jk0

}
.

Hence, applying the Borel-Cantelli Lemma to the events{
Abo(n)(o) 6⊂ Bo((1 + ε)n)

}
\
{
k0 > c1ε

dbo(n)
}
⊂
{
∃ 1 ≤ j ≤ J : kj > (1− δ)jk0

}
,

we obtain that the event described on the left hand side happens finitely often almost
surely, which concludes the proof of Theorem 1.2.
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