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Grounded Lipschitz functions on trees are typically flat
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Abstract

A grounded M -Lipschitz function on a rooted d-ary tree is an integer-valued map on
the vertices that changes by at most M along edges and attains the value zero on the
leaves. We study the behavior of such functions, specifically, their typical value at the
root v0 of the tree. We prove that the probability that the value of a uniformly chosen
random function at v0 is more than M + t is doubly-exponentially small in t. We also
show a similar bound for continuous (real-valued) grounded Lipschitz functions.
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1 Introduction

This note studies the typical behavior of grounded Lipschitz functions on trees. We
consider the rooted d-ary tree, d ≥ 2, of depth k, that is, the tree whose each non-leaf
vertex, including the root, has d children. We denote this tree by T (d, k) and its root by
v0. We consider two models for Lipschitz functions on such a tree:

(i) We call a real-valued function f on the vertices of a graph Lipschitz if |f(u)−f(v)| ≤
1 for every pair u, v of adjacent vertices. Let L∞(d, k) be the family of all such
Lipschitz functions on T (d, k) that take the value zero on all leaves. Observe that
L∞(d, k) is naturally endowed with Lebesgue measure. Indeed, letting V be the
set of internal (non-leaf) vertices of T (d, k), one may naturally view L∞(d, k) as a
convex polytope P ⊆ RV (of full dimension).

(ii) For an integer M ≥ 1, we call an integer-valued function f on the vertices of a
graph M -Lipschitz if |f(u) − f(v)| ≤ M for every two adjacent vertices u and v.
Let LM (d, k) be the set of all M -Lipschitz functions on T (d, k) that take the value
zero on all leaves. Observe that LM (d, k) is a finite set. For example, LM (d, 1) has
2M+1 elements, one element for each of the possible values of f(v0) between −M
and M .
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Grounded Lipschitz functions on trees

In this work we study the distribution of the value at the root vertex v0 for a uniformly
chosen function in L∞(d, k) and LM (d, k). Our main result is that this value is very
tightly concentrated around 0 for every M ≥ 1 and d ≥ 2.

Theorem 1.1. Let d ≥ 2 and k ≥ 1. If f is chosen uniformly at random from L∞(d, k),
then for every x > 0,

Pr(f(v0) ≥ 1 + x) ≤ 2d+2 · (9/10)d
dxe−1

.

Moreover, if d ≥ 3, then the constant 9/10 above may be replaced by (3/4)d.

This theorem follows as a corollary from the result on M -Lipschitz functions de-
scribed next, by taking a limit as M tends to infinity.

Theorem 1.2. Let d ≥ 2 andM,k ≥ 1. If f is chosen uniformly at random from LM (d, k),
then for every integer t ≥ 1,

Pr(f(v0) =M + t) ≤ (9/10)d
b(t−1)/Mc

· Pr(f(v0) = 0). (1.1)

Moreover, if d ≥ 3, then the constant 9/10 above may be replaced by (3/4)d. In addition,

Pr(f(v0) = 0) ≤ 1

1 + 21−dM
.

Of course, by symmetry, the theorems imply a corresponding bound on the lower
tail of the distribution of f(v0). We prove Theorem 1.2 by induction on k. The argument
has three steps. The first step establishes that p(t) := Pr(f(v0) = t) is unimodal in t

with maximum at t = 0. The second step shows that p(t) decays at least exponentially in
t/M , i.e., that p(t+M) ≤ 9p(t)/10 for t ≥ 1. In the third step, inequality (1.1) is derived
by induction on t.

2 Motivation, related work and discussion

The study of Lipschitz functions on graphs may be seen as a special case of the study
of random surfaces in statistical mechanics. In that context, one usually considers a
real-valued function on the vertices of a finite graph G, often a box in the integer lattice
Zd, which is sampled from a non-uniform distribution, with the density (with respect to
Lebesgue measure) of a function f proportional to

exp

− ∑
{x,y}∈E(G)

V (f(x)− f(y))

 .

for some potential function V , assumed symmetric. The study of such random surfaces
is especially well developed when the potential V is twice continuously differentiable
with c ≤ V ′′ ≤ C for some C, c > 0. However, the understanding of such surfaces is
quite lacking when this condition fails [9].

Continuous Lipschitz functions naturally embed in the above setup when the poten-
tial V is the so-called hammock potential

V (x) :=

{
0 |x| ≤ 1

∞ |x| > 1
.

The hammock potential is not twice continuously differentiable and it is the case that
whenG is a box inZd, there is no non-trivial bound on the variance of f at a given vertex,
or on the expected range of values taken by f . The problem of finding such non-trivial
bounds was mentioned already by Brascamp, Lieb, and Lebowitz [3]. Similar questions
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Grounded Lipschitz functions on trees

may be asked for M -Lipschitz functions on boxes in Zd and similarly no non-trivial facts
are known, except in the case M = 1 when it is known that a typical 1-Lipschitz function
is quite ‘flat’ when the dimension d is sufficiently large [6]. Given the apparent difficulty
of studying Lipschitz functions on the integer lattice, it is natural to study this model
on more general graphs, in particular on trees, and this is the main motivation for our
work.

In order to define a uniform distribution over Lipschitz functions on a finite con-
nected graph, one needs to put certain boundary conditions. For instance, one can fix
the value of the function at one given vertex to be zero. When the graph is a tree, it is
natural to take this vertex to be the root. However, such a boundary condition on a tree
leads to the model of a branching random walk, since the differences of the function
along edges of the tree are independent. Such a model is closer in spirit to an ordi-
nary random walk than to a random surface on a highly-connected graph such as Zd

for d ≥ 2. In contrast, by choosing the boundary condition differently, one may obtain
a model sharing more of the features of random surfaces on highly-connected graphs.
The most natural alternative seems to be to fix the values of the function at all leaves of
the tree to be zero, as we do in this paper.

We briefly survey some related work. Benjamini, Häggström, and Mossel [1] ini-
tiated the study of a related model, the model of random graph homomorphisms. An
integer-valued function f on the vertices of a graph is called a graph homomorphism
(or a homomorphism height function) if |f(u) − f(v)| = 1 for every pair u, v of adjacent
vertices. Graph homomorphisms are similar to 1-Lipschitz functions (see the Yadin bi-
jection described in [6] for a precise connection). Results for this model were obtained
for: tree-like graphs [1], the hypercube [4, 5], and finite boxes in the integer lattice Zd

for large d [6]. A lower bound on the typical range of random graph homomorphisms
on general graphs was established in [2].

In [1], a result analogous to our Theorem 1.2 was proved for random graph homo-
morphisms, using a similar, though somewhat simpler, method. Both approaches rely
on a recursive formula relating the number of functions on trees with different depths.
However, our analysis is made more complicated by the fact that certain symmetries
present in the formula for graph homomorphisms used in [1] are no longer available for
the M -Lipschitz model. This necessitates a different analysis employing unimodality
and requiring a more careful consideration of the exact relation of d and M .

The behavior of M -Lipschitz functions on trees and on regular expander graphs was
studied in [8], where results similar to Theorem 1.2 were obtained under an additional
assumption that M is small with respect to the degree of the graph and its expansion
properties. For trees, the assumption in [8] is that

M ≤ cd/ log d (2.1)

for some small absolute constant c. This assumption on M , while allowing the study
of the model on a wider class of graphs, precluded the study of real-valued Lipschitz
functions, or M -Lipschitz functions for large M , using the methods of that work.

We end the introduction with a discussion of the role of the assumption (2.1). In a
forthcoming paper [7] we extend the methods and results of [8], showing that under the
assumption (2.1), more is true of a uniformly chosen function from LM (d, k). In fact, at a
vertex which is at even distance from the leaves, the function will take the value 0 with
high probability, namely, with probability at least 1 − 2 exp(−cd/M) for some absolute
constant c > 0. That is, the function value is concentrated on a single number. Note
that this implies that for a vertex at odd distance from the leaves, with a similarly high
probability, the function value at all of its neighbors is zero, and that conditioned on
this event, the value at the vertex is uniform on {−M, . . . ,M}.
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Grounded Lipschitz functions on trees

We expect that such a strong concentration of the values of the random function fails
when M � d, or in the model of real-valued Lipschitz functions. More precisely, let us
fix M,d such that M � d and denote by Lk the distribution of the value at the root for
a tree of depth k. We believe that Lk is no longer concentrated on a single value when
k is even. Moreover, we suspect that Lk has a limit as k tends to infinity (so that there
is asymptotically no distinction between even and odd depths). It would be interesting
to establish such a transition phenomenon between the cases M � d and M � d.

3 The proofs

In this section, we prove Theorems 1.1 and 1.2. First, we establish a series of lem-
mas that culminate in the proof of Theorem 1.2. At the end, we derive from it Theo-
rem 1.1.

Fix integers d ≥ 2 and M ≥ 1. For integers t and k ≥ 1, we let

G(t, k) = |{f ∈ LM (d, k) : f(v0) = t}|.

Several times in our proofs, we will use the fact that G(t, k) = G(−t, k) for every t and
k, which follows by symmetry.

3.1 A recursive formula

Since for every k > 1, the children of the root of T (d, k) can be regarded as roots of
isomorphic copies of T (d, k − 1), we have

G(t, k) =
∑

t−M≤t1,...,td≤t+M

d∏
s=1

G(ts, k − 1) =

(
M∑

i=−M
G(t+ i, k − 1)

)d

. (3.1)

3.2 Unimodality

The following claim establishes unimodality.

Claim 3.1. If k ≥ 1 and t ≥ 0, then G(t+ 1, k) ≤ G(t, k).

Proof. We prove the claim by induction on k. If k = 1, then G(t, k) = 1 if 0 ≤ t ≤M and
G(t, k) = 0 if t > M . Assume that k > 1 and t ≥ 0. By (3.1), it suffices to show that

G(t+M + 1, k − 1) ≤ G(t−M,k − 1). (3.2)

To see this, we consider two cases. First, if t −M ≥ 0, then (3.2) follows directly from
the inductive assumption. Otherwise, we note that t+M + 1 ≥M − t > 0 and hence by
symmetry and induction,

G(t+M + 1, k − 1) ≤ G(M − t, k − 1) = G(t−M,k − 1).

3.3 Exponential decay of G(t, k)

The following claim establishes exponential decay of G(t, k). We start with the case
d ≥ 3. The case d = 2 is more elaborate and we handle it separately later on.

Lemma 3.2. If d ≥ 3 and k, t ≥ 1, then G(t+M,k) ≤ (3/4)d ·G(t, k).

Proof. Fix some d ≥ 3. We prove the lemma by induction on k. Suppose that t ≥ 1. If
k = 1, then G(t +M,k) = 0 and the claimed inequality holds vacuously. Assume that
k > 1. To simplify the notation, we let

α = (3/4)d and G(s) = G(s, k − 1) for each s ∈ Z.
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Grounded Lipschitz functions on trees

Moreover, for a set S ⊆ Z, we let

G(S) =
∑
s∈S

G(s).

If t > M , then by the inductive assumption, G(t +M + i) ≤ αG(t + i) for every −M ≤
i ≤M , so (3.1) implies that

G(t+M,k) = G({t, . . . , t+ 2M})d ≤ (α ·G({t−M, . . . , t+M}))d = αd ·G(t, k).

Assume that 1 ≤ t ≤M , let

A = G({0, . . . , t− 1}), B = G({1, . . . ,M − t}), and C = G({t, . . . , t+M}),

and observe that, by (3.1) and symmetry,

G(t, k) = (A+B + C)d.

On the other hand, since

{t+M + 1, . . . , t+ 2M} = ({1, . . . , t}+ 2M) ∪ ({t+ 1, . . . ,M}+M), (3.3)

then (3.1), the inductive assumption, and Claim 3.1 imply that

G(t+M,k) ≤
(
α2G({1, . . . , t}) + αG({t+ 1, . . . ,M}) + C

)d ≤ (α2A+ αB + C)d.

Moreover, Claim 3.1 implies

(M + 1)(A+B) ≥MC and MA ≥ (A+B).

It therefore follows that

G(t+M,k)

G(t, k)
≤
(
α2A+ αB + C

A+B + C

)d

≤
(
α2A+ αB + (1 + 1/M)(A+B)

A+B + (1 + 1/M)(A+B)

)d

=

(
(1 + α+ 1/M)(A+B)− (α− α2)A

(2 + 1/M)(A+B)

)d

≤
(
1 + α+ (1− α+ α2)/M

2 + 1/M

)d

≤
(
max

{
1 + α

2
,
2 + α2

3

})d

≤ α,

where the final inequality holds by our assumption that d ≥ 3.

Remark 3.3. It follows from the proof of Lemma 3.2 that even when d = 2, the state-
ment of the lemma still holds as long as we replace the constant (3/4)d with some
constant α < 1 that satisfies(

1 + α+ (1− α+ α2)/M

2 + 1/M

)d

≤ α. (3.4)

Unfortunately, the smallest solution to (3.4) tends to 1 as M →∞. We thus need a more
careful analysis to handle the case d = 2. Our proof in the case d = 2 shall require a
mild lower bound on M . We therefore note that if M ≤ 10 and α = 9/10, then (3.4) is
satisfied.

Lemma 3.4. Suppose that d = 2. For all k, t ≥ 1, we have G(t+M,k) ≤ (9/10) ·G(t, k).
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Grounded Lipschitz functions on trees

Proof. By Remark 3.3, we can safely assume that M ≥ 11. Choose the following param-
eters:

α = 9/10, µ = 1/4, β = 1/3 and m = dµMe.

We are going to prove the following stronger statement by induction on k:

G(t+M,k) ≤

{
α ·G(t, k) if t ∈ {1, . . . ,m− 1},
α2 ·G(t, k) if t ≥ m.

(3.5)

If k = 1, then (3.5) holds vacuously as G(t+M,k) = 0 for every t ≥ 1. Assume that k > 1

and fix some t ≥ 1. To simplify notation, for every s ∈ Z, we let

G(s) = G(s, k − 1)

and for a set S ⊆ Z,
G(S) =

∑
s∈S

G(s).

If t > M , then by the inductive assumption and (3.1), we have

G(t+M,k) = G({t, . . . , t+ 2M})2 ≤ (α ·G({t−M, . . . , t+M}))2 = α2 ·G(t, k).

Assume that 1 ≤ t ≤M , let

A = G({0, . . . , t− 1}), B = G({1, . . . ,M − t}) and C = G({t, . . . , t+M}),

and observe that by (3.1) and symmetry,

G(t, k) = (A+B + C)2.

We split the proof into two cases, depending on the value of t.

Case 1: t ≥m. Identity (3.1), the inductive assumption, and Claim 3.1 imply that
(recall (3.3))

G(t+M,k)1/2 ≤ α2 · α ·G({1, . . . , t}) + α2 ·G({t+ 1, . . . ,M}) + C

≤
(
t

M
· α3 +

M − t
M

· α2

)
· (A+B) + C

≤ (µα3 + (1− µ)α2) · (A+B) + C

and Claim 3.1 implies that
(M + 1)(A+B) ≥MC. (3.6)

It hence follows that

G(t+M,k)

G(t, k)
≤
(
(µα3 + (1− µ)α2) · (A+B) + C

A+B + C

)2

≤
(
1 + µα3 + (1− µ)α2 + 1/M

2 + 1/M

)2

< α2,

where in the last inequality we used the assumption that M ≥ 11.

Case 2: t <m. Identity (3.1), the inductive assumption, and Claim 3.1 imply that
(recall (3.3))

G(t+M,k)1/2 ≤ α3 ·G({1, . . . , t})+α·G({t+1, . . . ,m−1})+α2 ·G({m, . . . ,M})+C. (3.7)
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Grounded Lipschitz functions on trees

We now further split into two cases, depending on whether or not the following inequal-
ity is satisfied:

G({m, . . . ,M}) ≥ β ·G({1, . . . ,M}). (3.8)

If (3.8) holds, then by (3.7) and Claim 3.1,

G(t+M,k)1/2 ≤ (βα2 + (1− β)α) ·G({1, . . . ,M}) + C

≤ (βα2 + (1− β)α) · (A+B) + C.

Consequently, by (3.6),

G(t+M,k)

G(t, k)
≤
(
(βα2 + (1− β)α) · (A+B) + C

A+B + C

)2

≤
(
1 + βα2 + (1− β)α+ 1/M

2 + 1/M

)2

< α,

where in the last inequality we again used the assumption that M ≥ 11.
If (3.8) does not hold, then we let

D = G({t, . . . ,m− 1}) and E = G({1, . . . ,M}).

Identity (3.1), Claim 3.1, and the converse of (3.8) imply

G(t+M,k)1/2 = D +G({m, . . . , 2M + t}) ≤ D +
2M + t−m+ 1

M −m+ 1
·G({m, . . . ,M})

< D +
2M

M −m+ 1
· β · E ≤ D +

2

1− µ
· β · E.

On the other hand, again by symmetry and Claim 3.1, we have that

G(t, k)1/2 = G({t−M, . . . , t+M}) ≥ D + E.

So, as D ≤ E,

G(t+M,k)

G(t, k)
≤
(
1− 1− µ− 2β

1− µ
· E

D + E

)2

≤
(
1− 1− µ− 2β

2− 2µ

)2

< α.

3.4 Doubly exponential decrease

The exponential decay established in Lemmas 3.2 and 3.4 easily implies the follow-
ing.

Corollary 3.5. If k, t ≥ 1, then

G(t+M,k) ≤ αdb(t−1)/Mc
G(t, k), (3.9)

where α = 9/10 if d = 2 and α = (3/4)d if d ≥ 3.

Proof. We prove the statement by induction on k. If k = 1, then G(t+M,k) = 0. Assume
that k > 1. When 1 ≤ t ≤ M , we have b(t − 1)/Mc = 0, and (3.9) follows directly from
Lemmas 3.2 and 3.4. If t ≥M + 1, then by the inductive assumption and (3.1) we have

G(t+M,k) =
(
G(t, k − 1) + . . .+G(t+ 2M,k − 1)

)d
≤
(
αdb(t−M−1)/Mc

(G(t−M,k − 1) + . . .+G(t+M,k − 1))
)d

= αd1+b(t−M−1)/Mc
G(t, k) = αdb(t−1)/Mc

G(t, k).
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3.5 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.2. The first part of the theorem follows immediately from Corol-
lary 3.5. The upper bound on Pr(f(v0) = 0) follows from the inequality G(M,k) ≥
2−dG(0, k), which we prove below, together with symmetry and Claim 3.1. If k = 1, we
have G(M,k) = G(0, k) = 1. If k > 1, identity (3.1) and symmetry imply that(

G(M,k)

G(0, k)

)1/d

≥ 1

2
.

Proof of Theorem 1.1. Let f be a uniformly chosen random element of L∞(d, k) and let
x > 0. The claimed bound on the probability that f(v0) exceeds 1+x follows fairly easily
from Theorem 1.2. To see this, let, for every positive integer M , fM be a uniformly
chosen random element of LM (d, k). A moment of thought reveals that the sequence
fM/M converges to f in distribution.

Indeed, letting V be the set of internal (non-leaf) vertices of T (d, k), one may nat-
urally view L∞(d, k) as a convex polytope P ⊆ RV (of full dimension). Let µ and µM

be the distributions of f and fM/M , respectively. Observe that µ = λ/vol(P ), where λ
is the |V |-dimensional Lebesgue measure, and that µM is the uniform measure on the
(finite) set P ∩ ( 1

MZ)
V . Since P is compact (as clearly P ⊆ [−k, k]V ), every continuous

function g : P → R is uniformly continuous and therefore,

lim
M→∞

∫
P

g dµM =

∫
P

g dµ.

Now, Theorem 1.2 implies that for M ≥ 1/x, letting α be as in the statement of
Corollary 3.5,

Pr

(
fM (v0)

M
≥ 1 + x

)
=
∑

t≥xM

Pr(fM (v0) =M + t) ≤ Pr(fM (v0) = 0) ·
∞∑

s=bx−1/Mc

Mαds

≤ M

1 + 21−dM
· αdbx−1/Mc

·

(
1 +

∞∑
r=1

αdr/2

)

≤ 8M

1 + 21−dM
· αdbx−1/Mc

,

where in the last inequality we used the fact that αdr/2 ≤ (9/10)2
r−1

, and hence

Pr(f(v0) ≥ 1 + x) = lim
M→∞

Pr

(
fM (v0)

M
≥ 1 + x

)
≤ 2d+2 · αddxe−1

.
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