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1 Introduction

Throughout the paper (E1, d1), . . . , (En, dn) is a finite sequence of separable metric
spaces with positive finite diameters ∆1, . . . ,∆n. Let En = E1 × · · · × En. A function f

from En into IR is said to be separately 1-Lipschitz if

|f(x1, . . . , xn)− f(y1, . . . , yn)| ≤ d1(x1, y1) + · · ·+ dn(xn, yn).

Let (Ω, T , IP) be a probability space and X = (X1, . . . , Xn) be a random vector with in-
dependent components, with values in En. Let f be any separately 1-Lipschitz function
from En into IR. Set

Z = f(X) = f(X1, . . . , Xn). (1.1)

Let the McDiarmid diameter σn be defined by

σ2
n = ∆2

1 + ∆2
2 + · · ·+ ∆2

n. (1.2)

McDiarmid [9], [10] proved that, for any positive x,

IP(Z − IE(Z) ≥ σnx) ≤ exp(−2x2). (1.3)

This inequality is an extension of Theorem 2 in Hoeffding [6]. We refer to [4], Chapter
2, for more about concentration inequalities. Later Bentkus [3] (paper submitted on
August 17, 2001) and Pinelis [12] replaced the upper bound in (1.3) by a Gaussian tail
function. They proved that

IP(Z − IE(Z) ≥ σnx) ≤ c IP(Y ≥ 2x), with Y
D
= N(0, 1). (1.4)
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On McDiarmid’s concentration inequality

The best known constant in (1.4) is c = 5.70, due to [12]. In the real-valued case,
the bounds may be much better in the moderate deviations area when the standard
deviations of the random variables are significantly smaller than the diameters ∆i. Fur-
thermore the random variables do not need to be bounded from below. We refer to
[1], [2], [7], [11] and [12] for more about this subject, which is essentially outside the
scope of this paper. Here we do not impose conditions on the variances of the random
variables. More precisely, our aim is to get upper bounds for the quantity PMcD(z,∆)

introduced before Inequality (1.9) below.

We now comment on the results (1.3) and (1.4). Since f is separately 1-Lipschitz and
the spaces Ei have a finite diameter ∆i, the function f is uniformly bounded over En.
Furthermore if M = supEn f and m = infEn f , then

m ≤ Z ≤M and M −m ≤ ∆1 + ∆2 + · · ·+ ∆n := Dn. (1.5)

From (1.5) it follows that

IP(Z − IE(Z) ≥ Dn) = IP(Z = M and IE(Z) = m) = 0. (1.6)

Now (1.6) cannot be deduced from either (1.3) or (1.4). Hence it seems clear that the
rate function 2x2 in the McDiarmid inequality (1.3) is suboptimal for large values of x.
One of the goals of this paper is to improve the rate function appearing in (1.3). In
Section 2, we give a more efficient large deviations rate function in the case ∆1 = ∆2 =

· · · = ∆n = 1. In particular we prove that, for any x in [0, 1],

IP
(
Z − IE(Z) ≥ n(1− x)

)
≤ xn(1−x2). (1.7)

This inequality implies (1.3) and yields (1.6). Next, in Section 3, we extend the results
of Section 2 to the case of distinct diameters, for small values or large values of the
deviation. In Theorem 3.1 we give the following extension of (1.7): for any x in [0, 1],

IP
(
Z − IE(Z) ≥ Dn(1− x)

)
≤ x(1−x2)D2

n/σ
2
n . (1.8)

We now recall the known lower bounds for large values of the deviations. Take Ei =

[0,∆i]. Let ∆ = (∆1,∆2, . . . ,∆n) and let PMcD(z,∆) be defined as the maximal value
of IP(Z − IE(Z) ≥ z) over all the separately 1-Lipschitz functions and all the random
vectors X with values in E and with independent components. By Proposition 5.7 in
Ohwadi et al. [11],

PMcD(Dn − nx,∆) ≥ xn/(∆1∆2 . . .∆n) for any x ≤ min(∆1,∆2, . . . ,∆n). (1.9)

As shown by the converse inequality (1.9), (1.8) is suitable for large values of the devi-
ation when σ2

n ∼ D2
n/n. Nevertheless (1.8) has to be improved when σn � n−1/2Dn. In

Theorem 3.2 of Section 3, we prove the converse inequality of (1.9) with Dn− (56/67)nx

instead of Dn−nx. Finally we give a more general inequality in Section 5. This inequal-
ity, based on partitions of the set of diameters, provides better numerical estimates than
the results of Section 3 for intermediate values of the deviation. Section 4 is devoted to
the proofs of the results of Sections 2 and 3.

2 The case of equality of the diameters

In this section we assume that ∆1 = ∆2 = · · · = ∆n = 1. Then (1.3) yields

IP(Z − IE(Z) ≥ nx) ≤ exp
(
−nϕ0(x)

)
with ϕ0(x) = 2x2.

For x = 1, ϕ0(1) = 2 < ∞. Hence Inequality (1.3) does not imply (1.6). In Theorem 2.1
below, we give a better large deviations rate function for large values of x.

ECP 18 (2013), paper 44.
Page 2/11

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2659
http://ecp.ejpecp.org/


On McDiarmid’s concentration inequality

Theorem 2.1. Let Z be defined by (1.1). For any positive t,

n−1 log IE
(

exp(tZ − tIE(Z))
)
≤ (t− log t− 1) + t(et − 1)−1 + log(1− e−t) := `(t). (a)

Let the rate functions ψ1 and ψ2 be defined by

ψ1(x) = 2x2 + 4x4/9, ψ2(x) = (x2 − 2x) log(1− x) for x ∈ [0, 1[ (2.1)

and ψ2(x) = +∞ for x ≥ 1. Let `∗ denote the Young transform of `, which is defined by
`∗(x) = supt>0(xt− `(t)). For any positive x,

`∗(x) ≥ max(ψ1(x), ψ2(x)). (b)

Consequently, by the usual Chernoff calculation, for any x in [0, 1],

IP(Z − IE(Z) ≥ nx) ≤ exp
(
−nmax(ψ1(x), ψ2(x))

)
≤ (1− x)n(2x−x2). (c)

Remark 2.1. In Section 4, it is shown that ψ2(x) ≥ 2x2 +x4/6. Consequently the second
part of Theorem 2.1(c) also improves (1.3). Now, by (1.9) and Theorem 2.1(b),

− log(1− x) + (1− x)2 log(1− x) ≤ `∗(x) ≤ − log(1− x) for any x ∈ [0, 1[ . (2.2)

Hence limx↑1(`∗(x) + log(1− x)) = 0, which gives the asymptotics of `∗ as x ↑ 1.

Remark 2.2. It comes from Lemma 4.3(a) in Section 4 that `∗(x) = LV (2x), where
LV is the information function defined in Equation (3) in Vajda [16]. Vajda proved that
LV (2x) ≥ − log(1 − x) + log(1 + x) − 2x/(1 + x). Theorem 2.1 in Gilardoni [5] gives
the better lower bound LV (2x) ≥ − log(1 − x) − (1 − x) log(1 + x) := L2(2x). Using the
concavity of the logarithm function, it can easily be proven that ψ2(x) > L2(2x). Hence
the lower bound `∗ ≥ ψ2 improves Gilardoni’s lower bound.

Remark 2.3. The expansion of ` at point 0 of order 5 is `(t) = t2/8 − t4/576 + O(t6).
It follows that `∗(x) = 2x2 + (4/9)x4 + O(x6) as x tends to 0. Hence ψ1 is the exact
expansion of `∗ of order 5. The lower bound `∗ ≥ ψ1 is based on Inequality (2) in Krafft
[8]. Using Corollary 1.4 in Topsøe [15], one can obtain the slightly better lower bound
`∗ ≥ ψ3, where ψ3 is defined by ψ3(x) = ψ1(x) + (32/135)x6 + (7072/42525)x8.

3 The general case: moderate and large deviations

Here we assume that the diameters ∆i do not satisfy ∆1 = ∆2 = · · · = ∆n. Let us
introduce the quantities below, which will be used to state our bounds:

Dn = ∆1 + ∆2 + · · ·+ ∆n, An = Dn/n and Gn = (∆1∆2 . . .∆n)1/n. (3.1)

Then Gn < An. Our first result is an extension of Theorem 2.1, which preserves the
variance factor σ2

n. This result is suitable for moderate deviations. Here ` denotes the
function already defined in Theorem 2.1(a) and `∗ is the Young transform of `.

Theorem 3.1. Let Z be defined by (1.1). For any positive t,

log IE
(
exp(tZ − tIE(Z))

)
≤ (Dn/σn)2`(σ2

nt/Dn). (a)

Consequently, for any x in [0, 1],

IP
(
Z − IE(Z) ≥ Dnx

)
≤ exp

(
−(Dn/σn)2`∗(x)

)
. (b)
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On McDiarmid’s concentration inequality

Contrary to the McDiarmid inequality, the upper bound in Theorem 3.1(b) converges
to 0 as x tends to 1. Now, by the Cauchy-Schwarz inequality, (Dn/σn)2 ≤ n in the general
case. Moreover, in some cases (Dn/σn)2 = o(n) as n tends to ∞. In that case Theorem
3.2 below provides better results for large values of x. In order to state this result we
need to introduce a second rate function. This is done in Proposition 3.1. below.

Proposition 3.1. Let η(t) = `(t) − (t − log t − 1) and let t0 ' 1.5936 be the solution of
the equation 1 − e−t = t/2. Then η is concave and increasing on ]0, t0] and decreasing
on [t0,∞[. Furthermore η′(t0) = 0 and consequently `′(t0) = 1− t−1

0 . Define the function
ηc be defined by ηc(t) = η(t) for t in ]0, t0] and ηc(t) = η(t0) for t ≥ t0. Let `c be defined
by `c(t) = (t − log t − 1) + ηc(t). Then `c is a convex, continuously differentiable and
increasing function on IR+, and

`∗c(x) = `∗(x) for x ≤ `′(t0) and `∗c(x) = −η(t0)− log(1− x) for x ∈ [`′(t0), 1[. (a)

The numerical value of η(t0) is η(t0) ' 0.17924. Furthermore

`c(t) ≤ t2/8 for any t > 0 and `∗c(x) ≥ 2x2 for any x > 0. (b)

We now state our second result.

Theorem 3.2. Let Z be defined by (1.1). For any positive t,

n−1 log IE
(
exp(tZ − tIE(Z))

)
≤ log(An/Gn) + `c(Ant). (a)

Let t0 be defined as in Proposition 3.1 and let x0 = `′(t0) = 1− t−1
0 . The numerical value

of x0 is x0 ' 0.3725. For x in [0, x0],

IP
(
Z − IE(Z) ≥ Dnx

)
≤ exp

(
n log(An/Gn)− n`∗(x)

)
(b)

and, for x in [x0, 1],

IP
(
Z − IE(Z) ≥ Dnx

)
≤ exp

(
n log(An/Gn) + nη(t0)

)
(1− x)n. (c)

Remark 3.1. Since the maximum value of ηc is η(t0), `c(t) ≤ t− log t− 1 + η(t0) for any
positive t. Hence, for any x in [0, 1[,

`∗c(x) ≥ −η(t0)− log(1− x) ≥ log(56/67)− log(1− x). (3.2)

It follows that, for any positive y,

IP
(
Z − IE(Z) ≥ Dn − (56/67)ny

)
≤ yn/(∆1∆2 . . .∆n). (3.3)

The factor 1/(∆1∆2 . . .∆n) appearing in (3.3) cannot be removed, as shown by (1.9).
For sake of completeness, we give here the proof of (1.9). let ∆1 ≥ ∆2 ≥ · · · ≥ ∆n be
positive reals and y be any positive real in [0,∆n]. Let b1, . . . , bk, . . . , bn be independent
random variables with Bernoulli laws b(y/∆k). Set Tn = ∆1b1 + ∆2b2 + · · ·+ ∆nbn. Then
IP(Tn − IE(Tn) ≥ Dn − ny) = yn/(∆1∆2 . . .∆n).

Example 3.1. Take n = 100, ∆1 = 49 and ∆k = 1 for k ≥ 2. Then σn = 50, Dn = 148

and An = 1.48. Let p = IP(Z − IE(Z) ≥ 75). The McDiarmid inequality (1.3) applied
with x = 3/2 yields p ≤ e−9/2 ' 1.1 10−2 and (1.4) yields p ≤ 7.7 10−3. Theorem 3.1(b)
together with the lower bound `∗ ≥ ψ3 (see Remark 2.3) yields p ≤ 8.3 10−3. Theorem
3.2(c) applied with x = 75/148 (x > x0) yields p ≤ 2.7 10−8.
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On McDiarmid’s concentration inequality

4 Proofs of the results of Sections 2 and 3

We start by proving an upper bound on the Laplace transform of Z which implies
Theorem 2.1(a) in the case ∆1 = ∆2 = . . . = ∆n.

Lemma 4.1. Let ` be the function already defined in Theorem 2.1(a). Then, for any
positive t, log IE

(
exp(tZ − tIE(Z))

)
≤ `(∆1t) + `(∆2t) + · · ·+ `(∆nt) := L(t).

Proof of Lemma 4.1. Let us briefly recall the martingale decomposition of Z. Let F0 =

{∅,Ω} and Fk = σ(X1, . . . , Xk). Set Zk = IE(Z | Fk). Then Z = Zn and Z0 = IE(Z).
Furthermore (Zk)k is a martingale sequence adapted to the above filtration. Now, set
Yk = Zk − Zk−1. Define the Fk−1-measurable random variable Wk−1 by

Wk−1 = IE
(

inf
x∈Ek

f(X1, . . . Xk−1, x,Xk+1, . . . , Xn) | Fk−1

)
− Zk−1. (4.1)

By the Lipschitz condition on f , Wk−1 ≤ Yk ≤Wk−1 +∆k (see [10]). From this inequality
and the convexity of the exponential function,

∆ke
tYk ≤ (Yk −Wk−1)et(Wk−1+∆k) + (∆k +Wk−1 − Yk)etWk−1 . (4.2)

Hence, using the martingale property,

∆kIE
(
etYk | Fk−1

)
≤ −Wk−1e

t(Wk−1+∆k) + (∆k +Wk−1)etWk−1 . (4.3)

Set then
γ(r, t) = log(1 + r(et − 1))− tr and rk−1 = −(Wk−1/∆k). (4.4)

Since (Zk) is a martingale sequence, IE(Yk | Fk−1) = 0. Hence, from (4.2), Wk−1 ≤ 0

and 0 ≤ Wk−1 + ∆k. Consequently rk−1 belongs to [0, 1]. Now, starting from (4.3) and
using the definitions (4.4), we get that log IE

(
etYk | Fk−1

)
≤ γ(rk−1,∆kt). Define now

`(t) = sup
r∈[0,1]

γ(r, t) = sup
r∈]0,1[

(log(1 + r(et − 1))− tr). (4.5)

From the above inequalities log IE
(
etYk | Fk−1

)
≤ `(∆kt) almost surely, which implies

Lemma 4.1 for the function ` defined in (4.5). It remains to prove that ` is equal to the
function already defined in Theorem 2.1(a). Now

∂γ

∂r
(r, t) =

et − t− 1− rt(et − 1)

1 + r(et − 1)
,

and consequently the function γ(r, t) has an unique maximum with respect to r in the
interval [0, 1]. This maximum is obtained for r = rt = (et − t− 1)/(t(et − 1)), whence

`(t) = log((et − 1)/t)− 1 + t/(et − 1) = (t− log t− 1) + t(et − 1)−1 + log(1− e−t).

We now prove Theorem 2.1(b). The first step is to compare the functions ψ1 and ψ2.

Lemma 4.2. There exists a unique real x0 in [0.6670, 0.6675] such that ψ1(x) ≥ ψ2(x)

for any x ≤ x0 and ψ1(x) < ψ2(x) for x > x0.

Proof of Lemma 4.2. For any real x in [0, 1[, ψ2(x) = 2x2 + (x4/6) +
∑
k>4 akx

k with
ak = (k−3)/(k2−3k+ 2). Define now f by f(x) = x−4(ψ2(x)−ψ1(x)) for x in [0, 1[. Then
f(x) = (−5/18) +

∑
k>4 akx

k−4, which implies that f is increasing on [0, 1]. Lemma 4.2
follows then from the facts that f(0.6670) < 0 and f(0.6675) > 0.
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The second step is to prove that `∗(x) ≥ ψ1(x) for any x in [0, 1].

Lemma 4.3. For any r in ]0, 1[, let the function hr be defined by

hr(x) = (r + x) log(1 + x/r) + (1− r − x) log(1− x/(1− r)) for x in [0, 1− r[,

hr((1− r) = − log r and hr(x) = +∞ for x > 1− r. Then

`∗(x) = inf
r∈]0,1[

hr(x) for any x > 0. (a)

Consequently `∗(x) ≥ ψ1(x) for any x in [0, 1].

Proof of Lemma 4.3. From (4.5), for any positive x,

`∗(x) = sup
t>0

inf
r∈[0,1−x]

(tx− γ(r, t)).

Now the function (r, t)→ tx−γ(r, t) is convex in r and concave in t. Hence, the minimax
theorem (see Corollary 3.3 in [14], for example) applies and yields

`∗(x) = inf
r∈[0,1−x]

sup
t>0

(tx− γ(r, t)). (4.6)

Let then γ∗r (x) = supt>0(tx− γ(r, t)). As proved by Hoeffding [6],

γ∗r (x) = (r + x) log(1 + x/r) + (1− r − x) log(1− x/(1− r)) for x in [0, 1− r[ (4.7)

and γ∗r (1− r) = − log r. Moreover γ∗r (x) = +∞ for x > 1− r. Hence (4.6) and (4.7) yield
Lemma 4.3(a). Now, by Inequality (2) in Krafft [8], γ∗r (x) ≥ ψ1(x) for any r in ]0, 1 − x],
which completes the proof of Lemma 4.3.

To prove Theorem 2.1(b), it remains to prove that

`∗(x) ≥ ψ2(x) for any x ≥ x0. (4.8)

This inequality is a direct consequence of Lemma 4.4 below together with the fact that
− log(1− x) ≥ 1 for x ≥ 2/3.

Lemma 4.4. `∗(x) ≥ − log(1− x)− (1− x)2 for any x ≥ 2/3.

Proof of Lemma 4.4. Let η be the function which is defined in Proposition 3.1. Set tx =

1/(1 − x). By definition of `∗, `∗(x) ≥ xtx − `(tx) = log tx − η(tx). Now, if x ≥ 2/3, then
tx ≥ 3. Consequently the proof of Lemma 4.4 will be complete if we prove that

t2η(t) ≤ 1 for any t ≥ 3. (4.9)

By concavity of the logarithm,

t2η(t) ≤ t2(t(et − 1)−1 − e−t) = (t2 + (t3 − t2)et)/(e2t − et).

Hence the inequality t2η(t) ≤ 1 holds true if δ(t) := (et + t2 − t3 − 1)et − t2 ≥ 0 for t ≥ 3.
Let β(t) := et + t2 − t3 − 1. β is strictly convex on [3,∞[ and has a unique minimum at
t0 ' 3.1699. Now β(t0) ' 1.00137 > 1, whence δ(t) > et − t2 > 0 for t ≥ 3. Hence (4.9)
holds true, which implies Lemma 4.4.

Proof of Theorem 2.1(b). Theorem 2.1(b) follows from Lemmas 4.2 and 4.3 together
with (4.8).
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On McDiarmid’s concentration inequality

Proof of Theorem 3.1. The proof of Theorem 3.1 is based on the concavity property
below.

Lemma 4.5. The function `′ is concave on IR+.

Proof of Lemma 4.5. Set v = 1/(et − 1). Then `(t) = vt − log v − log t − 1. Since v′ =

−v(1 + v),

`′ = 1 + 2v − tv − tv2 − (1/t), `′′ = −3(v + v2) + tv(1 + v)(1 + 2v) + (1/t2) (4.10)

and
−`′′′ = (2/t3)− 4v(1 + v)(1 + 2v) + tv(1 + v)(1 + 6v(1 + v)). (4.11)

Let f(t) := −`′′′(t)/(tv2(1 + v)2). We prove that f ≥ 0. Since 2v(1 + v)(cosh t− 1) = 1, the
function f can be decomposed as follows:

f(t) = f1(t) + f2(t) with f1(t) = 8t−4(cosh t− 1)2 and f2(t) = 2 cosh t+ 4− 8(sinh t/t).

Now f1 and f2 are analytic. First f2(t) = −2−(t2/3)+
∑
k≥2 akt

2k, for positive coefficients
ak. More precisely ak = 2(2k−3)/(2k+1)!. Consequently f2(t) ≥ −2−(t2/3). And second
2(cosh t− 1) ≥ t2(1 + t2/12), whence

f1(t) + f2(t) ≥ 2(1 + t2/12)2 − 2− t2/3 = t4/72 > 0.

Hence f(t) > 0 for any positive t, which ensures that `′ is concave.

We now complete the proof of Theorem 3.1. According to Lemma 4.1, we have to
prove that

L(t) := `(∆1t) + `(∆2t) + · · ·+ `(∆nt) ≤ (Dn/σn)2`(σ2
nt/Dn). (4.12)

Now

L(t) =

∫ t

0

L′(u)du =

∫ t

0

(
∆1`

′(∆1u) · · ·+ ∆n`
′(∆nu)

)
du.

Next, by Lemma 4.5,

∆1`
′(∆1u) · · ·+ ∆n`

′(∆nu) ≤ Dn `
′(σ2

nu/Dn).

Hence

L(t) ≤ Dn

∫ t

0

`′(σ2
nu/Dn)du = (Dn/σn)2 `(σ2

nt/Dn).

Hence (4.12) holds, which implies Theorem 3.1(a). Theorem 3.1(b) follows from the
usual Chernoff calculation.

Proof of Proposition 3.1. With the notations of the proof of Lemma 4.5,

η′ = v(2− (1 + v)t) and η′′ = v(1 + v)(t(1 + 2v)− 3).

Therefrom η′(t) > 0 if and only if 2 > tet/(et − 1), which holds for t > 0 if and only
t < t0. Moreover η′(t0) = 0 and η′(t) < 0 for t < t0. Hence η is increasing on [0, t0] and
decreasing on [t0,∞[. Now η′′(t) < 0 if and only if t(et + 1) < 3(et − 1). This condition
holds if and only if t < t1, where t1 is the unique positive solution of the equation
t = 3 tanh(t/2). Consequently η is strictly concave on ]0, t1] and convex on [t1,∞[. Since
t1 ' 2.5757 > 2 > t0, it follows that η is strictly concave on ]0, t0], increasing on ]0, t0]

and decreasing on [t0,∞[.
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We now prove that `c is convex, increasing and continuously differentiable. Since
`c(t) = `(t) for t ≤ t0, the function `c is strictly convex, increasing and continuously
differentiable on [0, t0]. Next `c(t) = t − log t − 1 + η(t0) for t ≥ t0, which ensures
that `c is continuous on [t0,∞[. Hence `c is continuous at the point t0. Next the right
derivative of `c at point t0 is equal to 1 − t−1

0 and the left derivative is equal to `′(t0).
Since η′(t0) = 0, `′(t0) = 1−t−1

0 . Hence `c is differentiable at point t0. If follows that `c is
continuously differentiable on [0,∞[. Now the function t→ t− log t−1 is strictly convex
and increasing on [1,∞[ and t0 > 1. From the above facts, we get that `c is continuously
differentiable, strictly convex and increasing on [0,∞[. Furthermore `′c is a one to one
continuous and increasing map from [0,∞[ onto [0, 1[.

We now prove (a). From the definition of `c, `′c(t) = `′(t) ≤ `′(t0) for t ≤ t0 and
`′(t) = 1 − t−1 > `′(t0) for t > t0. Hence, for x ≤ `′(t0) the maximum of xt − `c(t) over
all positive reals t is reached at tx = `′−1(x) ≤ t0. Then `∗c(x) = xtx − `(tx) = `∗(x). For
x ≥ `′(t0), the maximum of xt − `c(t) over all positive reals t is reached at the unique
point tx ≥ t0 such that 1− t−1

x = x. Then tx = 1/(1− x) and

`∗c(x) = xtx − `c(tx) =
x

1− x
− 1

1− x
+ 1− log(1− x)− η(t0) = − log(1− x)− η(t0),

which completes the proof of Proposition 3.1(a).

To prove (b), we note that, for any t in [0, t0], `c(t) = `(t) ≤ t2/8, since `∗(x) ≥ 2x2 for
any positive x. Now, for any t ≥ t0, `c(t) = t − log t − 1 + η(t0). Deriving this equality,
we get that (t/4)− `′c(t) = (t− 2)2/(4t) ≥ 0. Consequently t2/8− `c is nondecreasing on
[t0,∞[, whence t2/8− `c(t) ≥ (t20/8)− `c(t0) ≥ 0 for t ≥ t0. Proposition 3.1(b) holds.

Proof of Theorem 3.2. By definition, ηc is concave. Hence

ηc(∆1t) + ηc(∆2t) + · · ·+ ηc(∆nt) ≤ nηc(Ant).

Since ` ≤ `c,

`(∆1t) + `(∆2t) + · · ·+ `(∆nt) ≤ n(Ant− 1− log t)− log(∆1 . . .∆n) + nηc(Ant).

It follows that

`(∆1t) + `(∆2t) + · · ·+ `(∆nt) ≤ n log(An/Gn) + n`c(Ant), (4.13)

which, together with Lemma 4.1, implies Theorem 3.2(a). (b) and (c) follow from the
usual Chernoff calculation together with Proposition 3.1(a).

5 An inequality involving partitions

In this section we are interested in intermediate values of the deviation x. In
the sketchy Example 3.1, it appears that the McDiarmid diameter σn defined in (1.2)
is too big for intermediates values of the deviation. In this section, we introduce a
method which minimizes the effect of variations of the values of the individual diame-
ters ∆1,∆2, . . . ,∆n.

Definition 5.1. A set P of subsets of {1, 2, . . . , n} is called partition of {1, 2, . . . , n} iff:
(i) for any I in P, I is nonempty; (ii) for any I and for any J in P, either I ∩ J = ∅ or
I = J ; (iii)

⋃
I∈P I = {1, 2, . . . , n}.

We now define the diameter σ(P) and the entropy H(P) of a partition P as follows.
Let |J | denote the cardinality of a finite set J . We set

DJ =
∑
j∈J

∆j , AJ = |J |−1DJ and σ2(P) =
∑
J∈P
|J |A2

J . (5.1)
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Let the geometric means GJ and the entropy be defined by

GJ =
(∏
j∈J

∆j

)1/|J|
and H(P) =

∑
J∈P
|J | log(AJ/GJ). (5.2)

The so defined quantities satisfy σ2(P) ≤ σ2
n and H(P) ≥ 0. Furthermore H(P) = 0 if

and only if σ2(P) = σ2
n.

Theorem 5.1. Let the convex and differentiable function `0 be defined by

`0(t) = t2/8 for t ∈ [0, 2] and `0(t) = t− log t− (3/2) + log 2 for t ≥ 2.

Let Z be defined by (1.1). For any positive t and any partition P of {1, 2, . . . , n},

log IE
(
exp(tZ − tIE(Z))

)
≤ H(P) + (D2

n/σ
2(P))`0(σ2(P)t/Dn). (a)

Consequently, for any x in [0, 1],

IP
(
Z − IE(Z) ≥ Dnx

)
≤ exp

(
H(P)− (D2

n/σ
2(P))`∗0(x)

)
(b)

and, for any positive y,

IP
(
Z − IE(Z) ≥ Dn`

∗−1
0

(
D−2
n min

P
σ2(P)(H(P) + y)

) )
≤ e−y. (c)

Remark 5.1. In Theorem 5.1(c), for small values of y, the optimal partition has a small
entropy and a large diameter, while, for large values of y, the optimal partition has a
small diameter and a large entropy.

Remark 5.2. The functions `∗0 and `∗−1
0 are explicit. More precisely

`∗0(x) = 2x2 for x ∈ [0, 1/2] and `∗0(x) = − log(1− x) + (1/2)− log 2 for x ∈ [1/2, 1],

`∗−1
0 (y) =

√
y/2 for y ∈ [0, 1/2] and `∗−1

0 (y) = 1− (
√
e/2)e−y for y ≥ 1/2.

Example 3.1 (continued). Let Q denote the quantile function of Z − IE(Z). For p =

e−9/2, Theorem 5.1(c) applied with P = {[1, 13], [14, 100]} (the optimal partition) yields
Q(p) ≤ 62.18. The McDiarmid inequality (1.3) yields Q(p) ≤ 75, and Theorem 3.2 yields
Q(p) ≤ 64.93. For small values of p, the optimal partition is P = {[1, 100]}. In this case
Theorem 5.1 is less efficient than Theorem 3.2, since `∗−1

0 (y) > `∗−1
c (y). For example,

let q = IP(Z − IE(Z) ≥ 75). Theorem 5.1(b) yields q ≤ 3.0 10−7 instead of q ≤ 2.7 10−8

with Theorem 3.2. Recall that (1.3) yields q ≤ 1.1 10−2.

Proof of Theorem 5.1. By Lemma 4.1 together with (4.13),

log IE
(
exp(tZ − tIE(Z))

)
≤
∑
J∈P

∑
j∈J

`(∆jt) ≤ H(P) +
∑
J∈P
|J | `c(AJ t).

Now `c(t) ≤ min(t2/8, η(t0) + t− log t− 1) ≤ `0(t) for any positive t. Hence

log IE
(
exp(tZ − tIE(Z))

)
≤ H(P) +

∑
J∈P
|J | `0(AJ t). (5.3)

To complete the proof of Theorem 5.1, we proceed exactly as in the proof of Theorem
3.1: since `0(0) = 0, ∑

J∈P
|J | `0(AJ t) =

∫ t

0

(∑
J∈P

DJ`
′
0(AJu)

)
du. (5.4)
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Now `′0(t) = t/4 for t ≤ 2 and `′0(t) = 1 − (1/t) for t ≥ 2, which ensures that `′0 is
continuous and increasing. `′′0(t) = 1/4 for t < 2 and `′′(0) = t−2 for t > 2, which ensures
that limt↓2 `

′′
0(t) = 1/4. Hence, by L’Hospital’s rule, `′0 is differentiable at point 2, and

`′′0(2) = 4. Consequently `′′0 is continuous and nonincreasing, which ensures that `′0 is
concave. It follows that ∑

J∈P
DJ`

′
0(AJu) ≤ Dn`

′
0(σ2(P)u/Dn).

Integrating this inequality, we then get that∫ t

0

(∑
J∈P

DJ`
′
0(AJu)

)
du ≤ (D2

n/σ
2(P))`0(σ2(P)t/Dn), (5.5)

which, together with (5.3) and (5.4), implies Theorem 5.1(a). Theorem 5.1(b) follows
from the usual Chernoff calculation and Theorem 5.1(c) is an immediate consequence
of Theorem 5.1(b).
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