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1 Introduction

LetW (t) be a two-sided Brownian motion withW (0) = 0; i.e., (W (t))t≥0 and (W (−t))t≥0
are two independent standard Brownian motions. Fix γ > 0, and consider the Brownian
motion with parabolic drift

Wγ(t) := W (t)− γt2. (1.1)

We are interested in the maximum

Mγ := max
−∞<t<∞

Wγ(t) (1.2)

of Wγ (which is a.s. finite), and, in particular, the location of the maximum, which we
denote by

Vγ := argmaxt
(
Wγ(t)

)
; (1.3)

in other words, Vγ = t ⇐⇒ Wγ(t) = Mγ . (The maximum in (1.2) is a.s. attained at a
unique point, so Vγ is well-defined a.s.)

The parameter γ is just a scale parameter, see (2.2), so it can be fixed arbitrarily
without loss of generality.

The distribution of Vγ was called Chernoff’s distribution by Groeneboom and Wellner
[14] since it apparently first appeared in Chernoff [6]. It has been studied by several
authors; in particular, Groeneboom [10, 11] gave a description of the distribution and
Groeneboom and Wellner [14] give more explicit analytical and numerical formulas;
see also Daniels and Skyrme [9]. It has many applications in statistics, see for example
Groeneboom and Wellner [14] and the references given there, or, for a more recent
example, Anevski and Soulier [3].

The descriptions of the distribution of Vγ in [10; 11; 14] are, however, rather compli-
cated. In particular, they do not yield simple formulas for the moments EV nγ of Vγ . The
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Moments of the location of the maximum

purpose of the present paper is to use these descriptions and derive formulas for the
moments of Vγ in terms of integrals involving the Airy function Ai(x). (Recall that Ai(x)

satisfies Ai′′(x) = xAi(x) and is up to a constant factor the unique solution that tends to
0 as x↗ +∞. See further [1, 10.4].)

All odd moments of Vγ vanish by symmetry, and our main result is the following
formula for the even moments, proved in Section 4. (The special case n = 2 is given by
Groeneboom [13].)

Theorem 1.1. For every even positive integer n, there is a polynomial pn of degree at
most n/2 such that

EV nγ =
2−n/3γ−2n/3

2πi

∫ i∞

−i∞

pn(z)

Ai(z)2
dz =

2−n/3γ−2n/3

2π

∫ ∞
−∞

pn(iy)

Ai(iy)2
dy. (1.4)

In particular, the variance of Vγ is

EV 2
γ = −2−2/3γ−4/3

6πi

∫ i∞

−i∞

z

Ai(z)2
dz =

2−2/3γ−4/3

6πi

∫ ∞
−∞

y

Ai(iy)2
dy. (1.5)

The integrals are rapidly converging and easily computed numerically by standard
software.

The polynomials pn(z) can be found explicitly for any given n by the procedure in
Section 4, but we do not know any general formula. They are given for small n in
Table 1. See further the conjectures and problems in Section 5.

Numerical values of the first ten absolute moments are given by Groeneboom and
Wellner [14]; the first four were computed by Groeneboom and Sommeijer (1984, un-
published). (The values in [14] for the even moments agree with our formula. We have
no formula for odd absolute moments.)

The maximum Mγ also appears in many applications. Its distribution is given in
Groeneboom [10, 11, 12] and Daniels and Skyrme [9], see also, for example, Barbour [4,
5], Daniels [7, 8], Janson, Louchard and Martin-Löf [15]. (Groeneboom [11] describes
even the joint distribution of the maximum Mγ and its location Vγ , see also Daniels
and Skyrme [9].) Formulas for the mean are given by Daniels and Skyrme [9], see also
Janson, Louchard and Martin-Löf [15]; in particular

EMγ = −2−2/3γ−1/3

2πi

∫ i∞

−i∞

z

Ai(z)2
dz. (1.6)

Comparing (1.6) and (1.5), we find the simple relation [13]

EV 2
γ =

1

3γ
EMγ . (1.7)

Since Mγ = WVγ − γV 2
γ , this implies that, at the maximum point,

EWVγ =
4

3
EMγ and E γV 2

γ =
1

3
EMγ =

1

4
EWVγ . (1.8)

A direct proof of these simple relations has been found by Pimentel [16].
Formulas for second and higher moments of Mγ are given in Janson, Louchard and

Martin-Löf [15]; however, they are more complicated and do not correspond to the
formulas for moments of Vγ in the present paper. It would be interesting to find relations
between higher moments of Mγ and moments of Vγ .

Let us finally mention that the random variable Vγ is the value at a fixed time (0, to
be precise) of the stationary stochastic process

Vγ(x) := argmaxt
(
W (t)− γ(t− x)2

)
, (1.9)

which is studied by Groeneboom [10, 11, 13]. It would be interesting to find formulas
for joint moments of Vγ(x), in particular for the covariances.
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2 First formulas for moments

Note first that for any a > 0, W (at)
d
= a1/2W (t) (as processes on (−∞,∞)), and thus

Vγ = a argmax
(
W (at)− γ(at)2

)
d
= a argmax

(
a1/2W (t)− a2γt2

)
= aVa3/2γ . (2.1)

The parameter γ is thus just a scale parameter, and it suffices to consider a single
choice of γ. Although the choices γ = 1 and γ = 1/2 seem most natural, we will use
γ = 1/

√
2 which gives simpler formulas. We thus define V := V1/

√
2 and have by (2.1)

with a = 2−1/3γ−2/3, for any γ > 0,

Vγ
d
= 2−1/3γ−2/3V. (2.2)

Remark 2.1. Similarly,

Mγ
d
= γ

1/3
1 γ−1/3Mγ1 (2.3)

for any γ, γ1 > 0.

By Groeneboom [11, Corollary 3.3], V has the density

f(x) = 1
2g(x)g(−x), (2.4)

where g has the Fourier transform, see [11, (3.8)] (this is where our choice γ = 2−1/2 is
convenient),

ĝ(t) :=

∫ ∞
−∞

eitxg(x) dx =
21/2

Ai(it)
, −∞ < t <∞. (2.5)

Note that |Ai(it)| → ∞ rapidly as t → ±∞, see [1, 10.4.59] or [15, (A.3)], so ĝ(t) is
rapidly decreasing. In fact, it follows from the precise asymptotic formula [1, 10.4.59]
that

Ai(x+ iy)−1 = O
(
e−cy

3/2)
(2.6)

for some c > 0, uniformly for |x| ≤ A for any fixed A and |y| ≥ 1, say (to avoid the zeros
of Ai). By differentiation (Cauchy’s estimates, see e.g. [17, Theorem 10.25]), it follows
that the same holds for all derivatives of Ai(x + iy)−1, and thus all derivatives of ĝ(t)

decrease rapidly. In particular, ĝ belongs to the Schwartz class S of rapidly decreasing
functions on R; since this class is preserved by the Fourier transform, also g ∈ S (see
e.g. [18, Theorem 7.7]). In particular, g is integrable.

The characteristic function of V is the Fourier transform f̂(t), and thus by (2.4), (2.5)
and standard Fourier analysis (see e.g. [18, Theorems 7.7–7.8], but note the different
normalization chosen there), with ǧ(t) := g(−t),

ϕ(t) = f̂(t) =
1

2
ĝǧ(t) =

1

2
· 1

2π

(
ĝ ∗ ̂̌g) =

1

4π
ĝ ∗ ˇ̂g

=
1

2π

∫ ∞
−∞

ds

Ai(i(t+ s))Ai(is)
=

1

2πi

∫ i∞

−i∞

dz

Ai(z + it)Ai(z)
.

(2.7)

This is also given in Groeneboom [13, Lemma 2.1] (although with typos in the formula).
The last integral is taken along the imaginary axis, but we can change the path of
integration, as long as it passes to the right of the zeros an of the Airy function (which
are real and negative), for example a line Re z = b with b > a1 = −|a1|.

We pause to note the following.
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Theorem 2.2. The moment generating function E etV is an entire function of t, and is
given by, for any complex t,

E etV =
1

2πi

∫ b+i∞

b−i∞

dz

Ai(z + t)Ai(z)
, (2.8)

for any real b with b > a1 and b+ Re t > a1.

Proof. The density function f(t) ≤ exp(−|t|3/3) as t → ±∞ by [11, Corollary 3.4(iii)].
Hence, E etV < ∞ for every real t, which implies that E etV is an entire function of t.
The formula (2.8) now follows from (2.7) by analytic continuation (for each fixed b).

By differentiation of (2.7) (or (2.8)) we obtain, for any n ≥ 0,

EV n = (−i)n
dn

dtn
ϕ(0) =

1

2πi

∫ i∞

−i∞

dn

dzn

(
1

Ai(z)

)
dz

Ai(z)
. (2.9)

By integration by parts, this is generalized to:

Theorem 2.3. For any j, k ≥ 0,

EV j+k =
(−1)j

2πi

∫ i∞

−i∞

dj

dzj

(
1

Ai(z)

)
· dk

dzk

(
1

Ai(z)

)
dz. (2.10)

Proof. For j = 0, this is (2.9).
If we denote the integral on the right-hand side of (2.10) by J(j, k), then, for j, k ≥ 0,

integration by parts yields J(j, k) = −J(j− 1, k+ 1), and the result follows by induction.

Since EV j+k = EV k+j , we see again by symmetry that EV n = 0 when n is odd. For
even n, it is natural to take j = k = n/2 in (2.10). For small n, this yields the following
examples. First, n = j = k = 0 yields

1 = EV 0 =
1

2πi

∫ i∞

−i∞

1

Ai(z)2
, (2.11)

as noted by Daniels and Skyrme [9]; this is easily verified directly, since πBi(z)/Ai(z) is
a primitive function of 1/Ai2, see [2].

Next, for n = 2 and n = 4 we get

EV 2 =
−1

2πi

∫ i∞

−i∞

(
d

dz

(
1

Ai(z)

))2

dz =
−1

2πi

∫ i∞

−i∞

Ai′(z)2

Ai(z)4
dz (2.12)

and

EV 4 =
1

2πi

∫ i∞

−i∞

(
d2

dz2

(
1

Ai(z)

))2

dz

=
1

2πi

∫ i∞

−i∞

(
− z

Ai(z)
+

2Ai′(z)2

Ai(z)3

)2

dz.

(2.13)

Remark 2.4. Since Ai′′(z) = zAi(z), it follows by induction that the m:th derivative
dm

dzm

(
Ai(z)−1

)
can be expressed as a linear combination (with integer coefficients) of

terms
zjAi′(z)k

Ai(z)`
(2.14)

with j, k ≥ 0, 2j + k ≤ m and ` = k + 1.
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3 Some combinatorics of Airy integrals

Inspired by Theorem 2.3 and Remark 2.4, we define in general, for any integers
j, k ≥ 0,

I(j, k) :=
1

2πi

∫ i∞

−i∞

zjAi′(z)k

Ai(z)k+2
dz. (3.1)

(The integrand decreases rapidly as z → ±i∞ by (2.6) and the estimate Ai′(z)/Ai(z) ∼
−z1/2 as |z| → ∞ in any sector | arg z| ≤ π − ε with ε > 0 [1, 10.4.59 and 10.4.61]; thus
the integral is absolutely convergent.) Then, recalling Ai′′(z) = zAi(z), for any j, k ≥ 0,

0 =
1

2πi

∫ i∞

−i∞

d

dz

zjAi′(z)k

Ai(z)k+2
dz

= jI(j − 1, k) + kI(j + 1, k − 1)− (k + 2)I(j, k + 1),

(3.2)

where we for convenience define I(j, k) = 0 for j < 0 or k < 0. Consequently, for
j, k ≥ 0,

I(j, k + 1) =
j

k + 2
I(j − 1, k) +

k

k + 2
I(j + 1, k − 1), (3.3)

or, for j ≥ 0 and k ≥ 1,

I(j, k) =

{
j

k+1I(j − 1, 0), k = 1,
j

k+1I(j − 1, k − 1) + k−1
k+1I(j + 1, k − 2), k ≥ 2.

(3.4)

By repeatedly using this relation, any I(j, k) may be expressed as a rational combination
of I(p, 0) with 0 ≤ p ≤ j + k/2. For example,

I(0, 1) = 0; (3.5)

I(0, 2) = 1
3I(1, 0); (3.6)

I(1, 2) = 1
3I(0, 1) + 1

3I(2, 0) = 1
3I(2, 0); (3.7)

I(0, 4) = 3
5I(1, 2) = 1

5I(2, 0). (3.8)

Remark 3.1. In the same way, one can obtain recursion formulas for the more general
integrals

1

2πi

∫ i∞

−i∞

zjAi′(z)k

Ai(z)`
dz, (3.9)

where j, k, ` ≥ 0 with ` > k. We have, however, only use for the case ` = k + 2 treated
above.

4 Back to moments

Proof of Theorem 1.1. By combining (2.9) and Remark 2.4, we can express any moment
EV n as a linear combination with integer coefficients of terms I(j, k) with 2j + k ≤ n.
By repeated use of (3.4) (see the comment after it), this can be further developed into
a linear combination with rational coefficients of terms I(j, 0) with 0 ≤ j ≤ n/2.

For example, by (2.12) and (3.6),

EV 2 = −I(0, 2) = −1

3
I(1, 0) = − 1

6πi

∫ i∞

−i∞

z

Ai(z)2
dz, (4.1)

which yields (1.5) by (2.2).
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p0(z) = 1

p2(z) = − 1
3z

p4(z) = 7
15z

2

p6(z) = − 31
21z

3 + 26
21

p8(z) = 127
15 z

4 − 196
9 z

p10(z) = − 2555
33 z5 + 13160

33 z2

p12(z) = 1414477
1365 z6 − 2419532

273 z3 + 1989472
1365 .

Table 1: The polynomials pn(z) for small even n.

To continue with higher moments we have next, by (2.13) and (3.7)–(3.8),

EV 4 = I(2, 0)− 4I(1, 2) + 4I(0, 4)

=
(

1− 4

3
+

4

5

)
I(2, 0) =

7

15
I(2, 0)

=
7

30πi

∫ i∞

−i∞

z2

Ai(z)2
dz.

(4.2)

Similarly (using Maple),

EV 6 =
1

2πi

∫ i∞

−i∞

(26− 31z3)/21

Ai(z)2
dz. (4.3)

In general this procedure yields, for some rational numbers bnj ,

EV n =

n/2∑
j=0

bnjI(j, 0) =
1

2πi

∫ i∞

−i∞

pn(z)

Ai(z)2
dz. (4.4)

where pn(z) :=
∑n/2
j=0 bnjz

j is a polynomial of degree at most n/2. By (2.2), this is
equivalent to the more general (1.4).

For odd n, we already know that EV n = 0, so we are mainly interested in pn for even
n. The polynomials p0, p2, p4, p6 are implicit in (2.11), (4.1), (4.2) and (4.3), and some
further cases (computed with Maple) are given in Table 1.

Remark 4.1. We can see from Table 1 that (for these n) pn(z) contains only terms
zj where j ≡ n/2 (mod 3). This is easily verified for all even n: a closer look at the
induction in Remark 2.4 shows that only terms (2.14) with 2j+ k ≡ m (mod 3) appears,
and the reduction in (3.4) preserves 2j + k (mod 3).

5 Problems and conjectures

The proof above yields an algorithm for computing the polynomials pn(z), but no
simple formula for them. We thus ask the following.

Problem 5.1. Is there an explicit formula for the coefficients bnj , and thus for the
polynomials pn(z)? Perhaps a recursion formula?

We have computed pn(z) for 1 ≤ n ≤ 100 by Maple, and based on the results (see
also Table 1), we make the following conjectures.
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Conjectures 5.2. (i) pn(z) = 0 for every odd n.

(ii) pn(z) has degree exactly n/2; i.e., the coefficient bn,n/2 of zn/2 is non-zero.

(iii) These leading coefficients have exponential generating function

∞∑
n=0

bn,n/2

n!
xn =

x

sinhx
. (5.1)

Of these conjectures, (i) is natural, since we know that EV n = 0 for odd n, and (ii)
is not surprising. The precise conjecture (5.1) is perhaps more surprising. We have
verified that the coefficients up to x100 agree, but we have no general proof.

The simple form of (5.1) suggests also the following open problem.

Problem 5.3. Is there an explicit formula for the generating function
∑∞
n=0 pn(z)xn?
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