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Abstract

The space of metric measure spaces (complete separable metric spaces with a prob-
ability measure) is becoming more and more important as state space for stochastic
processes. Of particular interest is the subspace of (continuum) metric measure
trees. Greven, Pfaffelhuber and Winter introduced the Gromov-Prohorov metric dGP

on the space of metric measure spaces and showed that it induces the Gromov-weak
topology. They also conjectured that this topology coincides with the topology in-
duced by Gromov’s 21 metric. Here, we show that this is indeed true, and the
metrics are even bi-Lipschitz equivalent. More precisely, dGP = 1

2
2 1

2
, and hence

dGP ≤ 21 ≤ 2dGP. The fact that different approaches lead to equivalent metrics
underlines their importance and also that of the induced Gromov-weak topology.

As an application, we give a shorter proof of the known fact that the map associ-
ating to a lower semi-continuous excursion the coded R-tree is Lipschitz continuous
when the excursions are endowed with the (non-separable) uniform metric. We also
introduce a new, weaker, metric topology on excursions, which has the advantage
of being separable and making the space of bounded excursions a Lusin space. We
obtain continuity also for this new topology.
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1 Introduction

Tree-valued stochastic processes frequently appear in probability theory and its ap-
plication areas, such as theoretical biology. For instance, in an evolutionary model, the
development of the genealogical tree is of interest. In the continuum limit of infinite
population size, the finite tree becomes a continuum tree (R-tree) and the normalised
counting measure of individuals becomes a probability measure on it. This measure is
needed to describe the population density on the tree and to sample individuals from
it. See Aldous’ seminal paper [3] for the convergence of finite variance Galton-Watson
trees to a (Brownian) continuum measure tree, and results of Duquesne and Le Gal
([13, 11]) for the convergence of infinite variance Galton-Watson trees to Lévy trees.

More generally than R-trees, we can considers random metric (probability) measure
spaces, an approach introduced by Greven, Pfaffelhuber and Winter in [17] and applied
by the authors and Depperschmidt to obtain tree-valued Fleming-Viot dynamics in [18,
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Equivalence of Gromov-Prohorov- and Gromov’s 2λ-metric

9]. Here, X = (X, d, µ) is a metric measure space (mm-space) if (X, d) is a complete,
separable metric space and µ a probability measure on the Borel σ-algebra of X. To
work with mm-space valued processes, it is crucial to have an appropriate topology on
the set of mm-spaces, or rather the set X of isometry classes of mm-spaces. A fruitful
topology is given by the Gromov-weak topology introduced in [17]. In the same paper,
the authors conjectured that it coincides with the topology induced by Gromov’s metric
21, which is defined in [19, Chapter 3 1

2 ]. They also introduced a complete metric, the
Gromov-Prohorov metric dGP, that metrises the Gromov-weak topology.

Here, we show that 21 and dGP are bi-Lipschitz equivalent, which in particular im-
plies that the conjecture is true and 21 indeed metrises Gromov-weak topology. Fur-
thermore, we use this result to prove that the measure R-tree coded by an excursion
depends continuously on the excursion. To this end, we consider two topologies on
the space of lower semi-continuous excursions. For the uniform topology, Lipschitz
continuity is already shown by Abraham, Delmas and Hoscheit in [1, Prop. 2.9] (with
their metric on trees, which implies the result for ours), but we obtain a much shorter
proof using the equivalence of dGP and 21. The uniform topology has the disadvantage
of being non-separable, therefore we introduce a new, weaker, separable, metrisable
topology, which is Lusin on the subset of bounded excursions. We also show continuous
dependence of the tree on the excursion in this weaker topology.

In the next section, we recall the definition of the metrics dGP and 21, as well as of
Gromov-weak topology, and emphasize that the algebra of polynomials used to define
Gromov-weak topology is convergence determining albeit not dense in the bounded
continuous functions. We also give a short comparison to related, but slightly different
topologies used on spaces of mm-spaces. The third section contains the proof of the
equivalence of dGP and 21. In the last section, we apply the equivalence to measure
trees coded by excursions and define the new topology on the space of excursions.

2 Metrics and topologies on the space of mm-spaces

We do not distinguish between isomorphic mm-spaces. Here, two mm-spaces X =

(X, d, µ) and X ′ = (X ′, d′, µ′) are called isomorphic if there is a measure preserving
map f : X → X ′ such that the restriction to the support of µ is an isometry, i.e.

µ′ = µ ◦ f−1 and d(x, y) = d′
(
f(x), f(y)

)
∀x, y ∈ supp(µ).

We denote the space of (isometry classes of) mm-spaces by X.

Remark 2.1. Because (X, d) is complete, an isomorphism f from X to X ′ is an iso-
metric bijection between supp(µ) and supp(µ′). In particular, there is also an inverse
isomorphism g from X ′ to X with g ◦ f = id on supp(µ).

Gromov-Prohorov metric

The Gromov-Prohorov metric is obtained by embedding the metric spaces underlying
the mm-spaces optimally into a common metric space and taking the Prohorov distance
between the pushforward measures.

Definition 2.2 (Prohorov metric). Let µ, ν be probability measures on a metric space
(X, d). Then the Prohorov distance is

dPr(µ, ν) := inf
{
ε > 0

∣∣ µ(A) ≤ ν(Aε) + ε ∀A ∈ B(X)
}
,

where Aε :=
{
x ∈ X

∣∣ d(A, x) < ε
}

and B denotes the Borel σ-algebra.
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Remark 2.3. Below, we use the following equivalent expression for the Prohorov met-
ric. A coupling between µ and ν is a measure ξ on X2 = X ×X with marginals µ and
ν on X. Then

dPr(µ, ν) = inf
{
ε > 0

∣∣∣ ∃ coupling ξ of µ, ν : ξ
(
{ (x, y) ∈ X2 | d(x, y) ≥ ε }

)
≤ ε

}
.

Definition 2.4 (Gromov-Prohorov metric). Let Xi = (Xi, di, µi) ∈ X, i = 1, 2, be mm-
spaces. The Gromov-Prohorov metric is defined by

dGP(X1,X2) := inf
f,g

dPr

(
µ1 ◦ f−1, µ2 ◦ g−1

)
,

where the infimum is taken over all isometries f : X1 → X and g : X2 → X into a
common separable metric space (X, d).

Gromov-weak topology

The idea of Gromov-weak topology is to use convergence in distribution of finite metric
subspaces, which are sampled from X with the measure µ. A very nice property of
the Gromov-Prohorov metric is that it induces precisely the Gromov-weak topology, as
shown in [17]. This alternative characterisation of convergence provides us with a sub-
algebra of Cb(X), called algebra of polynomials. The usefulness of this algebra stems
from the fact that it is rich enough to determine convergence of measures on X. To
emphasize that polynomials are an essential tool for working with convergence in dis-
tribution of X-valued random variables, we remark that one cannot use the space Cc(X)

of continuous functions with compact support, because no point in X has a compact
neighbourhood, and hence Cc(X) = {0} is trivial.

Definition 2.5. A polynomial (on X) is a function Φ: X→ R of the form

Φ(X ) = Φφ(X ) :=

∫
Xn

φ
((
d(xi, xj)

)
i,j≤n

)
µ⊗n(dx),

where n ∈ N and φ ∈ Cb
(
Rn×n

)
. Let Π be the set of such functions. Gromov-weak

topology is the topology induced by Π on X.

Remark 2.6 (Polynomials are not dense). Π is obviously an algebra, but it is not dense
in Cb(X). To see this, assume it is dense and consider the subspace Xr of mm-spaces
with essential diameter bounded by a fixed r > 0. Because Xr is closed, the set Πr :=

{Φ�Xr
| Φ ∈ Π } of restrictions of polynomials to Xr is dense in Cb(Xr). Because Πr

is clearly separable, this means that Cb(Xr) is separable, and hence Xr is compact.
This is a contradiction (e.g. the set of finite spaces with discrete metric and uniform
distribution has no limit point).

We say that a set F ⊆ Cb(X) is convergence determining if for probability mea-
sures ξn, ξ on X, the weak convergence ξn

w−→ ξ is equivalent to∫
f dξn

n→∞−→
∫
f dξ ∀f ∈ F .

Since Cb(X) is difficult to describe, it is important to have such a set with a more
tractable description. That Π is indeed convergence determining is shown with some
effort by Depperschmidt, Greven and Pfaffelhuber in [8]. We can also deduce it from an
apparently not so well-known general theorem due to Le Cam.
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Theorem 2.7 (Le Cam, [21]; see also [20, Lem. 4.1]). Let X be a completely regular
Hausdorff space, and F ⊆ Cb(X) multiplicatively closed. Then F is convergence de-
termining for Radon probability measures if and only if F generates the topology of
X.

Corollary 2.8. The set Π of polynomials is convergence determining.

Proof. X is a Polish space, hence completely regular and all probability measures on it
are Radon. Π is an algebra, thus multiplicatively closed and we can apply the Le Cam
theorem.

Gromov’s metric 2λ

To obtain the Gromov-Prohorov metric, we embed the metric spaces and measure the
distance of the resulting pushforward measures with the Prohorov metric. For Gromov’s
2λ metric, it works the opposite way. Namely, the measure spaces are parametrised by
a measure preserving map from [0, 1] (with Lebesgue measure), and then the distance
of the resulting pullbacks of the metrics is evaluated with the following metric.

Definition 2.9 (2λ metric). Let (X,B, µ) be a probability space. For functions r, s : X×
X → R, we define

2λ(r, s) := inf
{
ε > 0

∣∣∣ ∃Xε ∈ B : ‖r�Xε×Xε
− s�Xε×Xε

)‖∞ ≤ ε, µ(X \Xε) ≤ λε
}
.

Obviously, we have

2λ ≤ 2λ′ ≤ λ
λ′2λ ∀λ > λ′.

Definition 2.10 (Gromov’s 2λ metric). Let X ,X ′ ∈ X, and I := [0, 1], equipped with
Lebesgue measure. Let F(X ) :=

{
ϕ : I → X

∣∣ ϕ is measure preserving
}

be the set of
parametrisations of X = (X,µ), and for ϕ ∈ F(X ) let dϕ(s, t) := d

(
ϕ(s), ϕ(t)

)
be the

pullback of d with ϕ. Then we define

2λ(X ,X ′) := inf
ϕ∈F(X )
ϕ′∈F(X ′)

2λ(dϕ, d
′
ϕ′).

Remark 2.11. Because (X, d) is a Polish space, the set F(X ) of (measure preserv-
ing) parametrisations is non-empty. This follows for example from the version of the
Skorohod representation on [0, 1] given in [6, Thm. 8.5.4].

Related topologies

1. In [16], Fukaya introduced the measured Hausdorff topology (often cited as mea-
sured Gromov-Hausdorff topology) for compact mm-spaces. The same topology is
called weighted Gromov-Hausdorff topology, and a complete metric inducing it
is constructed by Evans and Winter in [15]. The idea is that spaces are close if there
is an ε-isometry mapping one measure Prohorov-close to the other. Convergence in
measured Hausdorff topology implies Gromov-weak convergence, but not vice versa,
because the former implies Gromov-Hausdorff convergence of the underlying metric
spaces, which is not the case for Gromov-weak topology. Note that the underly-
ing equivalence classes are also different: For two mm-spaces to be equivalent in
the measured Hausdorff topology, the whole spaces have to be isometric, while in a
Gromov-weak sense, this is required only for the supports of the measures.
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2. Recently, Abraham, Delmas and Hoscheit ([2]) extended the measured Hausdorff
topology to complete, locally compact, rooted length spaces with locally finite mea-
sures. Note that these measures are finite on all balls, because closed balls are
compact in such spaces. The authors introduced the Gromov-Hausdorff-Prohorov
metric, first on compact spaces using an embedding and measuring the sum of
Hausdorff and Prohorov distance. That this metrises measured Hausdorff topology
is easy to see from the definitions, using the same connection between ε-isometries
and Hausdorff-close embeddings that is frequently applied in the context of Gromov-
Hausdorff convergence. In the locally compact setting, they integrate the weighted
distances of the measures restricted to balls. Note that this extended topology is
vague in the sense that the total mass is not preserved. Thus, on spaces with finite
(not necessarily probability) measures, it is not stronger than the natural extension
of Gromov-weak topology, where the measures in Definition 2.5 are no longer re-
quired to be probabilities.

3. In [24], Sturm defines the L2-transportation distance analogously to dGP, but with
the (2-)Wasserstein metric instead of the Prohorov metric. It induces a topology
on X that is strictly stronger than Gromov-weak topology, but coincides with it on
subspaces of X consisting of spaces with uniformly bounded (essential) diameter.
Its restriction to the space of compact mm-spaces is strictly weaker than measured
Hausdorff topology.

3 Equivalence of dGP and 21

Theorem 3.1. dGP = 1
22 1

2
.

Proof. Let Xi = (Xi, di, µi), i = 1, 2, be mm-spaces.

“≥”: Assume dGP(X1,X2) < ε for some ε > 0. Then we can embed (Xi, di), i = 1, 2,
into a (common) complete, separable metric space (X, d), such that the pushforward
measures νi satisfy dPr(ν1, ν2) < ε. Thus there is a coupling ν of ν1 and ν2 on X2 with

ν(Yε) ≤ ε for Yε :=
{

(x, y) ∈ X2
∣∣ d(x, y) ≥ ε

}
.

Now choose a parametrisation ϕ of (X2, ν), i.e. ϕ : [0, 1]→ X2 is measurable and ν = λ ◦
ϕ−1 for Lebesgue measure λ. Let πi, i = 1, 2, be the canonical projections from X2 to X.
Then ϕi := πi ◦ϕ is a parametrisation of Xi (or its isomorphic image in X). Let ri be the
pullback of d under ϕi. We show 2 1

2
(r1, r2) ≤ 2ε. Indeed, λ

(
ϕ−1(Yε)

)
= ν(Yε) ≤ ε = 1

22ε,

and for s, t ∈ [0, 1] \ ϕ−1(Yε) we have by definition of Yε that d
(
ϕ1(s), ϕ2(s)

)
≤ ε. Thus

r1(s, t) = d
(
ϕ1(s), ϕ1(t)

)
≤ d

(
ϕ2(s), ϕ2(t)

)
+ 2ε = r2(s, t) + 2ε,

and by symmetry,
∣∣r1(s, t)− r2(s, t)

∣∣ ≤ 2ε. In total, 2 1
2
(X1,X2) ≤ 2 1

2
(r1, r2) ≤ 2ε.

“≤”: Let 2 1
2
(X1,X2) < 2ε and ϕi : [0, 1] → Xi parametrisations of Xi, i = 1, 2, with

2 1
2
(r1, r2) < 2ε, where ri is the pullback of di with ϕi. There is a set S ⊆ [0, 1] with

λ(S) ≥ 1 − ε and |r1 − r2| ≤ 2ε on S2. On the disjoint union X := X1 ]X2, we define a
metric d by

d�X2
i

:= di and d(x, y) := inf
s∈S

d1

(
x, ϕ1(s)

)
+ d2

(
ϕ2(s), y

)
+ ε ∀x ∈ X1, y ∈ X2.

(3.1)
We check that d satisfies the 4-inequality in Lemma 3.3 below. Extend the µi to mea-
sures on X with support in Xi. To estimate their Prohorov distance in (X, d), let F ⊆ X
be measurable. Note that by definition, d

(
ϕ1(s), ϕ2(s)

)
= ε for every s ∈ S. Conse-

quently, for every ε0 > ε,

ϕ2

(
ϕ−1

1 (F ) ∩ S
)
⊆ F ε0 where F ε0 =

{
x ∈ X

∣∣ d(x, F ) < ε0

}
.
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Therefore,

µ1(F ) = λ
(
ϕ−1

1 (F )
)
≤ λ

(
ϕ−1

1 (F ) ∩ S
)

+ ε ≤ µ2

(
ϕ2

(
ϕ−1

1 (F ) ∩ S
))

+ ε ≤ µ2(F ε0) + ε.

Since ε0 > ε is arbitrary, dPr(µ1, µ2) ≤ ε and thus dGP(X1,X2) ≤ ε.

Corollary 3.2. For every λ > 0, we have

min{2, 1
λ} · dGP ≤ 2λ ≤ max{2, 1

λ} · dGP.

In particular, 21 induces the Gromov-weak topology.

Proof. For λ ≥ 1
2 , the equation 2 1

2
≤ 2λ2λ ≤ 2λ2 1

2
is obvious from the definition of

2λ. For λ ≤ 1
2 , we get the same inequality with “≥” instead of “≤”. Now the theorem

implies the claim.

We still have to check that (3.1) in the proof of Theorem 3.1 defines a metric.

Lemma 3.3. The d defined in (3.1) satisfies the 4-inequality. Thus it is a metric.

Proof. For x,m ∈ X1, y ∈ X2, we have

d(x, y) ≤ inf
s∈S

d1(x,m) + d1

(
m,ϕ1(s)

)
+ d2

(
ϕ2(s), y

)
+ ε = d(x,m) + d(m, y).

For x, y ∈ X1, m ∈ X2, we have

d(x, y) ≤ inf
s,t∈S

d1

(
x, ϕ1(s)

)
+ d1

(
ϕ1(s), ϕ1(t)

)
+ d1

(
ϕ1(t), y

)
≤ inf

s,t∈S
d1

(
x, ϕ1(s)

)
+ d2

(
ϕ2(s), ϕ2(t)

)
+ d1

(
ϕ1(t), y

)
+ 2ε

≤ inf
s
d1

(
x, ϕ1(s)

)
+ d2

(
ϕ2(s),m

)
+ ε+ inf

t
d2

(
m,ϕ2(t)

)
+ d1

(
ϕ1(t), y

)
+ ε

= d(x,m) + d(m, y).

All other cases follow by symmetry or by the 4-inequalities in X1 and X2.

4 Continuity of the coding of R-trees by excursions

An R-tree (see [10]) is a complete, connected 0-hyperbolic metric space (T, d). One
of the possible definitions of 0-hyperbolicity is that it satisfies the four point condition,
i.e.

d(v1, v2) + d(v3, v4) ≤ max
{
d(v1, v3) + d(v2, v4), d(v1, v4) + d(v2, v3)

}
∀v1, . . . , v4 ∈ T.

Note that every 0-hyperbolic space can be embedded isometrically into a unique small-
est R-tree (see [14, Thm. 3.38]), which is separable whenever the original space was
separable. Because dGP (unlike the measured Hausdorff topology) identifies a metric
measure space with every subspace containing the support of the measure, the equiva-
lence class of every 0-hyperbolic space contains an R-tree.

One possibility to construct 0-hyperbolic spaces is to code them by excursions, see
[3, 22, 13]. To this end, let h : [0, 1] → R+ be a positive function with h(0) = 0, and
consider the semi-metric

dh(s, t) := h(s) + h(t)− 2Ih(s, t), Ih(s, t) := inf
u∈[s∧t, s∨t]

h(u),

on [0, 1]. Then the quotient space Th := [0, 1]/dh is a 0-hyperbolic metric space. We
additionally assume that h is lower semi-continuous. Then Th is separable and the
natural projection

πh : [0, 1]→ Th
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is measurable. To see this, note that the canonical projection from the graph gr(h) ={
(t, h(t))

∣∣ t ∈ [0, 1]
}
⊆ R2 of h onto the tree Th is continuous due to lower semi-

continuity of h. Th needs to be neither complete nor connected, but we identify it with
its completion and, once we have put a measure on it, the equivalence class contains a
connected representative.

Remark 4.1. 1. If the graph of h is connected, then Th is complete and connected to
begin with. We do not, however, make this restriction.

2. If h is continuous, πh is continuous and Th is compact. Conversely, every compact
R-tree can be coded by a (non-unique) continuous excursion ([15, Rem. 3.2]). To
code compact measured trees, continuous excursions are not sufficient. See [12]
for a detailed account on coding compact, rooted, ordered, measured R-trees in a
unique way by upper semi-continuous càglàd excursions.

Definition 4.2. We define the set of (generalised) excursions on [0, 1] as

E :=
{
h : [0, 1]→ R+

∣∣ h(0) = 0, h lower semi-continuous
}
.

Let Eb be the subset of bounded functions in E . For h ∈ E , let the mass measure µh on
Th be the image of Lebesgue measure λ under πh and define the coding function

C : E → X, h 7→ Th := (Th, dh, µh).

It is shown in [1, Prop. 2.9] that the coding function C is Lipschitz continuous when
the space of excursions is equipped with the uniform metric and the space of trees
with the Gromov-Hausdorff-Prohorov metric. For the Gromov-Prohorov metric, this is
a slightly weaker statement. The proof, however, becomes trivial in this case if we use
Theorem 3.1, because the trees are already given in a parameterised form.

Proposition 4.3. Let h, g ∈ E . Then

dGP(Th, Tg) ≤ 2‖h− g‖∞ = 2 sup
t∈[0,1]

∣∣h(t)− g(t)
∣∣.

Proof. dGP(Th, Tg) = 1
22 1

2
(Th, Tg) ≤ 1

22 1
2
(dh, dg) ≤ 2‖h− g‖∞.

The uniform metric on E is a rather strong one, in particular E and Eb are not sep-
arable in this metric. The coding function turns out to be still continuous if we equip
E with a weaker, separable, metrisable topology, namely the weakest topology which is
stronger than convergence in measure and epigraph convergence. For h, h′ ∈ E , let

dλ(h, h′) := inf
{
ε > 0

∣∣∣ λ({ t ∣∣ |h(t)− h′(t)| > ε
})

< ε
}
,

which metrises convergence in Lebesgue measure, dH the Hausdorff metric in R2, and

dΓ(h, h′) := dH
(
epi(h), epi(h′)

)
, epi(h) :=

{
(t, y) ∈ [0, 1]×R+

∣∣ y ≥ h(t)
}
.

Note that the epigraph of a function is closed if and only if the function is lower semi-
continuous. Epigraph convergence is usually defined as convergence in Fell topology
(or equivalently Kuratowski convergence) of the epigraphs, see e.g. [4]. It is a compact,
metrisable topology on the set E of (R+∪{∞})-valued, lower semi-continuous functions
on [0, 1]. On E , the topology induced by dΓ is strictly stronger. Restricted to E , however,
the topologies coincide, which follows from [5, Thm. 1] using compactness of [0, 1] and
R-valuedness of excursions. Epigraph convergence also coincides with Γ-convergence
(see e.g. [23]), whence the name dΓ.

ECP 18 (2013), paper 17.
Page 7/10

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2268
http://ecp.ejpecp.org/


Equivalence of Gromov-Prohorov- and Gromov’s 2λ-metric

Definition 4.4. We endow E with the excursion metric dE := dΓ + dλ.

Recall that a metrisable topological space X is called Lusin space if it is the con-
tinuous, injective image of a Polish space, i.e. if there exists a Polish space Y and a
continuous bijection f : Y → X. X is Lusin if and only if it is homeomorphic to a Borel
subset of a Polish space (see [7, Sec. 8.6] for details).

Proposition 4.5. E is a separable metric space, and the set of continuous excursions
is dense. Furthermore, Eb is a Lusin space.

Proof. dE is obviously a metric, and the continuous excursions are both dΓ-dense (in-
creasing pointwise convergence implies dΓ-convergence) and dλ-dense in E . Hence E is
separable, and it remains to show that Eb is a Borel subset of a Polish space. First note
that this is the case for (Eb, dΓ), because the set of excursions bounded by a fixed M ∈ N
is closed in the compact metric space E with epigraph topology. Now we can identify
(Eb, dE) with the graph of the function π : (Eb, dΓ) → L0 :=

(
L0(λ), dλ

)
, which maps an

excursion to its λ-a.e. equivalence class. It is enough to show that π is measurable,
because then (Eb, dE) ∼= gr(π) is an injective measurable image of a Lusin space, hence
Lusin itself by [7, Thm. 8.3.7].

To show measurability, choose a fixed dense sequence (fn)n∈N of continuous excur-
sions, and define πn : Eb → L0, h 7→ supfk≤h, k≤n fk. Then πn is a simple function and
measurable, because {h ∈ Eb | h ≥ fk } is closed in (Eb, dΓ). Because h = supfn≤h fn, π
is the pointwise limit of the πn, thus also measurable.

Example 4.6 (dE is not complete and C is not uniformly continuous). Let hn(t) = 1 −
1N0

(nt), t ∈ [0, 1]. Then hn codes the discrete space of n points with uniform distribution
or, equivalently, the star-shaped tree with n leaves and uniform distribution on the
leaves. hn converges in epigraph topology to the zero function, while dλ(hn,1) = 0 for
each n. Thus (hn)n∈N is Cauchy w.r.t. dE , but does not converge.

(
C(hn)

)
n∈N is not a

Cauchy sequence in X, hence C is not uniformly continuous.

Remark 4.7. We do not know if E is Lusin or even Polish. Eb is not Polish, because it is
a dense Fσ-set (countable union of closed sets) with dense complement (in E).

That such a set cannot be Polish can be seen as follows. Let An be closed with
dense complement in E . Then its closure A n in E is closed with empty interior in the
Polish space E . Assume that A :=

⋃
n∈NAn is Polish. By the Mazurkiewicz theorem

([7, Thm. 8.1.4]), A is a Gδ-set in E , i.e. A =
⋂
n∈N Un for some open sets Un ⊆ E .

Let A′n := E \ Un. Then E =
⋃
n∈N

(
A n ∪ A′n

)
and by the Baire category theorem ([7,

Thm. D.37]), at least one A′n has to have non-empty interior. This means that A is not
dense.

Theorem 4.8. The coding function C : E → X is continuous (w.r.t. dE and dGP).

Proof. Fix h ∈ E , ε > 0. We construct a δ > 0 such that 21(dh, dg) ≤ 6ε for every g ∈ E
with dE(h, g) ≤ δ. Then Corollary 3.2 implies the result.

1. Let Aη :=
{
t ∈ [0, 1]

∣∣ Ih(t− η, t+ η) < h(t)− ε
}

. Because h is lower semi-continuous,
Aη ↘ ∅ for η → 0. Thus there is a 0 < δ < ε with λ(Aδ) < ε. Fix g ∈ E with dE(h, g) ≤ δ
and let Xε := [0, 1] \

(
Aδ ∪ { |h− g| > δ }

)
. Then λ

(
[0, 1] \Xε

)
≤ 2ε and it is enough to

show
∣∣dh(s, t)− dg(s, t)

∣∣ ≤ 6ε for s, t ∈ Xε. Because h and g are ε-close at s and t, this
is satisfied once we have shown

∣∣Ih(s, t)− Ig(s, t)
∣∣ ≤ 2ε.

2. “Ig ≤ Ih + 2ε”: Because h is lower semi-continuous, the infimum Ih(s, t) is attained
and there is a u ∈ [s, t] with h(u) = Ih(s, t). From dΓ(h, g) ≤ δ, we obtain the existence
of u′ ∈ [u − δ, u + δ] with g(u′) ≤ h(u) + δ. If u′ ∈ [s, t], then Ig(s, t) ≤ g(u′) ≤
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h(u) + δ ≤ Ih(s, t) + ε. For the case u′ 6∈ [s, t], assume w.l.o.g. u′ < s, and therefore
u ∈ [s, s + δ]. Then, because s is not in Aδ, we have Ih(s, t) = h(u) ≥ h(s)− ε ≥
g(s)− 2ε ≥ Ig(s, t)− 2ε.

3. “Ih ≤ Ig + 2ε”: Choose u ∈ [s, t] with g(u) = Ig(s, t) and u′ ∈ [u − δ, u + δ] with
h(u′) ≤ g(u) + δ. As above we can assume u ∈ [s, s + δ], u′ ∈ [s − δ, s] and obtain
Ih(s, t) ≤ h(s) ≤ h(u′) + ε ≤ g(u) + 2ε = Ig(s, t) + 2ε.
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