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We study the differentiability of the CIR process with respect to its parameters. We
give a stochastic representation for these derivatives in terms of the paths of V .
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1 Introduction

The CIR process is defined as the unique solution of the following stochastic differ-
ential equation:

dVt = (a− bVt)dt+ σ
√
VtdWt, V0 = v, (1.1)

where a, σ, v ≥ 0 and b ∈ R (see [8] for the existence and uniqueness of the solution
of the SDE). This process is widely used in finance to model short term interest rate
(see [3]) but also used to model stochastic volatility in the Heston stochastic volatility
model. The option prices in these models depend in the values of the parameters of CIR
process. On the other hand, these parameters are often calibrated to market prices
of derivatives, so they tend to change their values regularly. The knowledge of the
derivatives of the CIR process with respect to its parameters is therefore crucial for the
study the sensitivities of prices in these models.

The most common approach to study the sensitivity of stochastic differential equa-
tion with respect to its parameters is to use the Malliavin calculus, especially for the
sensitivity with respect to the initial value. The Malliavin derivative gives a stochastic
representation of the sensitivity of process with respect to its initial value. We note
that the coefficients of (1.1) are neither differentiable in 0 nor globally Lipschitz, so the
standard results (see e.g [9],[5]) cannot be used here. Nevertheless, for the special case
of CIR process, Alòs and Ewald ([1]) show the existence of Malliavin derivative of the
CIR process under assumption (2a > σ2). In mathematical finance, the sensitivities of
option prices with respect to not only the initial point, but also other parameters, need
to be studied very carefully.

In this article, we study the differentiability of the solution of (1.1) with respect to
the parameters a, b and σ in Lp sense (see next section). We show that, under some
assumptions, this process is differentiable with respect to these parameters and give a
stochastic representation of its derivatives.
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2 Differentiability

For technical reasons, we will rather consider the square root of V v, denoted Xv.
Throughout this paper, we assume that

2a ≥ σ2 (2.1)

Under this assumption, we have for any T, v > 0, P (∀t ∈ [0, T ] : V vt > 0) = 1. The
process Xv is the unique solution of the following stochastic differential equation

dXv
t =

((
a

2
− σ2

8

)
1

Xv
t

− b

2
Xv
t

)
dt+

σ

2
dWt, X

v
0 =
√
v. (2.2)

We start by studying the differentiability of X with respect to the parameter a. We
consider here the Lp-differentiability of the function a 7−→ Xv(a), i.e the existence of a
process Ẋa so that

lim
ε→0

∥∥∥∥ sup
s≤t

∣∣∣∣Xv
s (a+ ε)−Xv

s (a)

ε
− Ẋa(s)

∣∣∣∣∥∥∥∥
p

= 0 (2.3)

We have the following result

Proposition 2.1. Let b ∈ R and σ, x ≥ 0. For every a ∈]σ2,+∞[, let Xa be the unique
solution of the SDE :

dXt =

((
a

2
− σ2

8

)
1

Xt
− b

2
Xt

)
dt+

σ

2
dWt, X(0) = x

and let a0 > σ2. Then the function a 7−→ Xa is Lp-differentiable at a0, for any 1 ≤ p ≤
2a0
σ2 − 1 and its derivative (Ẋa) is given by

Ẋa(t) =

∫ t

0

1

2Xs
exp

(
− b
2
(t− u)− (

a

2
− σ2

8
)

∫ t

s

du

X2
u

)
ds. (2.4)

Proof. Let Xε be the unique solution of the stochastic differential equation

dXε
t =

((
a+ ε

2
− σ2

8

)
1

Xε
t

− b

2
Xε
t

)
dt+

σ

2
dWt, X

ε
0 =
√
v.

For ε > 0, define Rε0(t) := Xε
t −Xt. We can easily see that Rε0 is given by

Rε0(t) = εU εt

∫ t

0

(U εs)
−1 1

2Xs
ds,

where

U ε = exp

(
−
∫ t

0

αεsds

)
, with αεt =

(
a+ ε

2
− σ2

8

)
1

Xε
sXs

+
b

2
.

We have, using the fact that for any s ≤ t, e−
∫ t
s
αεudu ≤ e−bt/2 ∨ 1 a.s,

|Rε0(t)|
ε

≤ t(e−bt/2 ∨ 1)

2
sup
s≤t

1

Xv
s

.

On the other hand, we have, using Lemma 2.3.2 of [4] ,

∀p < 2

(
2a

σ2
− 1

)
, E

[
sup
s≤t

1

Xp
s

]
< +∞. (2.5)
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In particular, we have for any p ∈
[
1, 2

(
2a
σ2 − 1

)[
,

‖Rε0‖p ≤ Cε.

Let’s now set

Ẋa(t) := lim
ε→0

Rε0
ε
(t) = U0

t

∫ t

0

(U0
s )
−1 1

2Xs
ds.

We have
∥∥∥Ẋa

∥∥∥
p
≤ C. Furthermore, Ẋa is solution of the stochastic differential equation:

dẊa(t) = −
((

a

2
− σ2

8

)
1

X2
t

+
b

2

)
Ẋa(t)dt+

1

2Xt
dt.

Let Rε1(t) = Xε
t −Xt − εẊa(t). The process Rε1 is a solution of the stochastic differential

equation

dRε1(t) =

(
−αεtRε1(t)− εẊa(t)

(
αεt −

[
(
a

2
− σ2

8
)
1

X2
t

+
b

2

)])
dt.

On the other hand, we have

αεt −
(
(
a

2
− σ2

8
)
1

X2
t

+
b

2

)
= −

(
αεt
Xt
− b

2Xt

)
Rε0(t) +

ε

2X2
t

.

It follows that Rε1 can be written as

Rε1(t) = U εt

∫ t

0

(U εs)
−1
(
Ẋa(t)

(
ε

(
αεt
Xt
− b

2Xt

)
Rε0(t)−

ε2

2X2
t

))
ds,

Using (2.5) and the fact that for any s ≤ t, we have e−
∫ t
s
αεudu ≤ 1∨e−bt/2 and

∫ t
0
αεs e

−
∫ t
s
αεududs =

1− e−
∫ t
0
αεudu, we get

∀1 ≤ p < 2a

σ2
− 1, ‖Rε1‖p ≤ Cε

2.

The differentiability with respect to b is obtained in the same. The proof of the next
Proposition is almost identical to Proposition 2.1.

Proposition 2.2. Let x, a, σ ≥ 0 so that 4a > 3σ2. For every b ∈ R, let Xb be the unique

solution of the SDE : dXt =
((

a
2 −

σ2

8

)
1
Xt
− b

2Xt

)
dt+ σ

2 dWt, X0 = x and let b0 ∈ R. The
function b 7−→ Xb is Lp-differentiable at b0, for any 1 ≤ p < 2( 2aσ2 − 1) and its derivative

Ẋb is given by

Ẋb(t) = −
∫ t

0

Xs

2
exp

(
− b
2
(t− u)− (

a

2
− σ2

8
)

∫ t

s

du

X2
u

)
ds (2.6)

We now consider the differentiability of X with respect to the parameter σ. We
propose an extension of the result of Benhamou et al (cf. [2]) who show that σ 7−→ X is
C2 in neighborhood of 0. We will show that this function is C1 in [0,

√
a[ and C∞ around

0.

Proposition 2.3. For any σ ∈ [0,
√
a[, the function σ 7−→ X is C1 at σ in Lp-sense, for

every p ∈ [1, 2aσ2 − 1[ and its derivative is the unique solution of the SDE :

dẊσ(t) =

(
− σ

4Xt
−
(
a

2
− σ2

8

)
Ẋσ(t)

Xt
− b

2
Ẋσ(t)

)
dt+

1

2
dWt. (2.7)
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Proof. Let Xε be the unique solution of the SDE :

dXε
t =

((
a

2
− (σ + ε)2

8

)
1

Xε
t

− b

2
Xε
t

)
dt+

σ + ε

2
dWt, X

ε
0 =
√
v.

Let set Rε0(t) = Xε
t −Xt. In particular, Rε0 solves the stochastic differential equation:

dRε0(t) =

((
a

2
− (σ + ε)2

8

)
1

Xε
t

− b

2
Xε
t −

(
a

2
− σ2

8

)
1

Xt
+
b

2
Xt

)
dt+

ε

2
dWt

=

(
−
[(

a

2
− (σ + ε)2

8

)
1

Xε
sXs

+
b

2

]
Rε0(t)−

2εσ + ε2

8Xt

)
dt+

ε

2
dWt.

It follows that Rε0 can be written as

Rε0(t) = U εt

∫ t

0

(U εs)
−1
(
−2εσ + ε2

8Xs
ds+

ε

2
dWs

)
,

where U ε is given by

U εt = exp

(
−
∫ t

0

αεsds

)
(2.8)

and

αεs =

(
a

2
− (σ + ε)2

8

)
1

Xε
sXs

+
b

2
. (2.9)

Applying the Itô formula to the product (U εt )
−1Wt, we have

Rε0(t) = −
2εσ + ε2

8
U εt

∫ t

0

(U εs)
−1 ds

Xs
+
ε

2
Wt + U εt

∫ t

0

Wsd(U
ε)−1s .

On the other hand, using the fact that αεt ≥ b/2, a.s, we know that for any s ≤ t, we have
0 ≤ U εt (U εs)−1 ≤ 1 ∨ e−bt/2, a.s. It follows that

|Rε0(t)| ≤ c(t)

∫ t

0

ds

Xs
+
ε

2

(
sup
s≤t

Ws + sup
s≤t

Ws(1− U εt )U εt
)

≤ c(t) sup
s≤t

1

Xs
+ ε sup

s≤t
Ws(1 + U εt )U

ε
t .

Using (2.5), we have, for any 1 ≤ p < 2
(
2a
σ2 − 1

)
,

‖Rε0‖p ≤ Cε. (2.10)

Let’s now set

Ẋσ(t) := U0
t

∫ t

0

(U0
s )
−1
(
− σ

4Xs
ds+

1

2
dWs

)
.

We have
∥∥∥Ẋσ

∥∥∥
p
≤ C. Furthermore, we can easily see that Ẋσ is solution to the stochas-

tic differential equation:

dẊσ(t) = −
((

a

2
− σ2

8

)
1

X2
t

+
b

2

)
Ẋσ(t)dt−

σ

4Xt
dt+

1

2
dWt.

Set Rε1(t) = Xε
t −Xt−εẊσ(t). The process Rε1 solves the stochastic differential equation:

dRε1(t) =

(
−αεtRε1(t)− εẊσ(t)

(
αεt −

[
(
a

2
− σ2

8
)
1

X2
t

+
b

2

)]
− ε2

8Xt

)
dt.

ECP 18 (2013), paper 34.
Page 4/6

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2035
http://ecp.ejpecp.org/


Parameter sensitivity of CIR process

On the other hand, we can easily see that

αεt −
(
(
a

2
− σ2

8
)
1

X2
t

+
b

2

)
= −

(
αεt
Xt
− b

2Xt

)
Rε0(t)−

2εσ + ε2

8X2
t

.

It follows that Rε1 can be written as

Rε1(t) = U εt

∫ t

0

(U εs)
−1
(
− ε2

8Xs
ds+ εẊσ(s)

((
αεs
Xs
− b

2Xs

)
Rε0(s) +

2εσ + ε2

8X2
s

))
ds.

We have

|Rε1(t)| ≤
∫ t

0

U εt (U
ε
s)
−1
(

ε2

8Xs
ds+ ε|Ẋσ(s)|

((
αεt
Xs

+
b

2Xs

)
|Rε0(s)|+

2εσ + ε2

8X2
s

))
ds

≤
∫ t

0

U εt (U
ε
s)
−1
(

ε2

8Xs
ds+ ε|Ẋσ(t)|

(
b

2Xs
|Rε0(s)|+

2εσ + ε2

8X2
s

))
ds+

ε

∫ t

0

U εt (U
ε
s)
−1 α

ε
t

Xs
|Ẋσ(s)||Rε0(s)|ds

≤ c(t)

∫ t

0

(
ε2

8Xs
ds+ ε|Ẋσ(t)|

(
b

2Xs
|Rε0(s)|+

2εσ + ε2

8X2
s

))
ds

+εc2(t) sup
s≤t

(
|Ẋσ(s)||Rε0(s)|

Xs

)
.

Finally, using (2.5), we have, for any 1 ≤ p <
(
2a
σ2 − 1

)
,

‖Rε1‖p ≤ Cε
2.

Proposition 2.4. Under the assumptions of Propositions 2.1, 2.2, 2.3, the solution of
the SDE (1.1) is differentiable with respect to the parameters a, b and σ. Its derivatives,
denoted by V̇a, V̇b and V̇σ respectively, are given as

V̇a(t) =
√
V t

∫ t

0

1√
V s

exp

(
− b
2
(t− u)− (

a

2
− σ2

8
)

∫ t

s

du

Vu

)
ds,

V̇b(t) = −
√
V t

∫ t

0

√
V s exp

(
− b
2
(t− u)− (

a

2
− σ2

8
)

∫ t

s

du

Vu

)
ds,

V̇σ(t) =
2

σ
Vt −

2

σ

√
Vt

√ve− b2 t−( a2−σ28 )
∫ t
0
dr
Vr + a

∫ t

0

e−
b
2 (t−u)−(

a
2−

σ2

8 )
∫ t
u
dr
Vr

√
Vu

du

 .(2.11)

Proof. As Vt = X2
t , V is differentiable with respect to the parameters a, b and σ under

the assumptions of Propositions 2.3, 2.1, 2.2. The derivatives V̇σ is given as solution of
the SDE :

dV̇σ(t) = −bV̇σ(t)dt+
√
VtdW

2
t + σ

V̇σ(t)

2
√
Vt
dWt, V̇σ(0) = 0.

One can see that the process Zt := V̇σ(t)− 2
σVt is solution of the SDE :

dZt =

(
−2a

σ
− bZt

)
dt+ σ

Zt

2
√
Vt
dW 2

t , Z0 = − 2

σ
x.

On the other hand, applying Itô formula to the process ZV α, for α ∈ R∗, we have

d(ZV α)(t) = (−2a

σ
V αt − b(1 + α)ZtV

α
t + (αa+

α2

2
σ2)ZtV

α−1)dt+ (α+
1

2
)ZV α−

1
2 dW 2

t .
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It follows that, for α = − 1
2 , the process Y = ZV −

1
2 , Y has finite variation and is given

as solution of

dYt =

(
−2a

σ
V
− 1

2
t − b

2
Yt − (

a

2
− σ2

8
)
Yt
Vt

)
dt , Y0 = −2

η

√
v.

We can easily solve this equation, we get

Yt :=
Vσ(t)− 2

σVt√
Vt

= − 2

σ

√
ve−γt − 2a

σ

∫ t

0

e−(γt−γu)√
Vu

du, a.s,

where

γt :=
b

2
t+ (

a

2
− σ2

8
)

∫ t

0

dr

Vr
. (2.12)

Thus

V̇σ(t) =
2

σ
Vt −

2

σ

√
Vt

√ve− b2 t−( a2−σ28 )
∫ t
0
dr
Vr + a

∫ t

0

e−
b
2 (t−u)−(

a
2−

σ2

8 )
∫ t
u
dr
Vr

√
Vu

du

 , a.s.
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