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Abstract

We obtain non asymptotic concentration bounds for two kinds of stochastic approxi-
mations. We first consider the deviations between the expectation of a given function
of an Euler like discretization scheme of some diffusion process at a fixed determinis-
tic time and its empirical mean obtained by the Monte-Carlo procedure. We then give
some estimates concerning the deviation between the value at a given time-step of a
stochastic approximation algorithm and its target. Under suitable assumptions both
concentration bounds turn out to be Gaussian. The key tool consists in exploiting
accurately the concentration properties of the increments of the schemes. Also, no
specific non-degeneracy conditions are assumed.
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1 Statement of the Problem

Let us consider a d-dimensional stochastic evolution scheme of the form

ξn+1 = ξn + γn+1F (n, ξn, Yn+1), n ≥ 0, ξ0 = x ∈ Rd, (1.1)

where (γn)n≥1 is a deterministic positive sequence of time steps, the function F :

N × Rd × Rq → Rd is a measurable function satisfying some assumptions that will
be specified later on, and the (Yi)i∈N∗ are i.i.d. Rq-valued random variables defined on
some probability space (Ω,F ,P) whose law satisfies a Gaussian concentration property.
That is, there exists α > 0 s.t. for every real-valued 1-Lipschitz function f defined on
Rq and for all λ ≥ 0:

E[exp(λf(Y1))] ≤ exp(λE[f(Y1)] +
αλ2

4
). (GC(α))

From the Markov exponential inequality and (GC(α)), one derives D(f, r) := P[f(Y1)−
E[f(Y1)] ≥ r] ≤ exp(−λr + αλ2

4 ),∀λ, r ≥ 0. An optimization over λ gives that D(f, r) has

sub-Gaussian tails bounded by exp(− r
2

α ).
A practical criterion for (GC(α)) to hold is given by Bolley and Villani [6]. If there

exists ε > 0 s.t. E[exp(ε|Y1|2)] < +∞, then the law of Y1 satisfies (GC(α)) with α := α(ε).
The two claims are actually equivalent. In the following (GC(α)) is the only crucial
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Concentration Bounds for Stochastic Approximations

property we require on the innovations (Yi)i∈N∗ . In particular we do not assume any
absolute continuity of the law of Y1 w.r.t. the Lebesgue measure.

We are interested in giving non asymptotic concentration bounds for two specific
problems related to evolutions of type (1.1). We first want to control the deviations of
the empirical mean associated to a function of an Euler like discretization scheme of a
diffusion process at a fixed deterministic time from the real mean. Secondly, we want
to derive deviation estimates between the value of a Robbins-Monro type stochastic al-
gorithm taken at fixed time-step and its target. Under some mild assumptions, we show
that the Gaussian concentration property of the innovations transfers to the scheme.
Concerning stochastic algorithms, our deviation results are to our best knowledge the
first of this nature.

1.1 Euler like Scheme of a Diffusion Process

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space satisfying the usual conditions
and (Wt)t≥0 be a q-dimensional (Ft)t≥0 Brownian motion. Let us consider a d-dimensional
diffusion process (Xt)t≥0 with dynamics:

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, (1.2)

where the coefficients b, σ are assumed to be uniformly Lipschitz continuous in space
and measurable in time.

For a given Lipschitz continuous function f and a fixed deterministic time horizon
T , quantities like Ex[f(XT )] appear in many applications. In mathematical finance, it
represents the price of a European option with maturity T when the dynamics of the
underlying asset is given by (1.2). Under suitable assumptions on the function f and
the coefficients b, σ, namely smoothness or non degeneracy, it can also be related to
the Feynman-Kac representation of the heat equation associated to the generator of X.
Two steps are needed to approximate Ex[f(XT )]:

- The first step consists in approximating the dynamics by a discretization scheme that
can be simulated. For a given time step ∆ = T/N, N ∈ N∗, setting for all i ∈ N, ti :=

i∆, we consider an Euler like scheme of the form:

X∆
0 = x, ∀i ∈ [[0, N − 1]], X∆

ti+1
= X∆

ti + b(ti, X
∆
ti )∆ + σ(ti, X

∆
ti )
√

∆Yi+1, (1.3)

where the (Yi)i∈N∗ are Rq-valued i.i.d. random variables whose law satisfies (GC(α))
for some α > 0. We also assume E[Y1] = 0q, E[Y1Y

∗
1 ] = Iq, where Y ∗1 stands for the

transpose of the column vector Y1 and 0q, Iq respectively stand for the zero vector of Rq

and the identity matrix of Rq ⊗Rq. The previous assumptions include the case of the

standard Euler scheme, corresponding to Y1
law
= N (0, Iq), which yields (GC(α)) with α =

2 and the Bernoulli law Y1
law
= (B1, · · · , Bq), (Bk)k∈[[1,q]] i.i.d with law µ = 1

2 (δ−1+δ1). This
latter choice can turn out to be useful, in terms of computational effort, to approximate
(1.2) when the dimension is large.

- The second step consists in approximating the expectation Ex[f(X∆
T )] involving the

scheme (1.3) by a Monte-Carlo estimator:

E∆
M (x, T, f) :=

1

M

M∑
j=1

f((X∆,0,x
T )j),

where the ((X∆,0,x
T )j)j∈[[1,M ]] are independent copies of the scheme (1.3) starting at x at

time 0 and evaluated at time T .
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Concentration Bounds for Stochastic Approximations

The global error between Ex[f(XT )], the quantity to estimate, and its implementable
approximation E∆

M (x, T, f) can be decomposed as follows:

E(∆,M, x, T, f) := (Ex[f(XT )]−Ex[f(X∆
T )]) + (Ex[f(X∆

T )]− E∆
M (x, T, f))

:= ED(∆, x, T, f) + ES(∆,M, x, T, f). (1.4)

The term ED(∆, x, T, f) corresponds to the discretization error and has been widely
investigated in the literature since the seminal work of Talay and Tubaro [16]. For the
standard Euler scheme, this contribution usually yields an error of order ∆, provided
the coefficients b, σ and the function f are sufficiently smooth, which are the assump-
tions required in[16], or that b, σ satisfy some non-degeneracy assumptions which allow
to weaken the smoothness assumptions on f . This is for instance the case in Bally and
Talay [1] who obtain the expected order for a bounded measurable f and smooth coeffi-
cients satisfying a (possibly weak) hypoellipticity condition. Their proof relies on Malli-
avin calculus. When the diffusion coefficient is uniformly elliptic and bounded, if b, σ
are also assumed to be three times continuously differentiable, the control at order ∆

for ED(∆, x, T, f) can be derived from Konakov and Mammen [10] who use a more direct
parametrix approach. When the Gaussian increments of the standard Euler scheme are
replaced by more general (possibly discrete) random variables (Yi)i≥1 having the same
covariance matrix and odd moments up to order 5 as the standard Gaussian vector of
Rq, it can be checked that the error expansion at order ∆ of [16] still holds for b, σ, f
smooth enough. In that framework we also mention the works of Konakov and Mam-
men [8], [9], concerning local limit theorems for the difference between (1.2) and the
scheme (1.3). As in [10], the coefficients are supposed to be smooth and σ uniformly
elliptic. The associated error is then of order ∆1/2, speed of the Gaussian local limit
theorem, see Bhattacharya and Rao [2].

The term ES(∆,M, x, T, f) in (1.4) corresponds to the statistical error. Under some
usual integrability conditions, i.e. f(X∆

T ) ∈ L2(P), it is asymptotically controlled by the
central limit theorem. A first non-asymptotic result is given by the Berry-Essen theorem
provided f(X∆

T ) ∈ L3(P), but for practical purposes, the crucial quantity to control non-
asymptotically is the deviation between the empirical mean E∆

M (x, T, f) and the real one
Ex[f(X∆

T )]. Precisely, for a fixed M and a given threshold r > 0, one would like to give
bounds on the quantity P[|E∆

M (x, T, f)−Ex[f(X∆
T )]| > r].

In the ergodic framework and for a constant diffusion coefficient Gaussian con-
trols have been obtained by Malrieu and Talay [14]. In the current context and for
the standard Euler scheme, a first attempt to establish two-sided Gaussian bounds for
ES(∆,M, x, T, f) can be found in [13] under some non-degeneracy conditions up to a
systematic bias independent of M .

In the current work we assume that the coefficients satisfy the mild smoothness
condition:

(A) The coefficients b, σ are uniformly Lipschitz continuous in space uniformly in time,
σ is bounded.

Note that we do not assume any non-degeneracy condition on σ in (A).

We next show that when the innovations satisfy (GC(α)), the Gaussian concentration
property transfers to the statistical error E∆

M (x, T, f) − Ex[f(X∆
T )]. In particular we

get rid off the systematic bias in [13]. The key tool consists in writing the deviation
using the same kind of decompositions that are exploited in [16] for the analysis of the
discretization error. Denote by X∆,ti,x

T the value at time T of the scheme (1.3) starting
from x ∈ Rd at time ti, i ∈ [[0, N ]] and by Fi := σ(Yj , j ≤ i) the filtration generated by
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the innovations. We write

f(X∆,0,x
T )−E[f(X∆,0,x

T )] :=

N∑
i=1

E[f(X∆,0,x
T )|Fi]−E[f(X∆,0,x

T )|Fi−1]

=

N∑
i=1

E[f(X∆,0,x
T )|X∆,0,x

ti ]−E[f(X∆,0,x
T )|X∆,0,x

ti−1
],

using the Markov property for the last equality. Introducing the function v∆(ti, x) :=

E[f(X∆
T )|X∆

ti = x], (i, x) ∈ [[0, N ]]×Rd, we obtain:

f(X∆,0,x
T )−E[f(X∆,0,x

T )] :=

N∑
i=1

v∆(ti, X
∆,0,x
ti )− v∆(ti−1, X

∆,0,x
ti−1

). (1.5)

The definition of v∆ now yields:

f(X∆,0,x
T )−E[f(X∆,0,x

T )] =

N∑
i=1

v∆(ti, X
∆,0,x
ti )−E[v∆(ti, X

∆,0,x
ti )|X∆,0,x

ti−1
]

=

N∑
i=1

f∆
i (X∆,0,x

ti−1
,
√

∆Yi)−E[f∆
i (X∆,0,x

ti−1
,
√

∆Yi)|X∆,0,x
ti−1

],

(1.6)

where f∆
i (x, y) := E[f(X∆

T )|X∆
ti = x+ b(ti−1, x)∆ + σ(ti−1, x)y], for all (i, x, y) ∈ [[1, N ]]×

Rd ×Rq.
The decomposition (1.5) is similar to the first step of the analysis of the discretization

error. In that framework, v∆(ti, X
∆,0,x
ti ) is replaced by v(ti, X

∆,0,x
ti ) = E[f(X

ti,X
∆,0,x
ti

T )],
that is the expectation involving the diffusion at time T starting from the current value
of the scheme at ti, see [16]. Under some non degeneracy assumptions or smoothness of
the coefficients, v is smooth and Itô-Taylor expansions lead to the previously mentioned
first order error for ED(∆, x, T, f).

To analyze the statistical error, the key idea is to exploit recursively from (1.6) that
the increments of the scheme (1.3) satisfy (GC(α)). The Gaussian concentration prop-
erty will readily follow provided the fi are Lipschitz in the variable y. Under (A), this
smoothness is actually derived from direct stability arguments using flow techniques,
see Proposition 4.1 and its proof in Section A.1.

Let us here mention the work of Blower and Bolley [3] who obtained Gaussian con-
centration properties for the joint law of the first n positions of stochastic processes
(possibly non Markov) with values in general separable metric spaces. This result is
in some sense much stronger than ours, since it can for instance yield to non asymp-
totic controls of the Monte-Carlo error for smooth functionals of the path, such as the
maximum. However, some continuity assumptions in Wasserstein metric are assumed
on the transition measures of the process, see e.g. condition (ii) in their Theorems 1.2
and 2.1. This is required from the coupling techniques used in the proof. Checking
this kind of continuity can be hard in practice, in [3] the authors give some sufficient
conditions that require the transition laws to be absolutely continuous and smooth, see
their Proposition 2.2. In the current work we only need the property (GC(α)) for the
innovations, which can in particular hold for discrete laws.

Also, we want to stress that, even if the concentration results coincide when the
innovations (Yi)i∈N∗ have a smooth density, the nature of the proofs is different. Blower
and Bolley exploit optimal transportation techniques whereas our approach consists in
adapting the PDE arguments used for the analysis of the discretization error to the
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current setting. It is actually striking that a similar error decomposition can be used
for investigating both the discretization and statistical error.

We conclude mentioning some works related to the deviations of the 1-Wasserstein
distance between a reference measure and its empirical version. In the i.i.d. case, such
results were first obtained for different concentration regimes by Bolley, Guillin, Villani
[5] relying on a non-asymptotic version of Sanov’s Theorem. Some of these results
have also been derived by Boissard [4] using concentration inequalities and extended to
ergodic Markov chains up to some contractivity assumptions in the Wasserstein metric
on the transition kernel. In the i.i.d. case and Gaussian concentration regime, these
results lead to the following type of estimates:

P

 sup
f,1−Lip

∣∣∣∣∣∣ 1

M

M∑
j=1

f(Zj)−E[f(Z)]

∣∣∣∣∣∣ ≥ r
 ≤ C(r) exp

(
−KMr2

)
where the (Zj)j∈N∗ are i.i.d. having the same distribution as Z and the constants C(r)

and K may be explicitly but tediously computed. This kind of uniform deviation bounds
are of interest in statistics and numerical probability from a practical point of view. They
can indeed lead to deviation bounds for the estimation of the density of the invariant
measure of a Markov chain, see [5]. However, the (possibly large) constant C(r) is the
trade-off to obtain uniform deviations over all Lipschitz functions. We do not intend to
develop these aspects but similar bounds could be established in our context.

1.2 Robbins-Monro Stochastic Approximation Algorithm

Besides our considerations for the Euler scheme, we derive non asymptotic bounds
for stochastic approximation algorithms of Robbins-Monro type. These recursive algo-
rithms aim at finding a zero of a continuous function h : Rd → Rd which cannot be di-
rectly computed but only estimated through simulation. Such procedures are commonly
used in a convex optimization framework since minimizing a function amounts to finding
a zero of its gradient. Precisely, the goal is to find a solution θ∗ to h(θ) := E[H(θ, Y )] = 0,
where H : Rd ×Rq → Rd is a Borel function and Y is a given Rq-valued random vari-
able. Even though h(θ) cannot be directly computed, it is assumed that the random
variable Y can be easily simulated (at least at a reasonable cost), and also that H(θ, y)

can be easily computed for any couple (θ, y) ∈ Rd ×Rq. The Robbins-Monro algorithm
is the following recursive scheme

θn+1 = θn − γn+1H(θn, Yn+1), n ≥ 0, θ0 ∈ Rd, (1.7)

where (Yn)n≥1 is an i.i.d. Rq-valued sequence of random variables defined on a prob-
ability space (Ω,F ,P) and (γn)n≥1 is a sequence of non-negative deterministic steps
satisfying the usual assumption∑

n≥1

γn = +∞, and
∑
n≥1

γ2
n < +∞. (1.8)

When the function h is the gradient of a potential, the iterative scheme (1.7) can be
viewed as a stochastic gradient algorithm. Indeed, replacing H(θn, Yn+1) by h(θn) in
(1.7) leads to the usual deterministic gradient method. One of the ideas in (1.7) is to
take advantage of an averaging effect along the scheme due to the specific form of
h(θ) := E[H(θ, Y )]. This allows to avoid the explicit computation or estimation of h. We
refer to [7], [11] for some general convergence results of the sequence (θn)n≥0 defined
by (1.7) towards its target θ∗ under the existence of a so-called Lyapunov function,
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i.e. a continuously differentiable function L : Rd → R+ such that ∇L is Lipschitz,
|∇L|2 ≤ C(1 + L) for some positive constant C and

〈∇L, h〉 ≥ 0.

See also [12] for a convergence theorem under the existence of a pathwise Lyapunov
function. In the sequel, it is assumed that θ∗ is the unique solution of the equation
h(θ) = 0 and that (θn) defined by (1.7) converges a.s. towards θ∗.

We assume that the innovations (Yi)i∈N∗ satisfy (GC(α)) for some α > 0 and also
that the following conditions on the function H and the step sequence (γn)n≥1 in (1.7)
are in force:

(HL) The map (θ, y) ∈ Rd ×Rq 7→ H(θ, y) is uniformly Lipschitz continuous.

(HUA) The map h : θ ∈ Rd 7→ E[H(θ, Y )] is continuously differentiable in θ and there
exists λ > 0 s.t. ∀θ ∈ Rd, ∀ξ ∈ Rd, λ|ξ|2 ≤ 〈Dh(θ)ξ, ξ〉 (Uniform Attractivity).

In order to derive a Central Limit Theorem for the sequence (θn)n≥1 as described in [7]
or [11], it is commonly assumed that the matrix Dh(θ∗) is uniformly attractive. In our
current framework, this local condition on the Jacobian matrix of h at the equilibrium
is replaced by the uniform assumption (HUA). This allows to derive non-asymptotic
concentration bounds uniformly w.r.t. the starting point θ0.

Note that under (HUA) and the linear growth assumption

∀θ ∈ Rd, E
[
|H(θ, Y )|2

]
≤ C(1 + |θ − θ∗|2),

(which is satisfied if (HL) holds and Y ∈ L2(P)) the function L : θ 7→ 1
2 |θ − θ

∗|2 is
a Lyapunov function for the recursive procedure defined by (1.7) so that one easily
deduces that θn → θ∗, a.s. as n→ +∞.

As for the Euler scheme, we decompose the global error between the stochastic
approximation procedure θn at a given time step n and its target θ∗ as follows:

zn := |θn − θ∗| = (|θn − θ∗| −E[|θn − θ∗|]) + E[|θn − θ∗|]
:= EEmp(γ, n,H, λ, α) + δn (1.9)

where δn := E[|θn − θ∗|].
The term EEmp(γ, n,H, λ, α) corresponding to the difference between the absolute

value of the error at time n and its mean can be viewed as an empirical error. As
for the Euler scheme, the Gaussian concentration property transfers to this quantity
under (HL) and (HUA). The strategy consists in introducing again a telescopic sum of
conditional expectations. Denoting for all i ∈ N, Fi := σ(Yj , j ≤ i) (i.e. (Fi)i∈N is the
natural filtration of the algorithm), we write for all n ∈ N∗:

EEmp(γ, n,H, λ, α) = |zn| −E[|zn|] =

n∑
i=1

E[|zn||Fi]−E[|zn||Fi−1]

=

n∑
i=1

vi(θi)−E[vi(θi)|Fi−1],

=

n∑
i=1

fγi (θi−1, Yi)−E[fγi (θi−1, Yi)|Fi−1],

where we used the Markov property for the second equality and we introduced the
notations vi(θ) := E[|θn − θ∗||θi = θ], ∀(i, θ) ∈ [[1, n]] × Rd, fγi (θ, y) = vi(θ − γiH(θ, y)).
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The stability of the Gaussian concentration property is then derived using that the fγi
are Lipschitz in the variable y, see Proposition 5.1.

The term δn in (1.9) corresponds to the bias of the sequence (θn)n≥0 with respect
to its target θ∗. This contribution strongly depends on the choice of the step sequence
(γn)n≥1 and the initial point θ0. Under (HL) and (HUA), we analyze this quantity in
Proposition 5.2.

2 Main Results

2.1 Deviations on the Euler Scheme

Theorem 2.1 (Concentration Bounds for the Euler scheme). Denote by X∆
T the value at

time T of the scheme (1.3) associated to the diffusion (1.2). Assume that the innovations
(Yi)i∈N∗ in (1.3) satisfy (GC(α)) for some α > 0 and that the coefficients b, σ satisfy (A).
Let f be a real valued uniformly Lipschitz continuous function on Rd. For all M ∈ N∗

and all r ≥ 0, one has

Px[| 1

M

M∑
i=1

f((X∆
T )i)−Ex[f(X∆

T )]| ≥ r] ≤ 2 exp(− r2M

TΨ(T, f, b, σ, q)
),

Ψ(T, f, b, σ, q) := 4α[f ]21|σ|2∞ exp (2([b]1 + c[σ]1(1 ∨ c[σ]1))T ) ,

where q is the dimension of the underlying Brownian motion in (1.2) and c := c(q).

Note that in the above theorem, we do not need any non-degeneracy condition on the
diffusion coefficient. As developed in Section 1.1, see (1.6), to handle the previous quan-
tity we rewrite f(X∆

T )−E[f(X∆
T )] :=

∑N
i=1 f

∆
i (X∆

ti−1
,
√

∆Yi)−E[f∆
i (X∆

ti−1
,
√

∆Yi)|Fi−1],

where f∆
i (x, y) := E[f(X∆

T )|X∆
ti = x+ b(ti−1, x)∆ + σ(ti−1, x)y], for all (i, x, y) ∈ [[1, N ]]×

Rd×Rq. If at some point along the time-discretization the process has a degenerate dif-
fusion term, we can see that the difference f∆

i (X∆
ti−1

,
√

∆Yi)−E[f∆
i (X∆

ti−1
,
√

∆Yi)|Fi−1]

will not give any additional contribution in the global deviation.

With respect to the previous work [13], we got rid off the systematic bias. Any-
how, the concentration constants now depend on the Lipschitz constant of the function
v∆(0, x) := E[f(X∆

T )|X∆
0 = x] which has order Ψ(T, f, b, σ, q)1/2. This magnitude corre-

sponds to the product of the Lipschitz constant of the final function f and the mean of
the Lipschitz constant for the flow of the scheme, which gives the exponential depen-
dence in time, see Proposition 4.1 and its proof for details.

Remark 2.1 (Extension to smooth functionals of the path). We point out that the pre-
vious concentration results could be extended to some smooth functionals of the path
such as the maximum for a scalar scheme. Indeed, introducing in that case the addi-
tional state variable (M∆

ti )i∈N := (maxj∈[[0,i]]X
∆
tj )i∈N, the couple (X∆

ti ,M
∆
ti )i∈N is Marko-

vian and the flow arguments of Proposition 4.1 could be extended to the couple for
Lipschitz functions in both variables.

Remark 2.2 (Linear SDEs and concentration). Observe that it is the boundedness of
σ that gives the Gaussian concentration regime. However, in many popular models
in finance, the diffusion coefficient is linear, see e.g. the Black-Scholes like dynamics
Xt = x0 +

∫ t
0
b(Xs)Xsds+

∫ t
0
σ(Xs)XsdWs for smooth, bounded coefficients b, σ. For the

estimation of E[f(X∆
T )] of the associated Euler scheme, if f is bounded then the Gaus-

sian concentration holds for the statistical error from the Bolley and Villani criterion
applied to f(X∆

T ). However, for a general Lipschitz function, the expected concentra-
tion is the log-normal one.
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2.2 Deviations for Robbins-Monro algorithms

Theorem 2.2 (Concentration Bounds for Robbins-Monro algorithms). Assume that the
function H of the recursive procedure (θn)n≥0 (with starting point θ0 ∈ Rd) defined
by (1.7) satisfies (HL) and (HUA), and that the step sequence (γn)n≥1 satisfies (1.8).
Suppose that the law of the innovation satisfies (GC(α)), α > 0.Then, for all N ∈ N∗

and all r ≥ 0,

P (|θN − θ∗| ≥ r + δN ) ≤ exp

(
− r2

α[H]21ΠN

∑N
k=1 γ

2
k/Πk

)
where ΠN :=

∏N−1
k=0

(
1− 2λγk+1 + [H]21γ

2
k+1

)
and δN := E [|θN − θ∗|]. Moreover, the bias

δN at step N satisfies

δN ≤ exp (−λΓN ) |θ0 − θ∗|

+[H]1σY

(
γNN

1/2 +

N−1∑
k=1

e−λ(ΓN−Γk+1)(γk − γk+1) +

N−1∑
k=1

e−λ(ΓN−Γk+1)γkγk+1λ

)
,

where ΓN :=
∑N
k=1 γk, λ := |Dh|∞, σY := E

[
F 2(Y )

]1/2
< +∞, with F : y 7→ E [|y − Y |].

Concerning the choice of the step sequence (γn)n≥1 and its impact on the concen-
tration rate and bias, we obtain the following results:

• If we choose γn = c
n , with c > 0. Then δN → 0, N → +∞, ΓN = c log(N) + c′1 + rN ,

c′1 > 0 and rN → 0, so that ΠN = O(N−2cλ).

– If c < 1
2λ , the series

∑N
k=1 γ

2
k/Πk converges so that we obtain ΠN

∑N
k=1 γ

2
k/Πk =

O(N−2cλ).
– If c > 1

2λ , a comparison between the series and the integral yields ΠN

∑N
k=1 γ

2
k/Πk

= O(N−1).

Let us notice that we find the same critical level for the constant c as in the Central
Limit Theorem for stochastic algorithms. Indeed, if c > 1

2Re(λmin) where λmin
denotes the eigenvalue of Dh(θ∗) with the smallest real part then we know that
a Central Limit Theorem holds for (θn)n≥1 (see e.g. [7]). However, this local
condition on the Jacobian matrix of h at the equilibrium is replaced by a uniform
assumption in our framework. This is quite natural since we want to derive non-
asymptotic bounds for the stochastic approximation (1.7).

Concerning the bias we have the following bound:

δN ≤ K
(
|θ0 − θ∗|
Nλc

+
[H]1σY (1 + λ)

N

)
+ [H]1σY

c

N1/2
, K := K(c).

• If we choose γn = c
nρ , c > 0, 1

2 < ρ < 1, then δN → 0, ΓN ∼ c
1−ρN

1−ρ as N → +∞
and elementary computations show that there exists C > 0 s.t. for all N ≥ 1,
ΠN ≤ C exp(−2λ c

1−ρN
1−ρ). Hence, for all ε ∈ (0, 1− ρ) we have:

ΠN

N∑
k=1

γ2
kΠ−1

k ≤ c2

ΠNΠ−1
N−Nρ+ε

N−Nρ+ε∑
k=1

1

k2ρ
+

N∑
k=N−Nρ+ε+1

1

k2ρ


≤ c2

{
C exp(−2λ

c

1− ρ
(N1−ρ − (N −Nρ+ε)1−ρ))

+
Nρ+ε

(N −Nρ+ε + 1)2ρ

}
≤ c2

{
C exp(−2λcN ε) +

1

Nρ−ε

}
.
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Up to a modification of ε, this yields ΠN

∑N
k=1 γ

2
kΠ−1

k = o(N−ρ+ε), ε ∈ (0, 1− ρ).

Concerning the bias, from Kronecker’s Lemma, we have the following bound:

δN ≤ K exp

(
− λc

1− ρ
N1−ρ

)
|θ0 − θ∗|+ [H]1σY

[
o(1)(

1

Nρ−ε + λ
1

N2ρ−ε−1
) +

c

Nρ−1/2

]
,

K := K(c), ∀ε > 0.

Since each step is bigger compared to the case γn = c
n , the impact of the initial

difference |θ0 − θ∗| is exponentially small.

3 Abstract concentration properties for a general evolution scheme

In this section we assume that (Yi)i∈N∗ is a sequence of i.i.d. Rq-valued random
variables whose law µ satisfies the Gaussian concentration property (GC(α)) for a given
α > 0.

Proposition 3.1 (Gaussian concentration for a stochastic evolution scheme). Fix N ∈
N∗. Define for all i ∈ [[1, N ]], Di := fi(Xi−1, Yi) − E[fi(Xi−1, Yi)|Fi−1] for some Fi−1-
measurable random variables Xi−1 where the real-valued functions (fi)i∈[[1,N ]] are Lip-
schitz continuous in the y variable with constants ([fi]1)i∈[[1,N ]] > 0 uniformly in x. Let
(γi)i∈[[1,N ]] be a given sequence of time steps. For all r ≥ 0, we have:

P[

N∑
i=1

γiDi ≥ r] ≤ exp

(
− r2

α
∑N
i=1([fi]1γi)2

)
.

Proof. Set P(r) := P[
∑N
i=1 γiDi ≥ r]. For λ ≥ 0 to be specified later on, the Tcheby-

chev exponential inequality yields:

P(r) ≤ exp(−λr)E[exp

(
λ

[
N∑
i=1

γiDi

])
]

≤ exp(−λr)E[exp

(
λ

N−1∑
i=1

γiDi

)
E [exp(λγNDN )|FN−1]]. (3.1)

Observe now that working with regular conditional expectations, we have

E [exp(λγNDN )|FN−1]

= Eµ [exp (λγN (fN (x, Y )−Eµ[fN (x, Y )]))]|x=XN−1
,

where Y is a random variable with law µ. From (GC(α)), we derive

E [exp(λγNDN )|FN−1] ≤ exp(α([fN ]1γNλ)2/4).

Plugging this estimate in (3.1) and iterating the procedure we derive

P(r) ≤ exp(−λr) exp

(
αλ2

4

N∑
i=1

([fi]1γi)
2

)
,

and optimizing w.r.t λ, we obtain: P(r) ≤ exp
(
− r2

α
∑N
i=1([fi]1γi)2

)
.
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4 Euler Scheme: Proof of the Main Results

In order to apply Proposition 3.1 from the decomposition (1.6), all we need is to have
a control on the Lipschitz modulus in the variable y of the functions f∆

i (x, y), uniformly
in x. Under the current assumptions of Theorem 2.1, we have the following Proposition
which is proved in Section A.1.

Proposition 4.1 (Control of the Lipschitz constants). Denote the respective Lipschitz
constants of b, σ in (1.3) by [b]1, [σ]1. Denote the supremum of σ by |σ|∞. Then for all
i ∈ [[1, N ]], the functions f∆

i introduced after (1.6) are uniformly Lipschitz continuous in
the space variable y uniformly in x and we have that there exists c := c(q) (dimension
of the underlying Brownian motion) s.t:

[f∆
i ]1 := sup

x∈Rd,y 6=y′

|f∆
i (x, y)− f∆

i (x, y′)|
|y − y′|

≤ 2[f ]1|σ|∞ exp ({[b]1 + c[σ]1(1 ∨ c[σ]1)} (T − ti)) .

where [f ]1 stands for the Lipschitz constants of the function f .

Set γi = 1, Di = f∆
i (X∆

ti−1
,
√

∆Yi) − E[f∆
i (X∆

ti−1
,
√

∆Yi)|Fti−1 ], ∀i ∈ [[1, N ]]. Since

the random variable
√

∆Yi satisfies the Gaussian concentration property (GC(∆α)), we
derive from Propositions 3.1 and 4.1:

Px[f(X∆
T )−Ex[f(X∆

T )] ≥ r] ≤ exp(− r2

∆α
∑N
i=1[f∆

i ]21
)

≤ exp(− r2

4αT [f ]21|σ|2∞ exp (2([b]1 + c[σ]1(1 ∨ c[σ]1))T )
)

:= exp(− r2

TΨ(T, f, b, σ, q)
).

Hence the random variable X∆
T satisfies (GC(β)) for β := TΨ(T, f, b, σ, q)/[f ]21. The

bound of Theorem 2.1 now follows from a simple tensorization argument for indepen-
dent random variables satisfying the Gaussian concentration property. Namely, for
λ, r ≥ 0,

Px[
1

M

M∑
j=1

f((X∆
T )j)−Ex[f(X∆

T )] ≥ r]

≤ exp(−λr)Ex
[
exp

(
λ

1

M
(

M∑
j=1

f((X∆
T )j)−Ex[f(X∆

T )j ])

)]
(GC(β))

≤ exp(−λr)
[
exp(

βλ2[f ]21
4M2

)

]M
= exp(−λr +

TΨ(T, f, b, σ, q)λ2

4M
).

An optimization in λ gives the result.

5 Robbins-Monro Algorithm: Proof of the Main Results

With the notations of Section 1.2, in order to apply Proposition 3.1 we have to control
the Lipschitz constants in y of the functions fγi (θ, y) = vi(θ−γiH(θ, y)),∀(i, θ, y) ∈ [[1, n]]×
Rd ×Rq where vi(θ) := E[|θn − θ∗||θi = θ]. Under the assumptions of Theorem 2.2, the
following control holds.

Proposition 5.1 (Controls of the Lipschitz constants). For all i ∈ [[1, n]], the function fγi
satisfies:

[fγi ]1 := sup
θ∈Rd,y 6=y′

|fγi (θ, y)− fγi (θ, y′)|
|y − y′|

≤
(
ΠnΠ−1

i

)1/2
γi[H]1.
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where Πn :=
∏n−1
k=0

(
1− 2λγk+1 + [H]21γ

2
k+1

)
, n ≥ 1.

The proof is postponed to Section A.2.
Set Di = fγi (θi−1, Yi)−E[fγi (θi−1, Yi)| Fi−1]. Recalling that the random variables (Yi)i∈N∗

satisfy (GC(α)), we obtain from Proposition 3.1 that for all r ≥ 0:

P (|θN − θ∗| ≥ r + δN ) = P (|θN − θ∗| −E[|θN − θ∗|] ≥ r)

≤ exp

(
− r2

α[H]21ΠN

∑N
k=1 γ

2
k/Πk

)
.

Contrary to the result concerning the Euler scheme, a bias appears in the non-
asymptotic bound for the stochastic approximation algorithm. Consequently, it is crucial
to have a control on it. At step n of the algorithm, it is equal to δn := E[|θn − θ∗|].
Under the current assumptions (HL) of Lipschitz continuity of H and (HUA) of uniform
attractivity, we have the following proposition.

Proposition 5.2 (Control of the bias). For all n ∈ N, we have

δn ≤ exp (−λΓn) |θ0 − θ∗|

+[H]1σY

(
γnn

1/2 +

n−1∑
k=1

e−λ(Γn−Γk+1)(γk − γk+1) +

n−1∑
k=1

e−λ(Γn−Γk+1)γkγk+1λ

)
,

where Γn :=
∑n
k=1 γk, σY := E

[
F 2(Y )

]1/2
< +∞, with F : y 7→ E [|y − Y |].

Proof. With the notations of Section 1.2, we define for all n ≥ 1, ∆Mn := h(θn−1) −
H(θn−1, Yn) = E[H(θn−1, Yn)| Fn−1]−H(θn, Yn). Recalling that (Yi)i∈N∗ is a sequence of
i.i.d. random variables we have that Sn :=

∑n
i=1 ∆Mi is a martingale w.r.t. the natural

filtration Fn := σ(Yi, i ≤ n).
From the dynamics (1.7), write now for all n ∈ N,

zn+1 := θn+1 − θ∗ = θn − θ∗ − γn+1 {h(θn)−∆Mn+1}

= θn − θ∗ − γn+1

∫ 1

0

dλDh(θ∗ + λ(θn − θ∗))(θn − θ∗) + γn+1∆Mn+1,

where we used that h(θ∗) = 0 for the last equality. Setting Jn :=
∫ 1

0
dλDh(θ∗+λ(θn−θ∗)),

we derive inductively that

zn+1 = (I − γn+1Jn)zn + γn+1∆Mn+1

=

n+1∏
k=1

(I − γkJk−1)z0 +

n+1∑
k=1

γk


n+1∏
p=k+1

(I − γpJp−1)

∆Mk.

Hence, setting for all n ∈ N∗, Π̃nΠ̃−1
k :=

∏n
p=k+1(I−γpJp−1), with the classic convention∏

∅ = 1 and using an Abel transform, we have:

zn = Π̃nz0 +

n∑
k=1

γkΠ̃nΠ̃−1
k ∆Mk = Π̃nz0 + γnSn −

n−1∑
k=1

∆γ̃k+1Sk, (5.1)

where γ̃k := γkΠnΠ−1
k and ∆γ̃k+1 := γ̃k+1 − γ̃k = (γk+1 − γk)ΠnΠ−1

k+1 + γk(ΠnΠ−1
k+1 −

ΠnΠ−1
k ).
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Now, exploiting assumption (HUA) (uniform attractivity of the Jacobian matrix of h),
and taking the sequence of steps s.t. λ supn≥1 γn < 1, we obtain:

‖ΠnΠ−1
k ‖ ≤

n∏
p=k+1

(1− γpλ) ≤ exp(−λ(Γn − Γk)), Γn :=

n∑
i=1

γi,

where ‖.‖ stands for the matrix norm Rd ⊗Rd. Finally, we obtain from (5.1),

E[|zn|] ≤ e−λΓn |z0|+ γnE[|Sn|]

+

n−1∑
k=1

e−λ(Γn−Γk+1)|∆γk+1|E[|Sk|] +

n−1∑
k=1

e−λ(Γn−Γk+1)γkγk+1E[|Sk|]ᾱ.

Now we inspect the behavior of E[|Sn|] itself. Using the Cauchy-Schwarz inequality
yields

E[|Sn|] ≤ E[|Sn|2]1/2 = E[|
n∑
i=1

∆Mi|2]1/2 = E

[ n∑
i=1

{
|∆Mi|2 + 2

n∑
j=i+1

〈∆Mi,∆Mj〉
}]1/2

=

( n∑
i=1

E[|∆Mi|2]

)1/2

=

(
n∑
k=1

E[|H(θk−1, Yk)− h(θk−1)|2]

)1/2

.

Assumption (HL) implies ∀θ ∈ Rd, ∀y ∈ Rq, |H(θ, y) − h(θ)| = |E[H(θ, y) −H(θ, Y )]| ≤
[H]1F (y). We thus obtain

E[|Sn|] ≤ n1/2[H]1E[F 2(Y )]1/2 = [H]1n
1/2σY ,

which completes the proof.

A Technical results

A.1 Proof of Proposition 4.1

The proof follows from usual stochastic analysis arguments that we now recall for
the sake of completeness. For i = N we directly get from the definition of f∆

N (x, y) that
[f∆
N ]1 ≤ [f ]1|σ|∞.

For i ∈ [[1, N − 1]], define for y 6= y′ the quantity

D∆
ti (T, x, y, y

′) := sup
j∈[[i,N ]]

|X∆,ti,G
∆
i−1(x,y)

tj −X∆,ti,G
∆
i−1(x,y′)

tj |
|y − y′|

,

∀z ∈ Rd, G∆
i−1(x, z) := b(ti−1, x)∆ + σ(ti−1, x)z.

Write now:

D∆
ti (T, x, y, y

′)

≤

 |G∆
i−1(x, y)−G∆

i−1(x, y′)|
|y − y′|

+ ∆[b]1

N−1∑
k=i

|X∆,ti,G
∆
i−1(x,y)

tk
−X∆,ti,G

∆
i−1(x,y′)

tk
|

|y − y′|


+ sup

j∈[[i,N ]]

∣∣∣∣∣∣
j∑
k=i

σ(tk, X
∆,ti,G

∆
i−1(x,y)

tk
)− σ(tk, X

∆,ti,G
∆
i−1(x,y′)

tk
)

|y − y′|

√∆Yk+1

∣∣∣∣∣∣
 .

One can easily show that for all (z, j) ∈ Rq × [[0, N ]], X
∆,ti,G

∆
i−1(x,z)

tj ∈ L1(P). Hence,
taking the expectation and using the the Burkholder-Davis-Gundy inequality (see e.g.
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Chapter 7, §3 in Shiryaev [15]) we obtain:

E[D∆
ti (T, x, y, y

′)]

≤

|σ|∞ + [b]1

N−1∑
k=i

E

 |X∆,ti,G
∆
i−1(x,y)

tk
−X∆,ti,G

∆
i−1(x,y′)

tk
|

|y − y′|



+ cE


N−1∑

k=i

∣∣∣∣∣∣σ(tk, X
∆,ti,G

∆
i−1(x,y)

tk
)− σ(tk, X

∆,ti,G
∆
i−1(x,y′)

tk
)

|y − y′|
√

∆Yk+1

∣∣∣∣∣∣
2


1/2

 .

≤ |σ|∞ + [b]1∆

N−1∑
k=i

E[(D∆
ti (tk, x, y, y

′)]

+c[σ]1E


∆

N−1∑
k=i

|X∆,ti,G
∆
i−1(x,y)

tk
−X∆,ti,G

∆
i−1(x,y)

tk
|2

|y − y′|2
|Yk+1|2

1/2
 ,

c := c(q). (A.1)

Observe now that

E


∆

N−1∑
k=i

|X∆,ti,G
∆
i−1(x,y)

tk
−X∆,ti,G

∆
i−1(x,y)

tk
|2

|y − y′|2
|Yk+1|2

1/2


≤ E

D∆
ti (T, x, y, y

′)1/2

(
∆

N−1∑
k=i

D∆
ti (tk, x, y, y

′)|Yk+1|2
)1/2


≤ ηE[D∆

ti (T, x, y, y
′)] + η−1

N−1∑
k=i

E[D∆
ti (tk, x, y, y

′)]E[|Y1|2],∀η ∈ (0, 1),

which plugged into (A.1) yields thanks to the Gronwall Lemma

(1− c[σ]1η)E[D∆
ti (T, x, y, y

′)] ≤ |σ|∞ exp
(
{[b]1 + c[σ]1E[|Y1|2]η−1}(T − ti)

)
,

η ∈
(

0,
1

c[σ]1
∧ 1

)
.

Taking η := (c[σ]1)−1∧1
2 we obtain

E[D∆
ti (T, x, y, y

′)] ≤ 2|σ|∞ exp
(
{[b]1 + 2cE[|Y1|2][σ]1(1 ∨ c[σ]1)}(T − ti)

)
,

which recalling [f∆
i ]1 ≤ [f ]1 supy 6=y′ E[|D∆

ti (T, x, y, y
′)|] completes the proof up to a mod-

ification of c.

A.2 Proof of Proposition 5.1

From the definitions in Section 1.2, it suffices to control the difference E[|θθ,in −θθ
′,i
n |],

that is the sensitivity of the algorithm w.r.t. the starting point at time i ∈ [[1, n]]. Write
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for all j ∈ [[i, n− 1]]:

|θθ,ij+1 − θ
θ′,i
j+1|

2 = |θθ,ij − θ
θ′,i
j − γj+1

{
H(θθ,ij , Yj+1)−H(θθ

′,i
j , Yj+1)

}
|2

= |θθ,ij − θ
θ′,i
j |

2 − 2γj+1〈θθ,ij − θ
θ′,i
j , H(θθ,ij , Yj+1)−H(θθ

′,i
j , Yj+1)〉

+γ2
j+1|H(θθ,ij , Yj+1)−H(θθ

′,i
j , Yj+1)|2

= |θθ,ij − θ
θ′,i
j |

2 − 2γj+1〈θθ,ij − θ
θ′,i
j , h(θθ,ij )− h(θθ

′,i
j )〉

−2γj+1〈θθ,ij − θ
θ′,i
j ,∆Mθ,i

j+1 −∆Mθ′,i
j+1〉

+γ2
j+1|H(θθ,ij , Yj+1)−H(θθ

′,i
j , Yj+1)|2,

where we introduced the martingale increments ∆Mθ,i
j+1 = H(θθ,ij , Yj+1) − h(θθ,ij ) and

∆Mθ′,i
j+1 = H(θθ

′,i
j , Yj+1)−h(θθ

′,i
j ), j ≥ 0 in the last equality. Now, using (HL) and (HUA)

yields:

|θθ,ij+1 − θ
θ′,i
j+1|

2 ≤ |θθ,ij − θ
θ′,i
j |

2
(
1− 2λγj+1 + [H]21γ

2
j+1

)
−2γj+1〈θθ,ij − θ

θ′,i
j ,∆Mθ,i

j+1 −∆Mθ′,i
j+1〉,

and, by induction on j, we easily obtain:

|θθ,in − θθ
′,i
n |2 ≤ |θ − θ′|2

n−1∏
j=i

(
1− 2λγj+1 + [H]21γ

2
j+1

)

−2

n−1∏
j=i

(
1− 2λγj+1 + [H]21γ

2
j+1

) n−1∑
j=i

γ̃j+1〈θθ,ij − θ
θ′,i
j ,∆Mθ,i

j+1 −∆Mθ′,i
j+1〉 (A.2)

where γ̃j+1 := γj+1/
∏j
k=i

(
1− 2λγk+1 + [H]21γ

2
k+1

)
. Taking the expectation in (A.2), we

derive:
E[|θi,θn − θi,θ

′

n |2]

|θ − θ′|2
≤
n−1∏
j=i

(
1− 2λγj+1 + [H]21γ

2
j+1

)
.

Now:

|fγi (θ, y)− fγi (θ, y′)| = |E[|θi,θ−γiH(θ,y)
n − θ∗|]−E[|θi,θ−γiH(θ,y′)

n − θ∗|]|
≤ E[|θi,θ−γiH(θ,y)

n − θi,θ−γiH(θ,y′)
n |]

≤

n−1∏
j=i

(
1− 2λγj+1 + [H]21γ

2
j+1

)1/2

γi[H]1|y − y′|

=
(
ΠnΠ−1

i

)1/2
γi[H]1|y − y′|,

which completes the proof of the Proposition.
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