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1 Introduction

Let Sn denote the permutation group on n letters. For each permutation σ ∈ Sn, we
write cj(σ) for the number of disjoint cycles of length j in σ. For any permutation, we
let K0n(σ) :=

∑n
j=1 cj(σ) denote the number of cycles in σ.

We are interested in the statistics of permutations produced in a random way. Ran-
dom (uniform) permutations and their cycle structures have received much attention
and have a long history (see e.g. the first chapter of [1] for a detailed account with
references). The literature on the topic has grown quickly in recent years in relation
to mathematical biology and theoretical physics, where models of non-uniform permu-
tations are considered (see e.g. [3, 2, 4, 5]). We will restrict our attention to random
permutations with cycle weights as considered in the recent work of Betz, Ueltschi and
Velenik [4] and Ercolani and Ueltschi [5]. These are families of probability measures on
Sn that are constant on conjugacy classes with the distribution

P(σ) :=
1

hnn!

n∏
j=1

θ
cj(σ)
j

where θj ≥ 0 is a given sequence of weights and hn is a normalization constant. If θj = 1

for all j then this is the uniform measure on Sn, while if θj = θ0 is constant then this
gives Ewens measure, which plays an important role in mathematical biology.

A situation of interest which appears in the study of the quantum gas in statistical
mechanics is when the asymptotic behavior of θj is fixed for large j (see [4] and [5]).
Natural important historical questions arise on the behavior of cj(σ) or K0n(σ). For
instance, it is known that under the Ewens measure, or in special cases of weighted
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On the number of cycles in a random permutation

random permutations, the cycle counts (cj(σ))j converge to independent Poisson distri-
butions (see [1] for the Ewens measure and [5] and [7] for weighted random permuta-
tions). The case of K0n(σ) is in fact more delicate and less results are available in the
general case with cycle weights. It is well known that under the Ewens measure K0n(σ)

satisfies a central limit theorem (see [1] for details and historical references). The meth-
ods used in this case are very probabilistic and rely on the Feller coupling. However, the
Feller coupling does not exist in the model of random permutations with cycle weights.
Ercolani and Ueltschi ([5]) used generating series and refined saddle point analysis to
obtain some asymptotic estimates for the mean of K0n(σ) in some special cases but
were not able to prove any central limit theorem. In [7] the second and third authors
used generating series and singularity analysis to prove a central limit theorem and
some large deviations estimates in the cases where the generating series exhibit some
logarithmic singularities, but the important cases corresponding to subexponential and
algebraic growth of the generating series were still open (see the corollaries below for
a more precise statement). In this paper we propose yet another, but more elemen-
tary, approach based on Cauchy’s integral theorem for analytic functions to solve these
problems.

More precisely, with a sequence θ = {θj}∞j=1 fixed, we write

gθ(t) =

∞∑
k=1

θk
k
tk

for the indicated generating function. We will always assume that the series for gθ con-
verges in a neighborhood of the origin. We will also require that gθ satisfies a technical
condition which we call log-admissibility, which will be defined in Section 2.

Our main result is the following.

Theorem 1.1 (Central Limit Theorem for K0n). Suppose that gθ(t) is defined for t ∈
[0, 1) with gθ(t) → ∞ as t → 1. Suppose further that gθ is log-admissible (see Defini-
tion 2.1). Then there are sequences µn and σn such that

K0n − µn
σn

converges to a standard normal distribution.

The mean and standard deviation can also be explicitly computed. For now we will
state explicit results for two cases of interest, and defer the general result to Section 3.

Corollary 1.2. Let gθ(t) = γ(1 − t)−β for some β > 0 and γ > 0. Then K0n converges
asymptotically to a normal distribution with mean

µn = (βγ)−β/(β+1)nβ/(β+1)(1 + o(1))

and variance

σ2
n = ((βγ)−1 − (β + 1)−1)(βγ)1/(β+1)nβ/(β+1)(1 + o(1)).

Corollary 1.3. Let gθ(t) = exp(1− t)−β for some β > 0. Then K0n converges asymptot-
ically to a normal distribution with mean

µn =
n

(log n)1+1/β
(1 + o(1))

and variance
σ2
n = (2 + β−1)

n

(log n)2+1/β
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On the number of cycles in a random permutation

Our approach relies in the following well-known calculation of the moment generat-
ing function for K0n.

Proposition 1.4. We have the power series identity

exp(e−sgθ(t)) =

∞∑
n=0

hnE exp(−sK0n)tn

for all s ∈ R, with the conventions that h0 = 1 and K00 = 0.

This proposition follows immediately from Polya’s enumeration theorem with a small
calculation. More details can be found for instance in [7, Section 4]

Remark 1.5. In [7] the characteristic function E exp(itK0n) of K0n was considered. In
our new approach it is crucial to rather consider the Laplace transform E exp(−sK0n)

where the variable s is real in order to be able to evaluate the relevant contour integrals.

The outline of this article is as follows. In Section 2 we define log-admissible g(t)

and derive a formula for the coefficients of its generating function. In Section 3 we use
the formula to compute asymptotics for E exp(−sK0n), of which Theorem 1.1 is a direct
consequence. We also prove Corollary 1.2 and Corollary 1.3. Finally, in Section 4 we
show how the proof of Theorem 1.1 can be modified to give large deviation estimates
for K0n.

Notation

We will also freely employ asymptotic notation as follows; let f , g, and h be arbitrary
functions of a parameter n. Then we write f = O(g) to indicate the existence of a
constant C and threshold n0 such that for all n > n0, |f(n)| ≤ C|g(n)|; the constant and
threshold may be different in each use of the notation. We also write f = h + O(g) to
indicate |f − h| = O(g). We similarly write f = o(g) to indicate that

lim
n→∞

f(n)

g(n)
= 0.

It is convenient to also employ Vinogradov notation: we write f . g (and equivalently
g & f ) for f = O(g).

2 Estimates for the moment generating function

We shall now introduce the class of functions gθ(t) where we can compute the asymp-
totic behavior of E exp(−sK0n).

Definition 2.1. Let g(t) =
∑∞
n=0 gnt

n be given with radius of convergence ρ > 0 and
gn ≥ 0. We say that g(t) is log-admissible if there exist functions a, b, δ : [0, ρ)→ R+ and
R : [0, ρ)× (−π/2, π/2)→ R+ with the following properties.

approximation For all |ϕ| ≤ δ(r) we have the expansion

g(reiϕ) = g(r) + iϕa(r)− ϕ2

2
b(r) +R(r, ϕ) (2.1)

where R(r, ϕ) = o(ϕ3δ(r)−3) and the implied constant is uniform.

divergence a(r)→∞, b(r)→∞ and δ(r)→ 0 as r → ρ.

width of convergence For all ε > 0, we have εδ2(r)b(r)− log b(r)→∞ as r → ρ.

ECP 17 (2012), paper 20.
Page 3/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-1934
http://ecp.ejpecp.org/


On the number of cycles in a random permutation

monotonicity For all |ϕ| > δ(r), we have

<g(reiϕ) ≤ <g(re±iδ(r)). (2.2)

These properties can be interpreted as a logarithmic analogue of Hayman-admissibility
[6, Chapter VIII.5]. In fact, if g(t) is log-admissible then exp g(t) is Hayman-admissible.
We have also introduced the ε term in the width condition, which is required for unifor-
mity in the error term of Proposition 2.2.

The approximation condition allows us to compute the functions a and b exactly. We
have

a(r) = rg′(r), (2.3)

b(r) = rg′(r) + r2g′′(r). (2.4)

Clearly a and b are strictly increasing real analytic functions in [0, ρ). The error in the
approximation can similarly be bounded, so that

R(r, ϕ) . rg′(r) + 3r2g′′(r) + r3g′′′(r).

Note that for Ewens measure (θj = 1 for all j ≥ 0), we have g(r) = − log(1 − r), so
we can compute

b(r) =
r

(1− r)2
and R(r, ϕ) ≈ r2 + r

(1− r)3
.

Therefore g(r) = − log(1 − r) is not log-admissible and we cannot apply this method to
such distributions.

We will frequently require the inverse function of a on the interval [0, ρ), and define
rx to be the (unique) solution to a(r) = x there. It is easy to see that rx is strictly
increasing real analytic function in x and rx → ρ if x tends to infinity.

We now define for s ∈ R the sequence Gn,s by

∞∑
n=0

Gn,st
n = exp(e−sg(t)). (2.5)

If g(t) is log-admissible, then we can compute the asymptotic behavior of Gn,s for
n → ∞. The generating function in Proposition 1.4 has the same form as (2.5) and we
thus can compute also the asymptotic behavior of the moment generating function for
K0n if gθ is log-admissible.

Proposition 2.2. Let s ∈ R and let g be log-admissible with associated functions a, b.
Let further be rx to be the (unique) solution of a(r) = x.

Then Gn,s has the asymptotic expansion

Gn,s =
1√
2π
es/2r−nesnb(resn)−1/2 exp(e−sg(resn))(1 + o(1))

as n→∞ with the implied constant uniform in s for s bounded.

Proof. We apply Cauchy’s integral formula to the circle γ centered at 0 of radius r. We
get

Gn,s =
1

2πi

∫
γ

exp(e−sg(z))
dz

zn+1

=
1

2πrn

∫ π

−π
exp(e−sg(reiϕ)− inϕ) dϕ
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On the number of cycles in a random permutation

with r = resn. We now split the integral into the parts [−δ(r), δ(r)] and [−π,−δ(r)) ∪
(δ(r), π]. We first look at the minor arc [−δ(r), δ(r)]. By hypothesis on g we can expand
in ϕ, giving

I1 :=

∫ δ(r)

−δ(r)
exp(e−sg(reiϕ)− inϕ) dϕ

=

∫ δ(r)

−δ(r)
exp(e−s(g(r) + iϕa(r)− b(r)ϕ2/2 + o(ϕ3δ(r)−3)− inϕ)) dϕ.

We have e−sa(resn) = n since r = resn, which cancels the linear terms in ϕ. We get

I1 =

∫ δ(r)

−δ(r)
exp(e−s(g(r)− b(r)ϕ2/2 + ϕ3o(δ(r)−3))) dϕ.

We now observe that ϕ3o(δ(r)−3) = o(1) on [−δ(r), δ(r)] as r = resn → ρ, or equivalently
as n→∞. Rearranging, we get

I1 = exp(e−sg(r))

∫ δ(r)

−δ(r)
exp(−e−sb(r)ϕ2/2) dϕ(1 + o(1)).

By assumption on the width of convergence of g, the integral converges to

es/2b(r)−1/2
∫ δ(r)e−s/2b(r)1/2

−δ(r)e−s/2b(r)1/2
exp(−x2/2) dx =

√
2πes/2b(r)−1/2(1 + o(1))

so that
I1 =

√
2π exp(e−sg(r))es/2b(r)−1/2(1 + o(1)).

Next we estimate the integral over the major arc. By the monotonicity assumption
on g, we have

I2 :=

∫
[−π,−δ(r)]∪[δ(r),π]

| exp(e−sg(reiϕ)− inϕ)| dϕ ≤ 2π exp(<(e−sg(reiδ(r))))

We can apply the approximation for g at ϕ = δ(r), giving

<g(reiδ(r)) = g(r)− δ(r)2

2
b(r) + o(1)

Collecting terms and rearranging,

I2 ≤ 2π exp(e−sg(r))b(r)−1/2 exp(−e−sδ(r)2b(r)/2 +
1

2
log b(r))

= o(exp(e−sg(r))b(r)−1/2) (2.6)

where at the last step we used the width of approximation for g.
Combining the estimates for I1 and I2, we find that

Gn,s =
1√
2π
r−nesne

s/2 exp(e−sg(resn))(1 + o(1)).

where the error term is uniform in s for s in a fixed compact set. Note that all error-
terms in this proof are uniform in s for s in a fixed compact set.

Note that the ε in the definition of log-admissibility is required to make the error in
(2.6) uniform in s.
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On the number of cycles in a random permutation

3 The total number of cycles

We are now ready to compute the asymptotic number of cycles in a random permuta-
tion as described in the introduction. We will restrict our attention to those examples in
[5] where the limiting behavior was not known, namely where the generating function
gθ is of the form

gθ(r) = γ(1− r)−β

or

gθ(r) = exp(1− r)−β .

We will refer to such functions as exhibiting algebraic and sub-exponential growth,
respectively.

We begin by observing that a formula for the moment generating function of K0n

can be determined from Proposition 2.2.

Corollary 3.1. Let s ∈ R, gθ(t) be log-admissible with associated functions a, b. Let
further rx be the (unique) solution to a(r) = x.

Then

hn =
1√

2πb(rn)rnn
exp(gθ(rn))(1 + o(1))

and

E exp(−sK0n) = es/2
(
rn
resn

)n
exp(e−sgθ(resn))

exp(gθ(rn))

(
b(rn)

b(resn)

)1/2

(1 + o(1)),

where the error terms are uniform in s for s in a fixed compact set.

Proof. By Proposition 1.4, we have

hnE exp(−sK0n) = Gn,s.

Apply Proposition 2.2 at 0 to get the desired formula for hn, and apply it again at s to
find the formula for E exp(−sK0n).

3.1 A simple example

Before we consider more complicated functions, we will illustrate the method with
gθ given by the equation

gθ(t) =
1

1− t
.

This generating function corresponds to the sequence θk = k.
Our first step is to compute the moment generating function of K0n by finding an

asymptotic expansion of the formula in Corollary 3.1.

Proposition 3.2. Let gθ(t) = (1− t)−1. Then gθ is admissible,

hn =
1√
4π
n−3/4 exp(2

√
n(1 + o(1))),

and

E exp(−sK0n) = e−s/4 exp(2
√
n(e−s/2 − 1)(1 + o(1)))

where the errors are uniform in s for s in a fixed compact set.

We will prove Proposition 3.2 in a moment. We first see how to use this result to
prove a central limit theorem for K0n.
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Corollary 3.3. Let gθ(t) = (1− t)−1. Then

K0n − n1/2

2−1/2n1/4
d−→ N.

where N is the standard normal distribution.

Proof of Corollary 3.3. It suffices to show that the moment generating function of the
renormalized cycle count converges to es

2/2 for bounded s (in fact, we only need this
for s sufficiently small, but our theorem gives a stronger result). We apply Theorem 3.2
at s/(2−1/2n1/4) to find

E exp(−s K0n

2−1/2n1/4
) = exp(−

√
2sn1/4 + s2/2 +O(s3n−1/4)).

Here we used the uniformity of the error for bounded s. Multiplying both sides by
exp(
√

2sn1/4) and letting n tend to∞ completes the proof.

Proof of Theorem 3.2. We first show that gθ(t) = (1− t)−1 is admissible. The monotonic-
ity condition is obvious. We compute

a(t) =
t

(1− t)2

and

b(t) =
t

(1− t)2
+

2t2

(1− t)3

and note that a, b → ∞ as t → 1 from the left. It suffices to choose a function δ(t) that
satisfies the remaining hypotheses. We observe that the width condition on δ is satisfied
if δ(t) . (1 − t)3/2−η for some η > 0. Likewise, for the error in the approximation
condition to be satisfied we need δ(t)3(1 − t)−4 = o(1). It therefore suffices to choose
δ(t) = (1− t)α for any 4/3 < α ≤ 3/2.

We first calculate rx. By definition we have

rx
(1− rx)2

= x,

which can be inverted to find

rx = 1− x−1/2(1 + o(1)).

We then compute

g(rx) =
√
x(1 + o(1))

and

b(rx) = 2x3/2(1 + o(1)).

With the approximation (1 − η)n ∼ exp(−ηn) for η sufficiently small, we apply Corol-
lary 3.1 to find

hn =
1√
4π
n−3/4 exp(2

√
n(1 + o(1)))

and

E exp(−sK0n) = e−s/4 exp(2
√
n(e−s/2 − 1)(1 + o(1)))

as required.
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On the number of cycles in a random permutation

3.2 The general case

The previous calculation suggests how to transform the formula in Corollary 3.1 into
a form that is easier to manage. We will restrict our attention to those functions g where
the induced functions rx satisfy a family of inequalities

|r(k)x xk| . |r(k−1)x x(k−1)| (3.1)

for all x sufficiently large and 2 ≤ k ≤ 4. This is easy to verify in practice and avoids
some technical details for functions g which diverge slowly at 1 (i.e. slower than (1−r)−ε
for any ε > 0).

It is convenient to define the functions

ηk(x) := (−1)k
∂k

∂ks

∣∣∣∣
s=0

log(resx).

For example, this gives

η1(x) = −xr
′
x

rx
and η2(x) = −η1(x) + x2

(
r′′x
rx

+

(
r′x
rx

)2
)
.

Proposition 3.4. Let g be log-admissible and rx be defined as above, satisfying condi-
tion 3.1. Fix M > 0. Then for every −M < s < M , we have

logE exp(−sK0n) =− g(rn)(1 + o(1))s

+ (g(rn) + nη1(n))(1 + o(1))s2/2

+O(ξ(n)s3)

where
ξ(n) = sup

x∈[e−Mn,eMn]
g(rx) + x|η1(x)|.

Proof. We use Corollary 3.1 and expand each factor with respect to s.
We start with the first term. Taking logarithms, we find

log(rnr
−1
esn)n = n log(rn)− n log(resn)

= nη1(n)s− nη2(n)s2/2 +O(ξ1(n)s3)

where
ξ1(n) := sup

x∈[e−Mn,eMn]
|η3(x)|.

Next we consider exp(e−sg(resn)− g(rn)). We use x = a(rx) = rxg
′(rx) and get

∂

∂s
g(resn) = g′(resn)r′esne

sn = e2sn2
r′esn
resn

= −esn · η1(esn).

This gives

e−sg(resn)− g(rn) =− (nη1(n) + g(rn))s

+ (nη1(n) + nη2(n) + g(rn))s2/2

+O(ξ2(n)s3)

where
ξ2(n) = sup

x∈[e−Mn,eMn]
gr(x) + x|η1(x)|+ x|η2(x)|+ x|η3(x)|.
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Finally we consider (b(rn)b(resn)−1)1/2. Writing b in terms of a, we get

b(rx) = a(rx) + r2xg
′′(rx) = x+ r2xg

′′(rx).

Differentiating the defining equation x = rxg
′(rx) in x, we find that

1 = r′xg
′(rx) + rxr

′
xg
′′(rx)

so that

r2xg
′′(rx) =

rx
r′x
− x

and thus

b(rx) =
rx
r′x

=
−x
η1(x)

.

This then gives

log

(
b(rn)

b(resn)

)1/2

= s/2− η2(n)

2η1(n)
s+

(
η3(n)

2η1(n)
− η22(n)

2η21(n)

)
s2

2
+O(ξ3(n)s3)

where

ξ3(n) = sup
x∈[n,esn]

∣∣∣∣η4(x)

η1(x)

∣∣∣∣+

∣∣∣∣η2(x)η3(x)

η21(x)

∣∣∣∣+

∣∣∣∣η32(x)

η31(x)

∣∣∣∣ .
We now apply the technical assumption to see that ηk(n) . η1(n) for k = 2, 3, 4. In

particular, we see that the (b(rn)b(resn)−1)1/2 is dominated by the other terms. Collaps-
ing other redundant terms, we find that

logE exp(−sK0n) =− g(rn)(1 + o(1))s

+ (g(rn) + nη1(n))(1 + o(1))s2/2

+O(s3 sup
x∈[e−Mn,eMn]

g(rx) + x|η1(x)|)

as desired.

As above, this has the following immediate corollary.

Corollary 3.5. Let θ be the defining sequence for a generalized Ewens measure. Sup-
pose that gθ is log-admissible and rx satisfies the technical condition 3.1. Then there
are functions µn and σn such that

K0n − µn
σn

d−→ N(0, 1)

where µn, σn satisfy the asymptotics

µn = g(rn)(1 + o(1))

and

σ2
n = (g(rn) + nη1(n))(1 + o(1)).

Proof. The only thing to check is whether the coefficient of s3 is bounded by (g(rx) +

x|η1(x)|)3/2, but this is obvious.
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3.3 Computing g(rn) and η1(n)

We now give two examples of how to apply Corollary 3.5 to compute explicit asymp-
totics for given gθ. First we prove Corollary 1.2.

Proposition 3.6. Let gθ(t) = γ(1 − t)−β for some β > 0 and γ > 0. Then gθ is log-
admissible, rx satisfies the technical condition 3.1, and there are asymptotic expansions

gθ(rn) = (nβ−1γ−1)
β
β+1 (1 + o(1))

and

nη1(n) = − (βγ)1/(β+1)

β + 1
nβ/(β+1)(1 + o(1)).

Proof. Admissibility follows once we construct an explicit δ(t). It suffices to find a func-
tion that satisfies the inequalities

εδ(t)2b(t)− log b(t)→∞

for all ε > 0, and

δ(t)3R(t, ϕ)→ 0.

For t→ 1, we have the lower bound b(t) &γ,β (1−t)−β−2 and the upper boundR(t, ϕ) .γ,β
(1 − t)−β−3. Thus we see that any δ of the form δ(t) = (1 − t)α with 1 + β

3 ≤ α < 1 + β
2

suffices.

We compute rn by inverting n = a(rn) = βγrn(1− rn)−β−1, so that

rn = 1− (βγn−1)
1

β+1 (1 + o(1)).

The derivatives of rn can be approximated in an analogous way, so that

|r(k)n | = Cβ,γn
−1
β+1−k

and the technical condition is clear. We then estimate

gθ(rn) = (nβ−1γ−1)
β
β+1 (1 + o(1)).

and

nη1(n) = − (βγ)1/(β+1)

β + 1
nβ/(β+1)(1 + o(1))

with our estimate for rn and r′n.

Next we prove Corollary 1.3.

Proposition 3.7. Let gθ(r) = exp(1− r)−β for some β > 0. Then gθ is log-admissible, rx
satisfies the technical condition 3.1, and there are asymptotic expansions

gθ(rn) =
n

(log n)1+1/β
(1 + (log n)−1/β + (1 + β−1)

log log x

log x
(1 + o(1)))

and

nη1(n) = − n

(log n)1+1/β
(1 + (log n)−1/β − (1 + β−1)

1

log x
(1 + o(1)))
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Proof. First we verify that gθ is admissible. Monotonicity is obvious. We compute

a(r) = rg′(r) = rβ(1− r)−β−1 exp(1− r)−β

and

b(r) = rg′(r) + r2g′′(r)

= r2(β(β + 1)(1− r)−β−2 + β2(1− r)−2β−2) exp(1− r)−β

= r2β2(1− r)−2β−2 exp(1− r)−β(1 +Oβ(1− r)β).

These diverge at 1. Once we estimate

R(r, ϕ) = rg′(r) + 3r2g′′(r) + r3g′′′(r)

= r3β3(1− r)−3β−3 exp(1− r)−β(1 +Oβ(1− r)β)

we see that it remains to choose any δ that satisfies the pair of inequalities

εδ(r)2r2β2(1− r)−2β−2 exp(1− r)−β →∞

and
r3β3(1− r)−3β−3 exp(1− r)−β . δ(r)−3.

Any δ of the form
δ(r) = exp(α(1− t)−β)

with 1/3 ≤ α < 1/2 suffices.
We next need an asymptotic approximation for rx. This is provided by the following

lemma.

Lemma 3.8. Let f(x) := (1− rx)−β . Then we have the asymptotic expansion

f(x) = log x− (1 + β−1) log log x− log β

+ ((log x)−1/β + (1 + β−1)
log log x

log x
)(1 + o(1))

Furthermore, we have the estimates

f (k)(x) = (−1)k+1(k − 1)!
1

xk
(1− 1 + β−1

log x
) +Oβ,k(

log log x

xk(log x)2
)

Proof. Once we make the substitution f(x) = (1 − rx)−β in the equation a(rx) = x, we
see that f is implicitly defined by the equation

x = β(1− f(x)−1/β)f(x)1+1/β exp f(x).

We then substitute f(x) = log x−(1+β−1) log log x+w and observe that w = ((log x)−1/β+

(1 + β−1) log log x
log x )(1 + o(1)).

For the estimates on the derivatives of f , we differentiate the defining equation for
f to find

1 = (f(x)1/β + β(f(x)1/β − 1) + β(f(x)1/β − 1)f(x))f ′(x) exp f(x).

We can use the defining equation again to eliminate the exponential term, which gives
us

f ′(x) =
1

x
(1− β−1(1− f(x)−1/β)−1 + 1

β−1(1− f(x)−1/β)−1 + 1 + f(x)
).

This gives us the lemma for k = 1. For the higher derivatives, we differentiate by parts
and apply our earlier asymptotics.
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Note that this lemma also shows that rx satisfies the technical condition. We apply
this formula to g(rn) to get

g(rn) =
n

(log n)1+1/β
(1 + (log n)−1/β + (1 + β−1)

log log x

log x
(1 + o(1)))

and to nη1(n) to get

nη1(n) = − n

(log n)1+1/β
(1 + (log n)−1/β − (1 + β−1)

1

log x
(1 + o(1))).

Other g(t) can be computed in similar ways. Note that in the proof of Corollary 1.3,
it was crucial to develop g(rn) and nη1(n) beyond the first term; this reflects the re-
duced variance of the number of cycles when there most of the cycles are of logarithmic
length.

4 Large deviation estimates

The method developed in the previous two sections actually gives more information
than a central limit theorem. In fact, it was enough for us to show that

E
K0n − µn

σn
= exp(

s2

2
(1 + o(1)))

for s arbitrarily close to 0, but our method applied to all s in a fixed compact set. In
this section we will briefly indicate how to use this extra information to prove large
deviation estimates for K0n.

Let M(s) denote the moment generation function for the renormalized cycle count;
i.e.

M(s) = E exp(s
K0n − µn

σn
)

and let Λ(s) = logM(s) denote its logarithm. We restate the corollary of Proposition 3.4
as follows.

Proposition 4.1. There are functions σ2
n, ξ(n) such that the for all s = O(σn), we have

the estimate

Λ(s) = s2/2 +O(ξ(n)σ−3n )s3.

As an immediate consequence, we also have

Λ′(s) = s+O(ξ(n)σ−3n )s2

and

Λ′′(s) = 1 +O(ξ(n)σ−3n )s.

Furthermore, Λ′(s) is monotone increasing (hence injective) for such s.

Theorem 4.2. For all a = O(σn) we have

P(|K0n − µn
σn

− a| < ε) = (1− ε−2(1 + δ)) exp(−a2/2 +O(δ + εa))

where

δ = O(ξ(n)σ−3n a)

and the errors are absolute.
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Proof. Let Xn := (K0n − µn)/σn and let η denote the pdf for Xn. We define a pdf νs
depending on s ∈ R by

dνs(x) =
1

M(s)
esxdη(x).

Then if Y is a random variable with pdf νs, we see that

P(|Xn − a| < ε) = M(s)Ee−sY 1|Y−a|<ε

We want to choose s so that Y has mean a. In fact,

EY = M(s)−1EXn exp(sXn)] = Λ′(s)

Therefore, because Λ′ is injective we solve s = a + O(ξ(n)σ−3n a2). On the event that
|Y − a| < ε, we see that e−sY = e−sa+O(sε) so that

P(|Xn − a| < ε) = exp(−a2/2 +O(αa3 + εa))P(|Y − a| < ε).

It is not hard to show that for s chosen so that a = EY ,

E|Y − a|2 = Λ′′(s)

so that by the second moment method,

P(|Y − a| < ε) = 1− ε−2(1 +O(ξ(n)σ−3n a)),

and the result follows.
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