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Abstract

Ge and Štefankovič have recently introduced a Markov chain which, if rapidly mix-
ing, would provide an efficient procedure for sampling independent sets in a bipar-
tite graph. Such a procedure would be a breakthrough because it would give an
efficient randomised algorithm for approximately counting independent sets in a bi-
partite graph, which would in turn imply the existence of efficient approximation
algorithms for a number of significant counting problems whose computational com-
plexity is so far unresolved. Their Markov chain is based on a novel two-variable
graph polynomial which, when specialised to a bipartite graph, and evaluated at the
point ( 1

2
, 1), gives the number of independent sets in the graph. The Markov chain is

promising, in the sense that it overcomes the most obvious barrier to rapid mixing.
However, we show here, by exhibiting a sequence of counterexamples, that its mixing
time is exponential in the size of the input when the input is chosen from a particular
infinite family of bipartite graphs.

Keywords: Glauber dynamics; Independent sets in graphs; Markov chains; Mixing time; Ran-
domised algorithms.
AMS MSC 2010: 60J10; 05C31; 05C69; 68Q17.
Submitted to ECP on October 18, 2011, final version accepted on December 14, 2011.
Supersedes arXiv:1109.5242v1.

1 Overview

In this note, we study the mixing time of a Markov chain, proposed by Ge and Šte-
fankovič, for sampling independent sets in a bipartite graph. The Markov chain is
important because, if it were rapidly mixing, it would give an efficient randomised al-
gorithm for approximately counting independent sets in a bipartite graph, which would
have consequences in the field of computational complexity.

We start by describing the complexity-theoretic background. Consider the following
basic computational problem: Given a bipartite graph, compute the number of inde-
pendent sets in the graph. It has long been known that this problem, which is denoted
#BIS, is computationally difficult, in the sense that it is #P-complete [11]. Informally,
that means that #BIS is as difficult as a host of other computational problems, such as
computing the permanent of a 0,1-matrix or counting the number of satisfying assign-
ments to a Boolean formula. There is unlikely to be an efficient algorithm for exactly
solving the problem.
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However, it is still possible that there is an efficient algorithm for approximately
counting the independent sets in a bipartite graph. This is a fascinating open problem
which has received quite a bit of attention. The standard notion of efficient approx-
imation, in the context of counting problems, is the “fully polynomial approximation
scheme” or FPRAS. Roughly speaking, an FPRAS is a polynomial-time randomised al-
gorithm that produces an estimate that is close in relative error to the true solution
with high probability. (See [10, Defn 11.2] for a precise definition.)

It is well-known (see, for example, [7, §3.2]) that any efficient algorithm for uniformly
sampling independent sets in a bipartite graph could easily be turned into an FPRAS
for #BIS. It turns out that this would also have consequences for the approximability
of other computational counting problems. Dyer et al. [3] showed that a number of
counting problems are equivalent to #BIS under approximation-preserving reducibility,
and further #BIS-equivalent problems have been presented in subsequent work [1, 6].
Since no FPRAS has been found for any of the counting problems in this equivalence
class, it is becoming standard to progress under the assumption that none exists.

So finding an FPRAS for #BIS at this stage would be a significant development. Not
only would it imply the existence of an FPRAS for several natural counting problems —
such as counting downsets in a partial order, or evaluating the partition function of the
ferromagnetic Ising model with local fields — but it would also resolve the complexity
of approximating #BIS in the opposite direction to the one many people expect.

The most fruitful approach to designing efficient approximation algorithms for count-
ing problems has been Markov chain Monte Carlo (MCMC). A direct application of
MCMC to #BIS would work as follows. Given a bipartite graph G with n vertices, con-
sider the Markov chain whose state space, Ω, is the set of all independent sets in G,
and whose transition probabilities P (·, ·) are as follows, where ⊕ denotes symmetric
difference and H(I) = {I ′ ∈ Ω | |I ⊕ I ′| = 1}:

P (I, I ′) =


1−H(I)/2n, if I ′ = I;

1/2n, if I ′ ∈ H(I);

0, otherwise.

It is easy to check that this Markov chain has the uniform distribution on independent
sets as its unique stationary distribution. So, simulating the Markov chain for suffi-
ciently many steps would enable us to sample independent sets nearly uniformly. As we
mentioned above, from there it is a short step to estimating the number of independent
sets [7, §3.2].

To obtain an FPRAS from this approach, one requires that the Markov chain on in-
dependent sets is rapidly mixing, i.e., that it is close to the stationary distribution after
a number of steps that is polynomial in n. Unfortunately, it is clear that the proposed
Markov chain does not have this property. Consider the complete bipartite graph with
equal numbers of vertices in the left and right blocks of the bipartition. There are
2n/2 − 1 independent sets that have non-empty intersection with the left block, and the
same number with non-empty intersection with the right. Any sequence of transitions
which starts in a left-oriented independent set and ends in a right-oriented one must
necessarily pass through the empty independent set. Informally, the empty indepen-
dent set presents an obstruction to rapid mixing by forming a constriction in the state
space. This intuition can be made rigorous by noting that the “conductance” of the
Markov chain is exponentially small, which implies exponential (in n) mixing time [2,
Claim 2.3]. In fact, it is not even necessary to have a dense graph in order to obtain
such a constriction: degree 6 will do [2, Thm 2.1]; see also Mossel et al. [9] for sharper
results.
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Ge and Štefankovič [5] have recently introduced an intriguing graph polynomial
R′2(G;λ, µ), in two indeterminates λ and µ, that is associated with a bipartite graph G.
At the point (λ, µ) = ( 1

2 , 1) it counts independent set in G; specifically, the number of
independent sets in G is given by 2n−mR′2(G; 1

2 , 1), where n is the number of vertices,
and m the number of edges in G [5, Thm 4]. This polynomial inspires them to propose
a new Markov chain [5, Defn 6] that potentially could be used to sample independent
sets from a bipartite graph and hence provide an approximation algorithm for #BIS.
The Markov chain, which is described below, is very different from the one discussed
earlier. In particular, its states are subsets of the edge set of G rather than subsets
of the vertex set. Thus, sampling an independent set of G is a two-stage procedure:
(a) sample an edge subset A of G from the appropriate distribution, and then (b) sample
an independent set from a distribution conditioned on A. Details will be given below.

The encouraging aspect of this new Markov chain, which we call the Ge-Štefankovič
Process, or GS Process for short, is that it is immune to the obvious counterexamples,
such as the complete bipartite graph. Unfortunately, with a certain amount of effort it
is possible to find a counterexample to rapid mixing. In §2 we describe the GS Process,
and in §3 construct a sequence of graphs on which its mixing time is exponential (in the
number of vertices of the graph). The precise lower bound on mixing time is presented
in Theorem 3.2. Although this counterexample rules out their Markov chain as an ap-
proach to constructing a general FPRAS for #BIS, we may still hope that it provides
an efficient algorithm for some restricted class of graphs. For example, [5, Theorem 7]
shows that it provides an efficient algorithm on trees.

2 The Ge-Štefankovič Process

Before stating our result, we need to formalise what we mean by mixing, rapid or
otherwise. Let (Xt) be an ergodic Markov chain with state space Ω, distribution pt
at time t, and unique stationary distribution π. Let x0 ∈ Ω be the initial state of the
chain, so that p0 assigns unit mass to state x0. Define the mixing time τ(x0) with initial
state x0 ∈ Ω, as the first time t at which 1

2‖pt − π‖1 ≤ e−1, i.e., at which the distance
between the t-step and stationary distributions is at most e−1 in total variation; then
define the mixing time τ as the maximum of τ(x0) over all choices of initial state x0.

Suppose G = (U ∪ V,E) is a bipartite graph, where U, V are disjoint sets forming
the vertex bipartition, and E is the edge set. We are interested in two probability
spaces, (Ω, πΩ) and (Σ, πΣ), where Ω = 2E and Σ = 2U . We construct the probability
distributions πΩ : Ω → [0, 1] and πΣ : Σ → [0, 1] with the help of a certain consistency
relation χ on Σ ×Ω, which is defined as follows. For a pair (I, A) ∈ Σ ×Ω, consider the
subgraph of (U ∪ V,A) induced by the vertex set I ∪ V . We say that the relation χ(I, A)

holds iff every vertex of V has even degree in this subgraph. Start with the probability
space of consistent pairs {(I, A) ∈ Σ ×Ω | χ(I, A)} with the uniform distribution. Then
πΩ (respectively πΣ) is the induced marginal distribution on Ω (respectively Σ). We call
πΣ the marginal BIS distribution on Σ. The terminology is justified by the following
observation.

Lemma 2.1. With the definitions given above, πΣ is the distribution induced on U by
a uniform random independent set in G. Furthermore, πΩ is the distribution denoted
“RWM( 1

2 , 1)” in [5].

Proof. These facts can be read off from [5, Lemma 10]. The translation of the notation
is as follows: u ∈ F|U |2 is the characteristic vector of I, B is the graph (U ∪ V,A) viewed
as a |U | × |V | bipartite adjacency matrix over F2, and uTB = 0 is equivalent to the
condition χ(I, A). In [5], the distribution RWM( 1

2 , 1) is defined in terms of the rank of
the matrix B, but it is clear that it is the same as the distribution denoted πΩ here.
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The GS-process is an ergodic “single bond flip” Markov chain on state space Ω

which has stationary distribution πΩ. The exact definition of this Markov chain is not
important to us, as our counterexample applies to any Markov chain on state space
Ω with stationary distribution πΩ that does not change too many edges in one step.
In order to formalise this last requirement, say that a Markov chain with transition
probabilities P : Ω2 → [0, 1], is d-cautious if

P (A,A′) > 0 =⇒ |A⊕A′| ≤ d, for all A,A′ ∈ Ω.

The GS Process is a 1-cautious Markov chain. Our negative result applies to all d-
cautious chains, where d depends at most linearly on the number of vertices of G.

3 A counterexample to rapid mixing

The following lemma (taken from [2, Claim 2.3]) packages the conductance argu-
ment in a convenient way for us to obtain explicit lower bounds on mixing time.

Lemma 3.1. Let (Xt) be a Markov chain with state space Ω, transition matrix P and
stationary distribution π. Let {S, T} be a partition of Ω such that π(S) ≤ 1

2 , and C ⊂ Ω

be a set of states that form a “barrier” in the sense that P (s, t) = 0 whenever s ∈ S \ C
and t ∈ T \ C. Then the mixing time of the Markov chain is at least π(S)/8π(C).

Let n,m be positive integers such that (3/2)m ≤ 2n − 1 < (3/2)m+1. Note that for
every n there is a unique m satisfying the inequalities, and that m depends linearly on n,
asymptotically. The counterexample graph (actually sequence of graphs indexed by n)
Gn = (U ′ ∪ V ∪ U ′′, E) has vertex set U ′ ∪ V ∪ U ′′ where |U ′| = n and |V | = |U ′′| = m.
The edge set is E = U ′ × V ∪M , where M is a perfect matching of the vertices in V

and U ′′. Thus, (a) Gn has bipartition (U, V ) where U = U ′ ∪ U ′′, (b) U ′, V and U ′′ are all
independent sets, (c) the edges between U ′ and V form a complete graph, and (d) the
edges between V and U ′′ form a matching.

PartitionΣ asΣ = Σ0∪Σ1, whereΣ0 = {I ∈ Σ | I∩U ′ = ∅} andΣ1 = Σ\Σ0. Observe
there are 3m independent sets in Gn that exclude all vertices in U ′, and (2n − 1)2m that
include some vertex. Since πΣ is the marginal distribution of independent sets in Gn
(see Lemma 2.1),

πΣ(Σ0) =
3m

3m + (2n − 1)2m
= α,

where 2
5 < α ≤ 1

2 , by choice of n,m. So Σ0 ∪ Σ1 is a nearly balanced partition of the
state-space Σ. Also it is easy to check that the cut defined by this partition is a witness
to the conductance of the “single site flip” Markov chain of §1 being exponentially small
in n. This implies that the mixing time of the single site flip Markov chain is exponential
in n (which, of course, was never in doubt). Next we identify a partition Ω0 ∪ Ω1 that
mirrors the partition Σ0 ∪ Σ1, and itself witnesses exponentially small conductance of
the GS Process.

Define the weight w(A) of A ∈ Ω to be w(A) = |A ∩M |. Partition Ω as Ω = Ω0 ∪Ω1,
where Ω0 = {A ∈ Ω | w(A) ≤ 5

12m} and Ω1 = Ω \Ω0. We aim to show that the weights of
states in Ω are concentrated around 1

3m and 1
2m, and there are exponentially few states

near the boundary of Ω0 and Ω1. With a view to applying Lemma 3.1, define a “barrier
set” (of states) by

C = {A ∈ Ω | 9
24m ≤ w(A) ≤ 11

24m}.

It is not clear how to sample a state A from the distribution (Ω, πΩ) directly, so instead
we sample a state I from (Σ, πΣ) and then sample u.a.r. a state A consistent with I, i.e.,
satisfying χ(I,A). This amounts to the same thing. We have a good handle on (Σ, πΣ),
since we know it is the marginal BIS distribution (Lemma 2.1).
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Suppose we start with a state I sampled from (Σ, πΣ), conditional on I ∈ Σ0. The
set I ∩ U ′′ is determined by a Bernoulli process with success probability 1

3 . (For each
edge e in M there are three possibilities for the restriction of the independent set I
to e, and only one of them includes a vertex from U ′′. These choices are independent
for each e ∈ M .) When we come to select a random consistent edge set A, we must
exclude all edges in M that are incident to a vertex in I ∩U ′′. The other edges in M are
free to be included or excluded. So the set of edges A∩M is determined by a Bernoulli
process with success probability 1

3 . Thus E(w(A)) = 1
3m and, by a Chernoff bound,

Pr(w(A) ≥ 9
24m) is exponentially small in m. Specifically,

Pr(A ∈ C) ≤ Pr
(
w(S) ≥ 9

24m
)
≤ exp(−m/576) (3.1)

by [8, Thm 4.4(2)], setting δ = 1
8 and µ = 1

3m.
Now suppose I is sampled from (Σ, πΣ), conditional on I ∈ Σ1. Now select a uniform

random A, conditional on the event χ(I, A). We argue that the probability that a given
edge e = (v, u) of M is included in A is 1

2 , independent of all the other edges of M .
Suppose v ∈ V and (v, u) ∈ M . Imagine we are deciding which edges incident to v

are to be included in A. First we decide whether to include the edge (v, u) itself. In
selecting the remaining edges for A from the n available, we just have to make sure
that the parity of A ∩ ({v} × (I ∩U ′)) is odd, if (v, u) ∈ A and u ∈ I, and even otherwise.
Since I ∩ U ′ 6= ∅, the number of ways to do this is 2n−1, independent of whether we
included edge e in the first place. It follows that the set of edges A ∩M is determined
by a Bernoulli process with success probability 1

2 . Thus E(w(A)) = 1
2m and, by Chernoff,

Pr(w(A) ≤ 11
24m) is exponentially small in n. Specifically,

Pr(A ∈ C) ≤ Pr
(
w(S) ≤ 11

24m
)
≤ exp(−m/576) (3.2)

by [8, Thm 4.5(2)], setting δ = 1
12 and µ = 1

2m.
We see now that the partition Ω0 ∪Ω1 = Ω is balanced, since πΩ(Ω0) = α± o(1) and

2
5 < α ≤ 1

2 . Moreover, from (3.1) and (3.2), Pr( 9
24 ≤ w(A) ≤ 11

24 ) is exponentially small
when A is selected from the distribution (Ω, πΩ); specifically, πΩ(C) ≤ exp(−m/576).
Thus the cut (Ω0, Ω1) is witness to the conductance of the single bond flip MC being
exponentially small. Suppose d ≤ m/12. Observe that no d-cautious chain can make a
transition from Ω0 \ C to Ω1 \ C. Applying Lemma 3.1, we therefore obtain.

Theorem 3.2. Suppose that n, m, Gn, Ω and πΩ are as above, and that d ≤ m/12. Any
ergodic Markov chain on state space Ω with stationary distribution πΩ that is d-cautious
has mixing time Ω(exp(m/576)). In particular, the GS Process, which is 1-cautious, has
mixing time exponential in the number of vertices in Gn.

It is also natural to consider a “Swendsen-Wang-style” Markov chain for sampling
from (Σ, πΣ). Let I ∈ Σ be the current state. Choose A u.a.r. from the set {A ∈ Ω |
χ(I, A)}. Then choose I ′ u.a.r. from the set {I ′ ∈ Σ | χ(I ′, A)}. The new state is I ′.
We can think of this process as a Markov chain on state space Σ ∪ Ω with stationary
distribution 1

2πΣ on Σ and 1
2πΩ on Ω. (Assume a continuous time process to avoid the

obvious periodicity.) It follows from the earlier analysis that the cut (Σ0 ∪ Ω0, Σ1 ∪ Ω1)

witnesses exponentially small conductance. To see this, we calculate the probability in
stationarity of observing a transition fromΣ0∪Ω0 toΣ1∪Ω1. There are two possibilities:
a transition from Σ0 to Ω1, or one from Ω0 to Σ1. The probability of the former, we have
seen, is 1

2πΣ(Σ0) times a quantity that is exponentially small in n. The latter is, by time
reversibility, the same as observing, in stationarity, a transition from Σ1 to Ω0. This
probability is again exponentially small in n. Hence the conductance is exponentially
small so the mixing time of the Swendsen-Wang-style Markov chain is exponential in n.
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We can also look a little closer, to see what is going on in more detail. Sample
a state ω at random from (Σ, πΣ), conditioned on the event ω ∈ Σ0, and apply a “half-
step” of the SW-like process to obtain a state A ∈ Ω. We know that A∩M is described by
a Bernoulli process with success probability 1

3 . Moreover, it is easy to see the remaining
edges of A are Bernoulli with success probability 1

2 . Now consider the transition from
A to I ′. As in [5], view the set I ′ ∩ U ′ as a n-vector u′ over F2. Each of the vertices in
V that is not incident to an edge of A ∩M generates a linear equation, with constant
term zero, constraining u′. These 2

3m ≈ 1.1397n random linear equations constrain
just n variables; so with with high probability the only solution is to set all n variables
to 0. (Equivalently, a random n × 2

3m matrix over F2 has rank n with high probability.)
In other words, I ′ ∩ U ′ = ∅, except with exponentially small probability, and we find
ourselves back in Σ0 again.

References

[1] Prasad Chebolu, Leslie Ann Goldberg, and Russell Martin. The complexity of approximately
counting stable matchings. In Proceedings of the 13th international conference on Approxi-
mation, and 14 the International conference on Randomization, and combinatorial optimiza-
tion: algorithms and techniques, APPROX/RANDOM’10, pages 81–94, Berlin, Heidelberg,
2010. Springer-Verlag.

[2] Martin Dyer, Alan Frieze, and Mark Jerrum. On counting independent sets in sparse graphs.
SIAM J. Comput., 31(5):1527–1541 (electronic), 2002. MR-1936657

[3] Martin Dyer, Leslie Ann Goldberg, Catherine Greenhill, and Mark Jerrum. The relative
complexity of approximate counting problems. Algorithmica, 38(3):471–500, 2004. Approx-
imation algorithms. MR-2044886

[4] Martin Dyer, Leslie Ann Goldberg, Mark Jerrum, and Russell Martin. Markov chain compar-
ison. Probab. Surv., 3:89–111 (electronic), 2006. MR-2216963

[5] Qi Ge and Daniel Stefankovic. A graph polynomial for independent sets of bipartite graphs.
In Kamal Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2010), volume 8 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 240–250, Dagstuhl, Germany,
2010.

[6] Leslie Ann Goldberg and Mark Jerrum. The complexity of ferromagnetic Ising with local
fields. Combin. Probab. Comput., 16(1):43–61, 2007. MR-2286511

[7] Mark Jerrum. Counting, sampling and integrating: algorithms and complexity. Lectures in
Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2003. MR-1960003

[8] Michael Mitzenmacher and Eli Upfal. Probability and Computing. Cambridge University
Press, Cambridge, 2005. Randomized algorithms and probabilistic analysis. MR-2144605

[9] Elchanan Mossel, Dror Weitz, and Nicholas Wormald. On the hardness of sampling inde-
pendent sets beyond the tree threshold. Probab. Theory Related Fields, 143(3-4):401–439,
2009. MR-2475668

[10] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge University
Press, Cambridge, 1995. MR-1344451

[11] J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM J. Comput., 12(4):777–788, 1983. MR-0721012

ECP 17 (2012), paper 5.
Page 6/6

ecp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=1936657
http://www.ams.org/mathscinet-getitem?mr=2044886
http://www.ams.org/mathscinet-getitem?mr=2216963
http://www.ams.org/mathscinet-getitem?mr=2286511
http://www.ams.org/mathscinet-getitem?mr=1960003
http://www.ams.org/mathscinet-getitem?mr=2144605
http://www.ams.org/mathscinet-getitem?mr=2475668
http://www.ams.org/mathscinet-getitem?mr=1344451
http://www.ams.org/mathscinet-getitem?mr=0721012
http://dx.doi.org/10.1214/ECP.v17-1712
http://ecp.ejpecp.org/

	Overview
	The Ge-Štefankovic Process
	A counterexample to rapid mixing
	References

