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Introduction

Consider a simple random walk on Zd indexed by some tree T . If T is a super-critical
Galton-Watson tree, the process we obtain is a branching random walk on Zd. It has
been shown by Biggins [10] that this branching random walk is almost surely recurrent
i.e., visits the origin of Zd infinitely often. When T is a critical Galton-Watson tree,
the walk is closely related to the theory of superBrownian motion and the associated
random snake of Le Gall, see [2, 17]. In this note we study the simple random walk on
Zd indexed by the critical geometric Galton-Waton tree T∞ conditioned to survive [15].
Specifically we prove:

Theorem 0.1. The simple random walk on Zd indexed by T∞ is recurrent iff d 6 4.

Recurrence of arbitrary Markov chains indexed by arbitrary trees was studied in
[8], but the theorem above was not covered. Notice that the critical role of dimension 4

is reminiscent of the theory of superBrownian motion (see [17]) where the continuous
analogue of Theorem 0.1 is known [22].

The proof of Theorem 0.1 is based on the use of the “Mass Transport Principle”
(see [9, Section 3.2], and [3]) and the related concept of unimodular random graphs
combined with simple geometric estimates regarding the tree T∞. In particular we do
not use any calculations related to the theory of superBrownian motion. More important
than the application to Theorem 0.1, we believe that our technique could be applied in
a much wider setup, see Section 3.

The note is organized as follows. In the first section we recall the definition of
the random infinite tree T∞ and gather some simple geometric estimates. We also

∗Weizmann Institute of Science, Rehovot 76100, Israel. E-mail: itai.benjamini@weizmann.ac.il
†DMA-ENS, 45 rue d’Ulm 75005 Paris, France. E-mail: nicolas.curien@ens.fr

http://dx.doi.org/10.1214/ECP.v17-1700
http://ecp.ejpecp.org/
http://arXiv.org/abs/1107.1226v1
mailto:itai.benjamini@weizmann.ac.il
mailto:nicolas.curien@ens.fr


Recurrence of the Zd-valued infinite snake via unimodularity

establish, using stationarity of the tree after re-rooting along a random walk, that the
random graph T∞ satisfies the Mass Transport Principle. Section 2 contains the proof
of Theorem 0.1. We end the note with a few extensions, comments and open questions.

Acknowledgments: We are indebted to Ofer Zeitouni for a useful discussion. Thanks
also go to Thomas Duquesne, Jean-François Le Gall, Yuval Peres and to an anonymous
referee for valuable comments.

1 Definition and properties of T∞

1.1 Uniform plane trees

A rooted tree τ is a tree in the graph theoretic sense with a distinguished vertex
ρ called the root vertex. The tree τ can thus be seen as a family tree with ancestor
ρ. A rooted ordered tree (or plane tree) is a rooted tree for which we have specified
an ordering for the children of each vertex. See [18] for a detailed definition. If u is
a vertex of τ , we denote by deg(u) the degree of u in τ , that is its number of incident
edges.

For n > 1, we denote the set of all plane trees with n edges by Tn. For convenience,
we associate with each tree τ ∈ Tn a distinguished oriented edge ~e going from the first
child of ρ towards ρ. In the following Tn is a random variable uniformly distributed over
Tn and conditionally on Tn, X1 is a one-step simple random walk on Tn starting at ρ:
Equivalently X1 is a uniform neighbor of the root ρ. We also keep track of the transition
by indicating the oriented edge (ρ,X1). We denote by T (1)

n the plane tree obtained from
the tree Tn by keeping the planar ordering and by changing the distinguished oriented
edge from ~e to (ρ,X1).

Proposition 1.1. The random plane tree T (1)
n is uniformly distributed over Tn.

Proof. For every given tree τ ∈ Tn with oriented edge ~e = (e−, e+), it is easy to see that
exactly deg(e−) plane trees can give rise to τ after changing the oriented edge by a one
step random walk: They consist of all the trees obtained from τ after exchanging the
oriented edge with an edge targeting e−. Each of these trees has a probability 1/deg(e−)

to be transformed into τ after a one-step simple random walk. Thus T (1)
n is a uniform

plane tree with n edges.

If we denote E− and E+ = ρ the origin and target vertices of the distinguished

edge of Tn, we deduce that (Tn, E−, E+) and (T
(1)
n , ρ,X1) have the same distribution

as random graphs with two distinguished neighboring vertices. Since the law of Tn is
unchanged under reversion of the distinguished edge, we get

(Tn, ρ,X1)
(d)
= (Tn, X1, ρ). (1.1)

In other words, the random rooted graph obtained from Tn after forgetting the planar
structure is reversible in the sense of [6, Definition 1].

1.2 The uniform infinite plane tree

If τ is a plane tree and k ∈ {0, 1, 2, . . .}, we denote by [τ ]k the plane tree obtained
from τ by keeping the first k generations of τ only. Let T be a Galton-Watson (plane)
tree with geometric offspring distribution of parameter 1/2. It is classical that the
distribution of T conditionally on T having n edges is uniform over Tn, see [18]. Using
this observation, the result of [13] (which has been folklore for a long time, see [1, 15]
and [14] for the case of unordered trees) can be interpreted as follows:
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Recurrence of the Zd-valued infinite snake via unimodularity

Lemma 1.2. Let Tn be uniformly distributed over Tn. Then there exists a random
infinite plane tree T∞ such that for every k > 0 we have

[Tn]k
(d)−−−−→
n→∞

[T∞]k. (1.2)

The random infinite plane tree T∞ is called the uniform infinite plane tree or the geo-
metric Galton-Watson tree conditioned to survive.

The random infinite plane tree T∞ can be described as follows: Start with a semi-
infinite line of vertices called the spine of the tree and graft to the left and to the right
of each vertex of the spine an independent critical geometric Galton-Watson tree (with
parameter 1/2). The root vertex is the first vertex of the spine.

GW GW GW

GW GW GW

T∞

Figure 1: An illustration of T∞.

Remark 1.3. There exists another equivalent way to define T∞, see [5, 19, 21]: In this
description the vertices of the spine of T∞ have an offspring distribution which is given
by a size-biased version of the geometric distribution of parameter 1/2, whereas all
the other vertices have the standard geometric offspring distribution of parameter 1/2.
This construction has the advantage to be easily extended to a general critical offspring
distribution. To recover the construction presented above from this one, note that if G1

and G2 are two independent geometric variables of parameter 1/2 then G1 +G2 + 1 has
the same law as a geometric variable of parameter 1/2 biased by its size.

1.3 The Mass Transport Principle

Before presenting the Mass Transport Principle, let us introduce some notation. A
graph G = (V(G),E(G)) is a pair of sets, V(G) representing the set of vertices and E(G)

the set of (unoriented) edges. In the following, all the graphs considered are countable,
connected, locally finite and simple (no loop or multiple edges). For any pair x, y ∈ G,
the graph distance dGgr(x, y) is the minimal length of a path joining x and y in G. For
every r ∈ Z+, the ball of radius r around x in G is the subgraph of G spanned by the
vertices at distance less than or equal to r from x in G, and is denoted by BG(x, r). A
rooted graph is a pair (G, ρ) where ρ ∈ V(G) is called the root vertex. We will identify
two rooted graphs if there is a graph isomorphism between them that maps their roots.
The set of rooted graphs can be endowed with a metric, see [6, 9].

The Mass Transport Principle was introduced by Häggström to study percolation
and was further developed by Benjamini, Lyons, Peres and Schramm [7]. It is exten-
sively studied in [3]. We give here an informal definition and refer to [3, 6] for more
details. A random rooted graph (G, ρ) satisfies the Mass Transport Principle if for every
positive measurable function F (g, x, y) that associates with each graph g given with two
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distinguished vertices x and y of g an “amount of mass” sent from x to y in g, we have

E

 ∑
x∈V(G)

F (G, ρ, x)

 = E

 ∑
x∈V(G)

F (G, x, ρ)

 . (1.3)

Such a random graph is called unimodular.

Corollary 1.4. Let (T̃∞, ρ̃) be the random infinite rooted tree obtained from (T∞, ρ)

after biasing by the inverse of the degree of the root vertex ρ, that is

E
[
f(T̃∞, ρ̃)

]
=

E
[
deg(ρ)−1f(T∞, ρ)

]
E [deg(ρ)−1]

,

for any positive Borel function f . Then (T̃∞, ρ̃) obeys the Mass Transport Principle.

Proof. By [6, Proposition 2.5] it is enough to check that the random rooted graph (T∞, ρ)

is reversible in the sense of [6, Definition 1]. This easily follows from equation (1.1) and
Lemma 1.2.

1.4 Volume estimates

Let us introduce some notation. Recall the construction of the tree T∞. For i, j > 0

denote Li(j) (resp. Ri(j)) the number of vertices at the j-th generation in the tree
grafted on the left (resp. right) of the i-th vertex of the spine of T∞. It is easy to see that
for every i > 0 the process (Li(j))j>0 is a martingale in its own filtration. By standard
calculations on geometric distributions we have

E[Li(j)] = 1 (1.4)

E
[
(Li(j))

2
]

= 1 + 2j.

Furthermore, by the martingale property of (Li(j))j>0, E[Li(j)Li′(j
′)] is equal to 1 if

i 6= i′ and equals 1 + 2j if i = i′ and j 6 j′. In particular we can get estimates about the
volume of the ball BT∞(ρ, r) of radius r around ρ in T∞,

#BT∞(ρ, r) = r +

r−1∑
i=0

r−i∑
j=1

(
Li(j) +Ri(j)

)
,

E[#BT∞(ρ, r)] ∼ r2. (1.5)

E
[
(#BT∞(ρ, r))2

]
∼ 7r4

6
. (1.6)

Furthermore, for every i, h ∈ {0, 1, 2, . . .} the sum
∑h
j=0 Li(j) is the size of a critical

geometric Galton-Watson tree cut at height h. By classical results on critical Galton-
Watson trees with finite variance (see e.g. [4]), for every A > 0, there exists ε > 0 such
that

lim inf
h→∞

h · P

 h∑
j=0

Li(j) > εh2

 > A.

It follows from the last display that the probability that one of the br/2c first trees
grafted on the left-hand side of the spine has a size larger than εr2/4 is asymptotically
at least 1−e−A as r →∞. In particular on this event the number of vertices of BT∞(ρ, r)

is larger than εr2/4. Combining this argument with a Markov inequality using equation
(1.5) we deduce that

lim
λ→∞

inf
r>0

P
(
λ−1r2 6 #BT∞(ρ, r) 6 λr2

)
= 1. (1.7)
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2 Proof of Theorem 0.1

Let us define precisely what we mean by the simple random walk over Zd indexed
by a random infinite rooted tree (T, ρ): Conditionally on T we assign to each edge of T
an independent variable uniformly distributed over the symmetric set of the standard
basis elements and their inverses of Zd. For every vertex u in T , the sum of the assigned
vectors along the only geodesic path from the root ρ to the vertex u is denoted by
S(T,ρ)(u) (note that S(T,ρ) depends on T and on ρ).

This defines a random function S(T,ρ) : T → Zd from the vertices of T to the vertices
of Zd such that S(T,ρ)(ρ) = 0. When (T, ρ) = (T∞, ρ) this function is called the critical
simple random walk snake on Zd. We say that the snake is recurrent if almost surely
infinitely many vertices of the tree are mapped to 0 (the origin of Zd) i.e.

#S−1(T∞,ρ)
({0}) =∞, a.s.,

where the almost surely is in the big probability space of trees and assignments. The
snake is transient if #S−1(T∞,ρ)

({0}) <∞ almost surely.

2.1 Transience for d > 5

For every r > 1, we denote the set of vertices of T∞ at distance exactly r from the
root vertex ρ by ∂BT∞(ρ, r). With the notation introduced in Section 1.4 the number of
vertices of ∂BT∞(ρ, r) is

#∂BT∞(ρ, r) = 1 +

r−1∑
i=0

(Li(r − i) +Ri(r − i)). (2.1)

Conditionally on T∞, for every u ∈ ∂BT∞(ρ, r), the probability that S(T∞,ρ)(u) = 0 is the
probability that a simple random walk on Zd returns to the origin in exactly r steps,
which is less than κr−d/2 for some κ > 0. Thus, for every r > 1 the probability that
there exists u ∈ ∂BT∞(ρ, r) such that S(T∞,ρ)(u) = 0 is bounded above by

P
(
∃u ∈ ∂BT∞(ρ, r) : S(T∞,ρ)(u) = 0

)
6 E

 ∑
u∈∂BT∞ (ρ,r)

1S(T∞,ρ)(u)=0


6 κr−d/2E [#∂BT∞(ρ, r)]

6 3κr−d/2+1,

where we used (2.1) and (1.4) to compute E [#∂BT∞(ρ, r)]. Consequently, for d > 5 the
preceding bound is summable over r ∈ Z+, and an application of Borel-Cantelli’s lemma
shows that S(T∞,ρ) is transient.

2.2 Recurrence for d ∈ {1, 2, 3, 4}
Since the path indexed by the infinite line in T∞ (the one starting from ρ) is dis-

tributed as a simple symmetric random walk, the snake is obviously recurrent when
d 6 2. We now suppose d ∈ {3, 4}. We will argue by contradiction and assume that the
simple random walk snake on Zd with d ∈ {1, 2, 3, 4} supported by T∞ is not recurrent,
in particular it is easy to see that we have

P
(
S−1(T∞,ρ)

({0}) = {ρ}
)

> 0, (2.2)

in words, the root vertex ρ of T∞ is the only vertex being mapped to the origin of Zd

by the snake S(T∞,ρ) with positive probability. The following key lemma then states that
under this assumption, the range of the snake is somehow linear. This will be the only
place where we use the Mass Transport Principle (1.3).
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Lemma 2.1. Assume (2.2), then there exists c > 0 such that for every r > 0,

P
(
#S(T∞,ρ)

(
BT∞(ρ, r)

)
> cr2

)
> c.

Proof. Consider the tree (T̃∞, ρ̃) obtained after biasing (T∞, ρ) by the inverse of the
degree of ρ. By Corollary 1.4, this random rooted graph satisfies the Mass Transport
Principle (1.3). Since we have

P
(
#S(T∞,ρ)

(
BT∞(ρ, r)

)
> cr2

)
> E

[
deg(ρ)−11#S(T∞,ρ)(BT∞ (ρ,r))>cr2

]
= E[deg(ρ)−1]P

(
#S(T̃∞,ρ̃)

(
BT̃∞(ρ̃, r)

)
> cr2

)
,

it is enough to prove the lemma for T̃∞ instead of T∞. For every rooted tree (τ, ρ), we
denote by Ψ(τ, ρ) the probability that the simple random snake on Zd supported on (τ, ρ)

reaches 0 only at ρ, that is

Ψ(τ, ρ) = P(S−1(τ,ρ)({0}) = {ρ}).

The function Ψ is thus a positive Borel function over the set of all rooted trees. Notice
that if (τ, ρ) is fixed and if u ∈ τ then S(τ,ρ) − S(τ,u) has the same distribution as S(τ,u).
Thus Ψ(τ, u) is the probability that the snake S(τ,ρ) is one-to-one at the point u that is

Ψ(τ, u) = P
(
S−1(τ,ρ)

(
{S(τ,ρ)(u)}

)
= {u}

)
.

Using the Mass Transport Principle (1.3) on (T̃∞, ρ̃) with the function

F (G, x, y) = Ψ(G, x)1dGgr(x,y)6r
,

we get

E
[
Ψ(T̃∞, ρ̃)#BT̃∞(ρ̃, r)

]
= E

 ∑
x∈BT̃∞ (ρ̃,r)

Ψ(T̃∞, x)


= E

 ∑
x∈BT̃∞ (ρ̃,r)

1S−1

(T̃∞,ρ̃)
({S(T̃∞,ρ̃)(x)})={x}

 = E
[
#Ir

]
,

where Ir is the set of vertices in BT̃∞(ρ̃, r) at which the snake S(T̃∞,ρ̃) is one-to-one. We

obviously have #Ir = #S(T̃∞,ρ̃)(Ir) 6 #S(T̃∞,ρ̃)(BT̃∞(ρ̃, r)) yielding to

E
[
Ψ(T̃∞, ρ̃)#BT̃∞(ρ̃, r)

]
6 E

[
#S(T̃∞,ρ̃)(BT̃∞(ρ̃, r))

]
. (2.3)

By definition of T̃∞, (1.7) still holds if we replace T∞ by T̃∞. Similarly our condition
(2.2) which states that Ψ(T∞, ρ) > 0 with positive probability implies Ψ(T̃∞, ρ̃) > 0 with
positive probability as well. Using these remarks we deduce that the left hand side in
(2.3) is always larger than some constant times r2:

inf
r>1

r−2E
[
Ψ(T̃∞, ρ̃)#BT̃∞(ρ̃, r)

]
> 0. (2.4)

Let us turn to the right-hand side E[#S(T̃∞,ρ̃)(BT̃∞(ρ̃, r))]. Note first that we have

#S(T̃∞,ρ̃)(BT̃∞(ρ̃, r)) 6 #BT̃∞(ρ̃, r).
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Let λ > 0 and set f(x) = x1x>λr2 , we get

E
[
f
(

#S(T̃∞,ρ̃)
(
BT̃∞(ρ̃, r)

))]
6 E

[
f
(
#BT̃∞(ρ̃, r)

)]
6 E[deg(ρ)−1]−1E

[
f
(
#BT∞(ρ, r)

)]
.

Applying Cauchy-Schwarz inequality we obtain thanks to (1.5) and (1.6)

E
[
f
(
#BT̃∞(ρ̃, r)

)]
6

(
E
[
(#BT∞(ρ, r))

2
]
P
(
#BT∞(ρ, r) > λr2

) )1/2
6 Cr2λ−1/2,

for some positive constant C > 0. Hence

sup
r>0

r−2E
[
#S(T̃∞,ρ̃)

(
BT̃∞(ρ̃, r)

)
1#S(T̃∞,ρ̃)(BT̃∞ (ρ̃,r))>λr2

]
−−−−→
λ→∞

0. (2.5)

Combining (2.3), (2.4) and (2.5), we deduce that there exists a constant c > 0 such that

P(#S(T̃∞,ρ̃)(BT̃∞(ρ̃, r)) > cr2) > c,

which is the desired result.

Now consider η > 0 small enough so that

Aη,r(T∞) = {u ∈ BT∞(ρ, r) in a tree grafted on the spine of T∞ before bηrc}

has a cardinal less than cr2/2 with probability at least than 1 − c/2, independently of
r > 1. Then by Lemma 2.1, for every r > 1, the set BT∞(ρ, r)\Aη,r(T∞) which consists
of the vertices within distance r of ρ that are linked to the spine after the bηrc-th vertex
has an image by S(T∞,ρ) of size larger than cr2/2 with probability at least c/2,

P
(
#S(T∞,ρ)

(
BT∞(ρ, r)\Aη,r(T∞)

)
> cr2/2

)
> c/2.

By diffusivity bounds on the simple random snake on T∞ (see [11] for the case d = 1

which is easily extended to d > 2, see also [16]), one can findM > 0 large enough so that
the image of BT∞(ρ, r) by the snake is contained in BZd(0,M

√
r) with probability larger

than 1 − c/4. If d ∈ {1, 2, 3} we already reached a contradiction since #BZd(0,M
√
r) 6

8M3r3/2 and thus BZd(0,M
√
r) cannot contain a set of size of order r2 with positive

probability for r large enough.
We now suppose d = 4. Summing-up, for every r > 1, with a probability at least c/4,

the image of BT∞(ρ, r)\Aη,r(T∞) by S(T∞,ρ) is a random set in Z4 composed of at least
cr2/2 different vertices and whose diameter is less than M

√
r.

Lemma 2.2. The point 0 (origin of Z4) is in the image of BT∞(ρ, r)\Aη,r(T∞) by S(T∞,ρ)
with a probability bounded away from 0 independently of r > 1.

Proof. All the vertices of BT∞(ρ, r)\Aη,r(T∞) are linked to ρ by the same first bηrc ver-
tices of the spine of T∞. Besides, the increments along the first bηrc edges of the spine
are independent of the structure of BT∞(ρ, r)\Aη,r(T∞) and also independent of the
increments of the snake along the edges of BT∞(ρ, r)\Aη,r(T∞).

Denote by S the image of BT∞(ρ, r)\Aη,r(T∞) by S(T∞,ρ) translated such that the
image of the bηrc-th vertex of the spine is 0. Let Er be the event that S is of size larger
than cr2/2 and of diameter less than M

√
r. By the arguments developed before the

lemma, we have P(Er) > c/4 for every r > 1. Besides, the image of BT∞(ρ, r)\Aη,r(T∞)

by S(T∞,ρ) is a random translation of the set S by an independent bηrc-steps random
Xbηrc walk on Z4. We claim that the conditional probability P(10∈S+Xbηrc |Er) is bounded
away from 0 independently of r > 1. Indeed conditionally on S and Er, the variable

I =
∑

x∈S+Xbηrc
1x=0
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takes values in {0, 1} and its expectation is

E[I | Er] = E

[∑
x∈S

P(Xbηrc = −x)

∣∣∣∣∣Er
]
>
cr2

2
· κr−2,

for some constant κ > 0 depending on η and M only. Hence, on the event Er, the
expectation of I is bounded away from 0, thus P(I > 0 | Er) = E[I | Er] is bounded
away from 0. Since P(Er) > c/4 for all r > 0, the lemma is proved.

Proof. For η > 0 fixed, denote Br = BT∞(ρ, r)\Aη,r(T∞) to simplify notation. Thanks to
the preceding lemma, the probability that 0 belongs to the image of Br by the snake is
bounded from below by some positive constant c > 0 independent of r > 0. On the other
hand we have,

P
(

0 ∈ S(T∞,ρ)(Br) ∩ S(T∞,ρ)(Br′)
)
−−−−→
r′→∞

P
(

0 ∈ S(T∞,ρ)(Br)
)
P
(

0 ∈ S(T∞,ρ)(Br′)
)
.

In words, the events {0 ∈ S(T∞,ρ)(Br)} and {0 ∈ S(T∞,ρ)(Br′)} are asymptotically in-
dependent as r′ → ∞. Hence, by adapting Borel-Cantelli’s lemma we deduce that
{0 ∈ S(T∞,ρ)(Br)} occurs for infinitely many r’s. This gives recurrence, contradiction.

3 Extensions and comments

3.1 General trees

Theorem 0.1 still holds for more general critical Galton-Watson trees conditioned to
survive. Namely, if ξ is a critical offspring distribution with finite variance, Lemma 1.2
is still true and the limiting tree called the ξ-Galton-Watson tree conditioned to survive
can be described as in Remark 1.3. The geometric estimates of Section 1.4 can be
adapted for this infinite tree. However the analogue of Proposition 1.1 and its Corollary
1.4 are not true in this general setting. To bypass this difficulty, one can rely on the
trick introduced in [20] and use the so-called augmented Galton-Watson measure. To
be precise, let T ξ and T ξ∞ be respectively a critical ξ-Galton-Watson tree and a critical ξ-
Galton-Watson tree conditioned to survive. We suppose that T ξ and T ξ∞ are independent

and we define the tree T
ξ

∞ obtained by joining the roots of the trees T ξ and T ξ∞ by an
edge. The root ρ of this tree is with probability 1/2 the root vertex of T ξ and with
probability 1/2 the root vertex of T ξ∞.

1/2
1/2

root

T ξ T ξ∞

Figure 2: An illustration of the augmented critical Galton-Watson tree conditioned to
survive.

Then one can show that (T
ξ

∞, ρ) is stationary and reversible (in the sense of [6,
Definition 1]) thus once biased by the inverse of the degree of the root it satisfies the
Mass Transport Principle, see [20, 21] for closely related proofs.
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3.2 Alternative proof and extension

It is likely that a proof of Theorem 0.1 would also follow from an adaptation of
estimates for superBrownian motion to discrete snakes (see [12, 17]), for example by
showing

P
(
S(T,ρ) reaches x ∈ Z4

)
� 1

log(|x|)|x|2 ,

where the snake S(T,ρ) runs over a critical geometric Galton-Watson tree (T, ρ) not con-
ditioned to be infinite. This approach has been carried out in an unpublished work of
H. Kesten and Y. Peres (personal communication). In particular such estimates would
be needed to answer the following questions:

Question 3.1. What is the variance of the number of returns to 0 by the snake S(T∞,ρ)
restricted to the ball of radius r in T∞? What is the range of the snake restricted to the
ball of radius r in T∞?

However we believe that our more abstract argument relying on the Mass Transport
Principle and rough volume estimates could be used in a more general setting includ-
ing e.g. proving that a simple random snake on Z3 indexed by a critical Galton-Watson
conditioned to be infinite whose offspring distribution is in the domain of attraction of a
stable law of parameter 3/2 is recurrent. We end this note with the following (possibly
hard) question, generalizing intersecting probabilities for SRW in two dimensions:

Question 3.2. Consider two independent snakes S(T∞,ρ) and S ′(T ′∞,ρ′) on Z4 and starting

from 0 (origin of Z4) at the roots ρ, ρ′ of T∞, T ′∞. For r > 0, estimate the probability that
the two snakes supported by the balls of radius r in the two trees intersect only at 0,
that is estimate

P
(
S−1(T∞,ρ)

(BT∞(ρ, r)) ∩ S ′−1(T ′∞,ρ
′)(BT ′∞(ρ′, r)) = {0}

)
.
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