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Abstract
Supercritical branching processes in constant environment conditioned on eventual extinction are
known to be subcritical branching processes. The case of random environment is more subtle. A
supercritical branching diffusion in random environment (BDRE) conditioned on eventual extinc-
tion of the population is not a BDRE. However the law of the population size of a supercritical
BDRE (averaged over the environment) conditioned on eventual extinction is equal to the law of
the population size of a subcritical BDRE (averaged over the environment). As a consequence,
supercritical BDREs have a phase transition which is similar to a well-known phase transition of
subcritical branching processes in random environment.

1 Introduction and main results

Branching processes in random environment (BPREs) have attracted considerable interest in re-
cent years, see e.g. [3, 2, 7] and the references therein. On the one hand this is due to the more
realistic model compared with classical branching processes. On the other hand this is due to
interesting properties such as a phase transition in the subcritical regime. Let us recall this phase
transition. In the strongly subcritical regime, the survival probability of a BPRE (Z (1)t )t≥0 scales
like its expectation, that is, P

�

Z (1)t > 0
�

∼ const ·E
�

Z (1)t
�

as t →∞ where const is some constant
in (0,∞). In the weakly subcritical regime, the survival probability decreases at a different expo-
nential rate. The intermediate subcritical regime is in between the other two cases. Understanding
the differences of these three regimes is one motivation of the literature cited above. The main
observation of this article is a similar phase transition in the supercritical regime.
Let us introduce the model. We consider a diffusion approximation of BPREs as this is mathemat-
ically more convenient. The diffusion approximation of BPREs is due to Kurtz (1978) and had
been conjectured (slightly inaccurately) by Keiding (1975). We follow Böinghoff and Hutzen-
thaler (2011) and denote this diffusion approximation as branching diffusion in random envi-
ronment (BDRE). For every n ∈ N := {1, 2, . . .}, let (Z (n)k )k∈N0

be a branching process in the
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random environment
�

Q(n)1 ,Q(n)2 , . . .
�

which is a sequence of independent, identically distributed
offspring distributions. If m

�

Q(n)k

�

denotes the mean offspring number for k ∈ N, then S(n)k :=
p

n
∑k−1

i=1 log
�

m
�

Q(n)i

��

, k ∈N0 := {0, 1,2, . . .} denotes the associated random walk where n ∈N.

Set btc := max{m ∈ N0 : m ≤ t} for t ≥ 0. Let the environment be such that
�

S(n)btnc/
p

n
�

t≥0

converges to a Brownian motion (St)t≥0 with infinitesimal drift α ∈ R and infinitesimal standard
deviation σe ∈ [0,∞) as n→∞. Furthermore assume that the mean offspring variance converges
to σ2

b ∈ [0,∞), that is,

lim
n→∞

E





∞
∑

k=0

�

k−m
�

Q(n)1

��2
Q(n)1 (k)



= σ2
b. (1)

If Z (n)0 /n→ z ∈ [0,∞) as n→∞ and if a third moment condition holds, then

� Z (n)btnc

n
,
S(n)btncp

n

�

t≥0

w−−→
n→∞

�

Zt , St
�

t≥0 (2)

in the Skorohod topology (see e.g. [8]) where the limiting diffusion is the unique solution of the
stochastic differential equations (SDEs)

dZt =
1

2
σ2

e Zt d t + Zt dSt +
Æ

σ2
b Zt dW (b)

t

dSt = αd t +
p

σ2
e dW (e)

t

(3)

for t ≥ 0 where Z0 = z and S0 = 0. The processes (W (b)
t )t≥0 and (W (e)

t )t≥0 are independent
standard Brownian motions. Throughout the paper the notations Pz and Ez refer to Z0 = z and
S0 = 0 for z ∈ [0,∞). The diffusion approximation (2) is due to Kurtz (1978) (see also [5]).
Note that the random environment affects the limiting diffusion only through the mean branching
variance σ2

b and through the associated random walk.
We denote the process (St)t≥0 as associated Brownian motion. This process plays a central role.
For example it determines the conditional expectation of Zt

Ez�Zt |(Ss)s≤t
�

= z exp
�

St
�

(4)

for every z ∈ [0,∞) and t ≥ 0. Moreover the infinitesimal drift α of the associated Brownian
motion determines the type of criticality. The BDRE (3) is supercritical (i.e. positive survival
probability) if α > 0, critical if α = 0 and subcritical if α < 0, see Theorem 5 of Böinghoff and
Hutzenthaler (2011). We will refer to α as criticality parameter.
Afanasyev (1979) was the first to discover different regimes for the survival probability of a BPRE
in the subcritical regime (see [3, 4, 13, 2] for recent articles). The following characterisation for
the BDRE (3) is due to Böinghoff and Hutzenthaler (2011). The survival probability of (Zt)t≥0

decays like the expectation, that is, P(Zt > 0)∼ const ·E(Zt) = const ·exp
�

(α+ σ
2
e

2
)t
�

as t →∞, if
and only if α <−σ2

e (strongly subcritical regime). In the intermediate subcritical regime α=−σ2
e ,

we have that P(Zt > 0)∼ const · t−
1
2 exp

�

−σ
2
e

2
t
�

as t →∞. Finally the survival probability decays

like P(Zt > 0)∼ const · t−
3
2 exp

�

− α2

2σ2
e
t
�

as t →∞ in the weakly subcritical regime α ∈ (−σ2
e , 0).

This article concentrates on the supercritical regime α > 0. Our main observation is that there
is a phase transition which is similar to the subcritical regime. Such a phase transition has not
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been reported for BPREs yet. We condition on the event {Z∞ = 0} = {limt→∞ Zt = 0} of eventual
extinction and propose the following notation. If P(Zt > 0|Z∞ = 0) ∼ const ·E(Zt |Z∞ = 0) as
t →∞, then we say that the BDRE (Zt , St)t≥0 is strongly supercritical. If the probability of survival
up to time t ≥ 0 conditioned on eventual extinction decays at a different exponential rate as
t → ∞, then we refer to (Zt , St)t≥0 as weakly supercritical. The intermediate regime is referred
to as intermediate supercritical regime. Our first theorem provides the following characterisation.
The BDRE is strongly supercritical if α > σ2

e , intermediate supercritical if α = σ2
e and weakly

supercritical if α ∈ (0,σ2
e ).

Theorem 1. Assume α,σe,σb ∈ (0,∞). Let (Zt , St)t≥0 be the unique solution of (3) with S0 = 0.
Then

lim
t→∞

p
t

3
e
α2

2σ2
e

t
Pz
�

Zt > 0
�

�

� Z∞ = 0
�

=
8

σ3
e

∫ ∞

0

f (za)φβ(a) da > 0 if α ∈ (0,σ2
e ) (5)

lim
t→∞

p
te

σ2
e

2
t Pz
�

Zt > 0
�

�

� Z∞ = 0
�

= z

p
2σep
πσ2

b

> 0 if α= σ2
e (6)

lim
t→∞

e
�

α− σ
2
e

2

�

t Pz
�

Zt > 0
�

�

� Z∞ = 0
�

= z 2
α−σ2

e

σ2
b

> 0 if α > σ2
e (7)

for every z ∈ (0,∞) where β := 2α
σ2

e
and where φβ : (0,∞)→ (0,∞) is defined as

φβ(a) =

∫ ∞

0

∫ ∞

0

1
p

2π
Γ
�β + 2

2

�

e−aa−β/2u(β−1)/2e−u sinh(ξ) cosh(ξ)ξ

(u+ a(cosh(ξ))2)(β+2)/2
dξ du (8)

for every a ∈ (0,∞).

The proof is deferred to Section 2.
Let us recall the behavior of Feller’s branching diffusion, that is, (3) with σe = 0, which is a
branching diffusion in a constant environment. The supercritical Feller diffusion conditioned on
eventual extinction agrees in distribution with a subcritical Feller diffusion. This is a general
property of branching processes in constant environment, see Jagers and Lagerås (2008) for the
case of general branching processes (Crump-Mode-Jagers processes). Knowing this, Theorem 1
might not be surprising. However, the case of random environment is different. It turns out that
the supercritical BDRE (Zt , St)t≥0 conditioned on {Z∞ = 0} is a two-dimensional diffusion which
does not satisfy the SDE (3) and is not a branching diffusion in homogeneous random environment
if σb > 0 and if σe > 0. More precisely, the associated Brownian motion (St)t≥0 conditioned on
{Z∞ = 0} has drift which depends on the current population size.

Theorem 2. Let σe ∈ (0,∞), let σb, z ∈ [0,∞) and assume σb+z > 0. If
�

Zt , St
�

t≥0 is the solution
of (3) with criticality parameter α ∈ (0,∞), then

L
�

�

Zt , St
�

t≥0

�

�Z∞ = 0
�

=L
�

�

Žt , Št

�

t≥0

�

(9)

where
�

Žt , Št
�

t≥0 is a two-dimensional diffusion satisfying Ž0 = Z0, Š0 = 0 and

d Žt =

 

1

2
σ2

e − 2α
σ2

b

σ2
e Žt +σ2

b

!

Žt d t + Žt dŠt +
Æ

σ2
b Žt dW (b)

t

dŠt =

 

α− 2α
σ2

e Žt

σ2
e Žt +σ2

b

!

d t +
p

σ2
e dW (e)

t

(10)
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for t ≥ 0.

The proof is deferred to Section 2.
It is rather intuitive that the conditioned process is not a subcritical BDRE if σb > 0. The supercrit-
ical BDRE has a positive probability of extinction. Thus extinction does not require the associated
Brownian motion to have negative drift. As long as the BDRE stays small, extinction is possible
despite the positive drift of the associated Brownian motion. Note that if Žt is small for some
t ≥ 0, then the drift term of Št is close to α. Being doomed to extinction, the conditioned process
(Žt)t≥0 is not allowed to grow to infinity. If Žt is large for some t ≥ 0, then the drift term of Št is
close to −α which leads a decrease of (Žt)t≥0. The situation is rather different in the case σb = 0.
Then the extinction probability of the BDRE is zero. So the drift of (Št)t≥0 needs to be negative in
order to guarantee Žt → 0 as t →∞. It turns out that if σb = 0, then the drift of (Št)t≥0 is −α
and (Žt , Št)t≥0 is a subcritical BDRE with criticality parameter −α.
We have seen that conditioning a supercritical BDRE on extinction does – in general – not result
in a subcritical BDRE. However, if we condition (Zt , St)t≥0 on {S∞ = −∞}, then the conditioned
process turns out to be a subcritical BDRE with criticality parameter −α.

Theorem 3. Let σe ∈ (0,∞), let σb, z ∈ [0,∞) and assume σb + z > 0. Let
�

Z (α)t , S(α)t
�

t≥0 be the
solution of (3) with criticality parameter α ∈R. If α > 0, then

L
�
�

Z (α)t , S(α)t

�

t≥0

�

�S∞ =−∞
�

=L
�
�

Z (−α)t , S(−α)t

�

t≥0

�

(11)

where Z (−α)0 = Z (α)0 .

The proof is deferred to Section 2.
Now we come to a somewhat surprising observation. We will show that the law of (Zt)t≥0 con-
ditioned on eventual extinction agrees in law with the law of the population size of a subcritical
BDRE. More formally, inserting the second equation of (10) into the equation for d Žt we see that

d Žt =
�

1

2
σ2

e −α
�

Žt d t +σe Žt dW (e)
t +

Æ

σ2
b Žt dW (b)

t (12)

for t ≥ 0. This is the SDE for the population size of a subcritical BDRE with criticality parameter
−α. As the solution of (12) is unique, this proves the following corollary of Theorem 2.

Corollary 4. Let σe ∈ (0,∞), let σb, z ∈ [0,∞) and assume σb + z > 0. Let
�

Z (α)t , S(α)t
�

t≥0 be the
solution of (3) with criticality parameter α for every α ∈ R. If α > 0, then the law of the BDRE
with criticality parameter α conditioned on extinction agrees with the law of the BDRE with criticality
parameter −α, that is,

L
�

(Z (α)t )t≥0

�

�Z∞ = 0
�

=L
�

(Z (−α)t )t≥0

�

(13)

where Z (−α)0 = Z (α)0 .

So far we considered the event of extinction. Next we condition the BDRE on the event {Z∞ >
0} := { lim

t→∞
Zt =∞} of non-extinction. Define U : [0,∞)→ [0,∞) by

U(z) :=
�

σ2
e z+σ2

b

�− 2α
σ2

e (14)

for z ∈ [0,∞). We agree on the convention that

c

0
:=

¨

∞ if c ∈ (0,∞]
0 if c = 0

c

∞
:= 0 for c ∈ [0,∞) and that 0 ·∞= 0. (15)
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Theorem 5. Let σe ∈ (0,∞), let σb, z ∈ [0,∞) and assume σb + z > 0. Let
�

Zt , St
�

t≥0 be the
solution of (3) with criticality parameter α > 0. Then

L
�

�

Zt , St
�

t≥0

�

�Z∞ > 0
�

=L
�

�

Ẑt , Ŝt

�

t≥0

�

(16)

where
�

Ẑt , Ŝt
�

t≥0 is a two-dimensional diffusion satisfying Ẑ0 = Z0, Ŝ0 = 0 and

d Ẑt =

�

1

2
σ2

e + 2α
σ2

b

σ2
e Ẑt +σ2

b

U
�

Ẑt
�

U(0)− U
�

Ẑt
�

�

Ẑt d t + Ẑt dŜt +
Æ

σ2
b Ẑt dW (b)

t

dŜt =

�

α+ 2α
σ2

e Ẑt

σ2
e Ẑt +σ2

b

U
�

Ẑt
�

U(0)− U
�

Ẑt
�

�

d t +
p

σ2
e dW (e)

t

(17)

for t ≥ 0. The law of (Zt)t≥0 conditioned on non-extinction satisfies that

L
�

(Zt)t≥0

�

�Z∞ > 0
�

=L
�

(Ẑt)t≥0
�

(18)

where
�

Ẑt
�

t≥0 is the solution of the one-dimensional SDE satisfying Ẑ0 = Z0 and

d Ẑt =

�

1

2
σ2

e +α+ 2α
U
�

Ẑt
�

U(0)− U
�

Ẑt
�

�

Ẑt d t +σe Ẑt dW (e)
t +

Æ

σ2
b Ẑt dW (b)

t (19)

for t ≥ 0.

The proof is deferred to Section 2.
On the event of non-extinction, the population size Zt of a supercritical BDRE grows like its ex-
pectation E(Zt |St) as t →∞.

Theorem 6. Let σe ∈ (0,∞), let σb, z ∈ [0,∞) and assume σb + z > 0. Let (Zt , St)t≥0 be the
solution of (3) with criticality parameter α ∈ R. Then

�

Zt/e
St
�

t≥0
is a nonnegative martingale.

Consequently for every initial value Z0 = z ∈ [0,∞) there exists a random variable Y : Ω→ [0,∞)
such that

Zt

eSt
−→ Y as t →∞ almost surely. (20)

The limiting variable is zero if and only if the BDRE goes to extinction, that is, Pz(Y = 0) = Pz(Z∞ =
0). In the supercritical case α > 0, the distribution of the limiting variable Y satisfies that

Ez
h

exp (−λY )
i

= E
�

exp
�

−
z

σ2
b

σ2
e
G 2α
σ2

e

+ 1
λ

��

(21)

for all z,λ ∈ [0,∞) where Gν is gamma-distributed with shape parameter ν ∈ (0,∞) and scale
parameter 1, that is,

P(Gν ∈ d x) =
1

Γ(ν)
xν−1e−x d x (22)

for x ∈ (0,∞).

The proof is deferred to Section 2. In particular, Theorem 6 implies that Z∞ := lim
t→∞

Zt exists almost

surely and that Z∞ ∈ {0,∞} almost surely.
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2 Proofs

If σb = 0 and Z0 > 0, then the process (Zt)t≥0 does not hit 0 in finite time almost surely. So the
interval (0,∞) is a state space for (Zt)t≥0 if σb = 0. The following analysis works with the state
space [0,∞) for the case σb > 0 and with the state space (0,∞) for the case σb = 0. To avoid
case-by-case analysis we assume σb > 0 for the rest of this section. One can check that our proofs
also work in the case σb = 0 if the state space [0,∞) is replaced by (0,∞).
Inserting the associated Brownian motion (St)t≥0 into the diffusion equation of (Zt)t≥0, we see
that (Zt)t≥0 solves the SDE

dZt =
�

α+
1

2
σ2

e

�

Zt d t +
p

σ2
e Z2

t dW (e)
t +

Æ

σ2
b Zt dW (b)

t (23)

for t ∈ [0,∞). One-dimensional diffusions are well-understood. In particular the scale functions
are known. For the reason of completeness we derive a scale function for (23) in the following
lemma. The generator of (Zt , St)t≥0 is the closure of the pregenerator G : C2

0([0,∞) × R) →
C([0,∞)×R) given by

G f (z, s) :=

�

α+
σ2

e

2

�

z
∂

∂ z
f (z, s) +α

∂

∂ s
f (z, s) +

1

2

�

σ2
e z2 +σ2

bz
� ∂ 2

∂ z2 f (z, s)

+
1

2
σ2

e

∂ 2

∂ s2 f (z, s) +σ2
e z
∂ 2

∂ z∂ s
f (z, s)

(24)

for all z ∈ [0,∞), s ∈R and every f ∈ C2
0

�

[0,∞)×R
�

.

Lemma 7. Assume σe,σb,α ∈ (0,∞). Define the functions U : [0,∞)→ (0,∞) and V : R→ (0,∞)
through

U(z) :=
�

σ2
e z+σ2

b

�− 2α
σ2

e and V (s) := exp

�

−
2α

σ2
e

s

�

(25)

for z ∈ [0,∞) and s ∈R. Then U is a scale function for (Zt)t≥0 and V is a scale function for (St)t≥0,
that is, GU ≡ 0 and GV ≡ 0 so

�

U(Zt)
�

t≥0 and
�

V (St)
�

t≥0 are martingales.

Proof. Note that U is twice continuously differentiable. Thus we get that

G
�

σ2
e z+σ2

b

�− 2α
σ2

e =

�

α+
σ2

e

2

�

z ·
−2α

σ2
e

�

σ2
e z+σ2

b

�− 2α
σ2

e
−1
σ2

e

+
1

2

�

σ2
e z2 +σ2

bz
� 2α

σ2
e

�

2α

σ2
e

+ 1

�

�

σ2
e z+σ2

b

�− 2α
σ2

e
−2
σ4

e

=
�

σ2
e z+σ2

b

�− 2α
σ2

e
−1

z
�

−2α2 −ασ2
e +

1

2
4α2 +

1

2
2ασ2

e

�

=0

(26)

for all z ∈ [0,∞). Moreover V is twice continuously differentiable and we obtain that

G exp

�

−
2α

σ2
e

s

�

= αexp

�

−
2α

σ2
e

s

�

−2α

σ2
e

+
1

2
σ2

e exp

�

−
2α

σ2
e

s

��

−2α

σ2
e

�2

= 0 (27)
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for all s ∈R. This shows GU ≡ 0≡ GV . Now Itô’s formula implies that

dU(Zt) = GU(Zt) d t + U
′
(Zt) ·

�
p

σ2
e Z2

t dW (e)
t +

Æ

σ2
b Zt dW (b)

t

�

dV (St) = GV (St) d t + V
′
(St)
p

σ2
e dW (e)

t

(28)

for all t ≥ 0. This proves that
�

U(Zt)
�

t≥0 and
�

V (St)
�

t≥0 are martingales.

Lemma 8. Assume σe,σb,α ∈ (0,∞). Then the semigroup of the BDRE (Zt , St)t≥0 conditioned on
extinction satisfies that

E(z,s)
�

f (Zt , St)
�

�Z∞ = 0
�

=
E(z,s) �U(Zt) f (Zt , St)

�

U(z)
, (29)

the semigroup of the BDRE (Zt , St)t≥0 conditioned on {S∞ =−∞} satisfies that

E(z,s)
�

f (Zt , St)
�

�S∞ =−∞
�

=
E(z,s) �V (St) f (Zt , St)

�

V (s)
(30)

and the semigroup of the BDRE (Zt , St)t≥0 conditioned on {Z∞ > 0} satisfies that

E(z,s)
�

f (Zt , St)
�

�Z∞ > 0
�

=
E(z,s) ��U(0)− U(Zt)

�

f (Zt , St)
�

U(0)− U(z)
(31)

for every z ∈ [0,∞), s ∈R, t ≥ 0 and every bounded measurable function f : [0,∞)×R→R.

Proof. Define the first hitting time Tx(η) := inf{t ≥ 0: ηt = x} of x ∈R for every continuous path
η ∈ C

�

[0,∞),R)
�

. As V is a scale function for (St)t≥0, the optional sampling theorem implies that

Ps �T−N (S)<∞
�

= lim
K→∞

Ps �T−N (S)< TK(S)
�

= lim
K→∞

V (K)− V (s)
V (K)− V (−N)

=
V (s)

V (−N)
(32)

for all s ∈R and N ∈N, see Section 6 in [10] for more details. Thus we get that

E(z,s)
�

f (Zt , St)
�

�S∞ =−∞
�

= lim
N→∞

E(z,s)
�

f (Zt , St)
�

�T−N (S)<∞
�

= lim
N→∞

E(z,s)
�

f (Zt , St)PSt
�

T−N (S)<∞
�

�

P(z,s) �T−N (S)<∞
�

=
E(z,s) � f (Zt , St)V (St)

�

V (s)

(33)

for all z ∈ [0,∞), s ∈ R and t ≥ 0. The proof of the assertions (29) and (31) is analogous. Note
for the proof of (31) that

Pz �Z∞ > 0
�

= Pz
�

lim
t→∞

Zt =∞
�

= lim
N→∞

Pz �TN (Z)< T0(Z)
�

=
U(0)− U(z)

U(0)
(34)

for every z ∈ [0,∞).
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Proof of Theorem 2. It suffices to identify the generator Ǧ of the conditioned process. This gen-
erator is the time derivative of the semigroup of the conditioned process at t = 0. Let f ∈
C2

0

�

[0,∞)×R,R
�

be fixed. Define fz(z, s) := ∂

∂ z
f (z, s), fs(z, s) := ∂

∂ s
f (z, s), fzz(z, s) := ∂ 2

∂ z2 f (z, s),

fss(z, s) := ∂ 2

∂ s2 f (z, s) and fzs(z, s) := ∂ 2

∂ z∂ s
f (z, s) for z ∈ [0,∞) and s ∈R. Lemma 8 implies that

Ǧ f (z, s)

= lim
h→0

E(z,s) �U(Zh) f (Zh, Sh)− U(z) f (z, s)
�

/U(z)
h

=
G (U · f )(z, s)

U(z)

=
1

U(z)

h�

α+
σ2

e

2

�

z
�

U
′
f + U fz

�

(z, s) +α
�

U fs
�

(z, s) +
σ2

e

2

�

U fss
�

(z, s)

+
1

2

�

σ2
e z2 +σ2

bz
��

U
′′

f + 2U
′
fz + U fzz

�

(z, s) +σ2
e z
�

U
′
fs + U fzs

�

(z, s)
i

=
1

U(z)
�

G f (z, s)
�

U(z) +
1

U(z)
(GU(z)) f (z, s)

+
�

σ2
e z2 +σ2

bz
�

�

U
′

U
fz

�

(z, s) +σ2
e z

�

U
′

U
fs

�

(z, s)

(35)

for all z ∈ [0,∞) and s ∈ R. Now we exploit that GU ≡ 0 and that U
′

U
(z) = −2α/(σ2

e z +σ2
b) for

z ∈ [0,∞) to obtain that

Ǧ f (z, s) = G f (z, s)− 2αz fz(z, s)− 2α
σ2

e z

σ2
e z+σ2

b

fs(z, s)

=

�

−α+
σ2

e

2

�

z fz(z, s) +
1

2

�

σ2
e z2 +σ2

bz
�

fzz(z, s)

+

�

α− 2α
σ2

e z

σ2
e z+σ2

b

�

fs(z, s) +
1

2
σ2

e fss(z, s) +σ2
e z fzs(z, s)

(36)

for all z ∈ [0,∞), s ∈ R and all f ∈ C2
0

�

[0,∞)×R,R
�

. This is the generator of the process (10).
Therefore the BDRE conditioned on extinction has the same distribution as the solution of (10).

Proof of Theorem 3. As in the proof of Theorem 2 we identify the generator Ḡ of the BDRE
conditioned on {S∞ =−∞}. Similar arguments as in (35) and GV ≡ 0 result in

Ḡ f (z, s)

= G f (z, s) +
σ2

e

2
2

�

V
′

V
fs

�

(z, s) +σ2
e z

�

V
′

V
fz

�

(z, s)

= G f (z, s)− 2α fs(z, s)− 2αz fz(z, s)

=

�

−α+
σ2

e

2

�

z fz(z, s)−α fs(z, s) +
σ2

e z2 +σ2
bz

2
fzz(z, s) +

σ2
e

2
fss(z, s) +σ2

e z fzs(z, s)

for all z ∈ [0,∞), s ∈ R and all f ∈ C2
0

�

[0,∞)×R,R
�

. This is the generator of the BDRE with
criticality parameter −α.



Supercritical branching diffusions in random environment 789

Proof of Theorem 1. The assertion follows from Corollary 4 and from Theorem 5 of Böinghoff
and Hutzenthaler (2011).

Proof of Theorem 6. Itô’s formula implies that

d
Zt

eSt
= e−St dZt − e−St Zt dSt +

1

2
e−St Ztσ

2
e d t − e−St Ztσ

2
e d t

= e−St
σ2

e

2
Zt d t + e−St

Æ

σ2
b Zt dW (b)

t +
1

2
e−St Ztσ

2
e d t − e−St Ztσ

2
e d t

= e−St

Æ

σ2
b Zt dW (b)

t

(37)

for all t ≥ 0. Therefore
�

Zt/exp(St)
�

t≥0 is a nonnegative martingale. The martingale convergence
theorem implies the existence of a random variable Y : Ω→ [0,∞) such that

Zt

eSt
−→ Y as t →∞ almost surely. (38)

If α≤ 0, then Z∞ = 0 almost surely, which implies Y = 0 almost surely.
It remains to determine the distribution of Y in the supercritical regime α > 0. Fix z ∈ [0,∞) and
λ ∈ [0,∞). Dufresne (1990) (see also [14]) showed that

∫ ∞

0

exp
�

−αs−σeW
(e)
s

�

ds
d
=

2

σ2
e

G 2α
σ2

e

. (39)

Moreover we exploit an explicit formula for the Laplace transform of the BDRE (3) conditioned
on the environment, see Corollary 3 of Böinghoff and Hutzenthaler (2011). Thus we get that

Ez �exp (−λY )
�

= lim
t→∞

Ez
�

exp
�

−λ
Zt

eSt

��

= lim
t→∞

Ez
�

Ez
�

exp
�

−λ
Zt

eSt

�

�

�

�

�

Ss
�

s∈[0,t]

��

= lim
t→∞

E






exp
�

−
z

∫ t

0

σ2
b

2
exp
�

− Ss
�

ds+ exp(St )
λ

exp(−St)

�







= E
�

exp
�

−
z

σ2
b

2

∫∞
0

exp
�

−αs−σeW
(e)
s
�

ds+ 1
λ

��

= E
�

exp
�

−
z

σ2
b

σ2
e
G2α/σ2

e
+ 1
λ

��

.

(40)

This shows (21). Letting λ→∞ we conclude that

Pz (Y = 0) = E
�

exp
�

−
z

σ2
b

σ2
e
G2α/σ2

e

��

= Pz �Z∞ = 0
�

. (41)

The last equality follows from Theorem 5 of [5].

Proof of Theorem 5. Analogous to the proof of Theorem 2, we identify the generator Ĝ of the
BDRE conditioned on {Z∞ > 0}. Note that

−U
′
(z)

U(0)− U(z)
=

2α

σ2
e z+σ2

b

U(z)
U(0)− U(z)

(42)



790 Electronic Communications in Probability

for all z ∈ [0,∞). Similar arguments as in (35) and GU ≡ 0 result in

Ĝ f (z, s)

= G f (z, s) +
�

σ2
e z2 +σ2

bz
� −U

′
(z)

U(0)− U(z)
fz(z, s) +σ2

e z
−U

′
(z)

U(0)− U(z)
fs(z, s)

=

�

α+ 2α
U(z)

U(0)− U(z)
+
σ2

e

2

�

z fz(z, s) +

�

α+σ2
e z

2α

σ2
e z+σ2

b

U(z)
U(0)− U(z)

�

fs(z, s)

+
σ2

e z2 +σ2
bz

2
fzz(z, s) +

σ2
e

2
fss(z, s) +σ2

e z fzs(z, s)

for all z ∈ [0,∞), s ∈ R and all f ∈ C2
0

�

[0,∞)×R,R
�

. Comparing with (17), we see that Ĝ is
the generator of (17) which implies (16). Inserting dŜt into the equation of d Ẑt for t ∈ [0,∞)
shows that (Ẑt)t≥0 solves the SDE (19).
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