
Elect. Comm. in Probab. 15 (2010), 346–364 ELECTRONIC
COMMUNICATIONS
in PROBABILITY

CENTRAL LIMIT THEOREM FOR TRUNCATED HEAVY TAILED BA-
NACH VALUED RANDOM VECTORS

ARIJIT CHAKRABARTY1

Department of Mathematics, Indian Institute of Science, Bengaluru - 560012, India
email: arijit@math.iisc.ernet.in

Submitted May 31, 2010, accepted in final form August 19, 2010

AMS 2000 Subject classification: Primary 60F05; Secondary 60B12
Keywords: heavy tails, truncation, regular variation, central limit theorem, probability on Banach
spaces

Abstract
In this paper the question of the extent to which truncated heavy tailed random vectors, taking
values in a Banach space, retain the characteristic features of heavy tailed random vectors, is
answered from the point of view of the central limit theorem.

1 Introduction

Situations where heavy-tailed distributions is a good fit, and at the same time there is a physical
upper bound on the quantity of interest, are common in nature. Clearly, the natural model for
phenomena like this is a truncated heavy-tailed distribution - a distribution that matches a heavy-
tailed one till a specified limit and after that it decays significantly faster or simply vanishes. This
leads to the general question: when can the upper bound be considered to be large enough so that
the effect of truncating by that is negligible? The first attempt at answering this question, in finite
dimensional spaces, was made in [Chakrabarty and Samorodnitsky, 2009]. In the current paper,
the investigation started by that paper has been continued to achieve similar results in Banach
spaces.
Suppose that B is a separable Banach space and that H, H1, H2, . . . are B-valued random variables
in the domain of attraction of an α-stable random variable V with 0 < α < 2. This means that
there are sequences an and bn so that as n−→∞,

b−1
n





n
∑

j=1

H j − an



=⇒V . (1.1)

We assume that the truncating threshold goes to infinity along with the sample size, and hence we
essentially have a sequence of models. We denote both - the sample size and the number of the
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model by n, and the truncating threshold in the n-th model by Mn. The nth row of the triangular
array will consist of observations Xn j , j = 1, . . . , n, which are assumed to be generated according
to the following mechanism:

Xn j := H j1
�

‖H j‖ ≤ Mn

�

+
H j

‖H j‖
(Mn + L j)1

�

‖H j‖> Mn

�

, (1.2)

j = 1, . . . , n, n = 1,2, . . .. Here (L, L1, L2, . . .) is a sequence of i.i.d. nonnegative random variables
independent of (H, H1, H2, . . .). For each n = 1, 2, . . . we view the observation Xn j , j = 1, . . . , n as
having power tails that are truncated at level Mn. The random variable L can be thought of as to
model that outside the ball of radius Mn, the tail “decays significantly faster or simply vanishes”.
L is assumed to have finite second moment.
In [Chakrabarty and Samorodnitsky, 2009] two regimes depending on the growth rate of Mn and
the tail of the random variable H were introduced as follows: the tails in the model (1.2) are said
to be

truncated softly if limn→∞ nP
�

‖H‖> Mn
�

= 0 ,
truncated hard if limn→∞ nP

�

‖H‖> Mn
�

=∞ . (1.3)

It was shown in that paper that as far as the central limit behavior of the row sum is concerned,
observations with softly truncated tails behave like heavy tailed random variables, while obser-
vations with hard truncated tails behave like light tailed random variables. In Theorem 2.1, the
main result of this paper, we show that the result under hard truncation can be extended to Banach
spaces, if the “small ball criterion” holds. Doing this is not straightforward because of the following
reason. While in finite-dimensional spaces, convergence in law is equivalent to one-dimensional
convergence of each linear functional in law to the linear functional evaluated at the limit, the
same is not true in Banach spaces. In the latter spaces, one needs to check in addition some tight-
ness conditions; see for example, [Ledoux and Talagrand, 1991] or [Araujo and Giné, 1980] for
details.
Section 2 contains the results and their proofs. A couple of examples are studied in Section 3 -
one where the hypothesis of Theorem 2.1 can be checked, and the other where the claim of that
result does not hold. The examples serve the purpose of showing that there is a need for such a
result, and that the result has some practical value.

2 A Central Limit Theorem for truncated heavy-tailed random
variables

The triangular array {Xn j : 1 ≤ j ≤ n} is as defined in (1.2). We would like to know if the row
sums Sn, defined by

Sn :=
n
∑

j=1

Xn j , (2.1)

still converge in law after appropriate centering and scaling. Exactly same arguments as those in
the proof of Theorem 2.1 in [Chakrabarty and Samorodnitsky, 2009] show that if the truncated
heavy-tailed model is in the soft truncation regime as defined in (1.3), then

b−1
n (Sn − an) =⇒V .

In other words, from the point of view of central limit behavior of the partial sums, the truncated
heavy-tailed model retains much of the heavy-tailedness. Hence, we shall assume throughout that
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the model is in the hard truncation regime, i.e.,

lim
n→∞

nP(‖H‖> Mn) =∞ . (2.2)

As mentioned earlier, easy-to-check criteria for satisfying the Central Limit Theorem on Banach
spaces are not known. An example of the not-so-easy-to-check ones is Theorem 10.13, page 289 in
[Ledoux and Talagrand, 1991], known as the “small ball criterion”. The main result of this paper,
Theorem 2.1, is an analogue of this theorem in the truncated setting under hard truncation. But
before stating that, we need the following preliminary. It is known that (1.1) implies that there is
a probability measure σ on

S := {x ∈ B : ‖x‖= 1}

such that as t −→∞,

P

�

H

‖H‖
∈ ·
�

�

�

�

‖H‖> t

�

w−→ σ(·) (2.3)

weakly on S ; see Corollary 6.20(b), page 151 in [Araujo and Giné, 1980].

Theorem 2.1. There is a Gaussian measure γ on B such that

B−1
n (Sn − ESn)⇒ γ (2.4)

if and only if the following hold:

1. (small ball criterion) For every ε > 0

lim inf
n→∞

P(B−1
n ‖Sn − ESn‖< ε)> 0 ,

2. supn≥1 B−1
n E‖Sn − ESn‖<∞,

where

Bn :=
�

nM2
n P(‖H‖> Mn)

�1/2
.

In that case, the characteristic function of γ is given by

γ̂( f ) = exp

�

−
2

2−α

∫

S

f 2(s)σ(ds)

�

, f ∈ B′ . (2.5)

Here, B′ is the dual of B, the space of linear functionals on B.

For the proof, we shall need the following one-dimensional lemma, which follows by exactly simi-
lar arguments as those in Theorem 2.2 of [Chakrabarty and Samorodnitsky, 2009], and hence we
omit the proof.

Lemma 2.1. For every f in B′,

B−1
n ( f (Sn)− E f (Sn))⇒ N

�

0,
2

2−α

∫

S

f 2(s)σ(ds)

�

.
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Proof of Theorem 2.1. First we prove the direct part, i.e., we assume that 1. and 2. hold. We first
show that it suffices to check that {L (Zn)} is relatively compact where

Zn := B−1
n

n
∑

j=1

Yn j ,

Yn j := Xn j − X ′n j

and for every n, X ′n1, X ′n2, . . . are i.i.d. copies of Xn1 so that (X ′n j : j ≥ 1) and (Xn j : j ≥ 1) are
independent families. To see this, suppose that we have shown that {L (Zn)} is relatively compact.
By Corollary 4.11, page 27 in [Araujo and Giné, 1980], it follows that the sequence {L (B−1

n Sn)}
is relatively shift compact, i.e., there exists some sequence {vn} ⊂ B such that {L (B−1

n Sn − vn)}
is relatively compact. By Theorem 4.1 in de Acosta and Giné (1979), for relative compactness of
{L [B−1

n (Sn − ESn)]}, it suffices to check that

lim
t→∞

limsup
n→∞

nE
�

‖Un‖1(‖Un‖> t)
�

= 0 , (2.6)

where

Un := B−1
n

�

H1(‖H‖ ≤ Mn) +
H

‖H‖
(Mn + L)1(‖H‖> Mn))

�

. (2.7)

By (2.2), it follows that Bn� Mn. Thus, for fixed t > 0 and n large enough,

nE
�

‖Un‖1(‖Un‖> t)
�

= nB−1
n P(‖H‖> Mn)

�

MnP(L > Bn t −Mn) + E
�

L1(L > Bn t −Mn)
�	

.

Since EL2 <∞,

E
�

L1(L > Bn t −Mn)
�

≤
E(L2)

Bn t −Mn

and

MnP(L > Bn t −Mn)≤
Mn

(Bn t −Mn)2
EL2 = o(B−1

n )

as n−→∞. Thus, for all fixed t > 0,

lim
n→∞

nE
�

‖Un‖1(‖Un‖> t)
�

= 0 . (2.8)

This shows (2.6) and hence that {L [B−1
n (Sn−ESn)]} is relatively compact. In view of Lemma 2.1,

this will complete the proof of the direct part.
First we record some properties of the random variables defined above, which shall be used in the
proof. The hypotheses immediately imply that for all ε > 0

lim inf
n→∞

P(‖Zn‖< ε)> 0 (2.9)

and that
sup
n≥1

E‖Zn‖<∞ . (2.10)

Let {Fk} be any sequence of increasing finite-dimensional subspaces so that

closure

 

∞
⋃

k=1

Fk

!

= B . (2.11)
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For any subspace F of B, denote by TF the canonical map from B to the quotient space B/F . By
Corollary 6.19 (page 151) in [Araujo and Giné, 1980], it follows that for every k, TFk

(H) is in the
domain of attraction of some α-stable law with the same scaling constant (bn) as that of H, and
that

lim
k→∞

sup
n≥1

nP
�

‖TFk
(H)‖> bn

�

= 0 . (2.12)

Clearly, for every k, there is Ck ∈ [0,∞) so that as t −→∞,

P(‖TFk
(H)‖> t)∼ Ck P(‖H‖> t) .

It follows by (2.12) that limk→∞ Ck = 0. Note that,

E‖TFk
(Xn1)‖2

= E
�

‖TFk
(H)‖21(‖H‖ ≤ Mn)

�

+E

�

‖TFk
(H)‖2

‖H‖2 (Mn + L)21(‖H‖> Mn)

�

≤ E
�

‖TFk
(H)‖21

�

‖TFk
(H)‖ ≤ Mn

��

+E

�

‖TFk
(H)‖2

‖H‖2 1(‖H‖> Mn)

�

E(Mn + L)2 .

By the Karamata theorem (Theorem B.1.5, page 363 in [de Haan and Ferreira, 2006]),

lim
n→∞
[M2

n P(‖H‖> Mn)]
−1E

�

‖TFk
(H)‖21

�

‖TFk
(H)‖ ≤ Mn

��

=
α

2−α
Ck .

By (2.3), it follows that as n−→∞,

E

�

‖TFk
(H)‖2

‖H‖2 1(‖H‖> Mn)

�

∼ P(‖H‖> Mn)

∫

S
‖TFk
(s)‖2σ(ds) .

That (2.11) holds and the fact that σ is a finite measure implies that

lim
k→∞

∫

S
‖TFk
(s)‖2σ(ds) = 0 .

Thus, in view of the assumption that EL2 <∞, it follows that

lim
k→∞

lim sup
n→∞

[M2
n P(‖H‖> Mn)]

−1E‖TFk
(Xn1)‖2 = 0 , (2.13)

which in turn implies that

lim
k→∞

limsup
n→∞

[M2
n P(‖H‖> Mn)]

−1E‖TFk
(Yn1)‖2 = 0 . (2.14)

Coming to the proof, in view of the criterion for relative compactness discussed in [Ledoux and Talagrand, 1991]
(page 40-41), it suffices to show that given ε > 0, there is a finite dimensional subspace F with

lim sup
n→∞

P
�

‖TF (Zn)‖> ε
�

≤ ε . (2.15)
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Let ε1,ε2, . . . be an i.i.d. sequence of Rademacher random variables, independent of (Xn, X ′n, n ≥
1), and let Eε denote the conditional expectation given {Yn j}. It suffices to show that for all η > 0,

lim
k→∞

lim sup
n→∞

P

�

�

�

�

�

�













n
∑

j=1

ε j TFk
(Yn j)













− Eε













n
∑

j=1

ε j TFk
(Yn j)













�

�

�

�

�

> Bnη

�

= 0 , (2.16)

and that there is a numerical constant C > 0 so that for every δ > 0,

lim sup
k→∞

limsup
n→∞

P



Eε













n
∑

j=1

ε j TFk
(Yn j)













> BnCδ



< δ , (2.17)

whenever {Fk} is an increasing sequence of finite-dimensional subspaces satisfying (2.11).
To establish (2.16), it suffices to check that

lim
k→∞

limsup
n→∞

P

�

�

�

�

�

�













n
∑

j=1

ε j TFk
(un j)













− Eε













n
∑

j=1

ε j TFk
(un j)













�

�

�

�

�

> Bnη

�

= 0 (2.18)

where
un j := Yn j1

�

‖Yn j‖ ≤ βBn

�

,

β > 0 is to be specified later. This is because for n large enough,

B−1
n E













n
∑

j=1

Yn j1
�

‖Yn j‖> βBn

�













≤ nB−1
n E

�

‖Yn1‖1(‖Yn1‖> βBn)
�

≤ nB−1
n E

�

�

‖Xn1‖+ ‖X ′n1‖
�

�

1
�

‖Xn1‖>
β

2
Bn

�

+1
�

‖X ′n1‖>
β

2
Bn

��

�

= 2nB−1
n E

�

(Mn + L)1(‖H‖> Mn)1
�

L >
β

2
Bn −Mn

��

+2nB−1
n P(‖H‖> Mn)P

�

L >
β

2
Bn −Mn

�

E‖Xn1‖

=: Q1 +Q2 .

Clearly,

Q1 ≤ 2nB−1
n P(‖H‖> Mn)E(L

2)
�

Mn

�

β

2
Bn −Mn

�−2

+
�

β

2
Bn −Mn

�−1�

→ 0
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as n−→∞. There is C ∈ (0,∞) so that

Q2 ≤ 2nB−1
n P(‖H‖> Mn)

�

β

2
Bn −Mn

�−2

E(L2)
¦

E‖Xn1‖2
©1/2

∼ CnB−3
n MnP(‖H‖> Mn)

3/2

→ 0 ,

the equivalence in the second line following from Karamata’s theorem. This shows that

lim
n→∞

B−1
n E













n
∑

j=1

Yn j1
�

‖Yn j‖> βBn

�













= 0 ,

and hence, showing (2.18) suffices for (2.16). Let

σn,F := B−1
n sup

f ∈(B/F)′,‖ f ‖≤1





n
∑

j=1

f 2(TF (un j))





1/2

.

By Theorem 4.7 in [Ledoux and Talagrand, 1991] on concentration of
Rademacher processes, with the median replaced by the expected value, as in page 292 of the
same reference, it follows that

P





�

�

�

�

�













n
∑

j=1

ε j TF (un j)













− Eε













n
∑

j=1

ε j TF (un j)













�

�

�

�

�

> Bnη



≤
103

η2 Eσ2
n,F .

Thus all that needs to be shown is that given any δ > 0, there is a choice of β depending only on
δ, so that

lim sup
k→∞

limsup
n→∞

Eσ2
n,Fk
≤ δ .

Using Lemma 6.6 (page 154) in [Ledoux and Talagrand, 1991], it follows that for any n, F ,

Eσ2
n,F ≤ nB−2

n sup
f ∈(B/F)′,‖ f ‖≤1

E f 2(TF (un1)) + 8B−2
n E













n
∑

j=1

un j‖un j‖












.

Clearly,
nB−2

n sup
f ∈(B/Fk)′,‖ f ‖≤1

E f 2(TFk
(un1))≤ [M2

n P(‖H‖> Mn)]
−1E(‖TFk

(Yn1)‖2)

which can be made as small as needed by (2.14). For the other part, note that by the contraction
principle (Theorem 4.4 in [Ledoux and Talagrand, 1991]),

B−2
n E













n
∑

j=1

un j‖un j‖












≤ βB−1
n E













n
∑

j=1

un j













≤ βB−1
n E













n
∑

j=1

Yn j













= βE‖Zn‖ .

Thus, choosing β smaller than δ/(16supn≥1 E‖Zn‖) (which is positive because of (2.10) ) does
the trick.
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For the proof of (2.17) we shall show that there is an universal constant C > 0 so that whenever
F is a subspace satisfying

lim inf
n→∞

P



Eε













n
∑

j=1

ε j TF (Yn j)













≤ 2Bnδ



> 0 , (2.19)

it follows that

limsup
n→∞

P



Eε













n
∑

j=1

ε j TF (Yn j)













> CBnδ



≤ δ . (2.20)

The reason that this suffices is the following. Fix δ > 0 and a sequence of increasing finite-
dimensional subspaces {Fk} satisfying (2.11). Note that for all n, k ≥ 1,

P



B−1
n Eε













n
∑

j=1

ε j TFk
(Yn j)













> 2δ





≤ P(‖Zn‖> δ)

+P





�

�

�

�

�













n
∑

j=1

ε j TFk
(Yn j)













− Eε













n
∑

j=1

ε j TFk
(Yn j)













�

�

�

�

�

> Bnδ



 .

By (2.16) and (2.9), it follows that

lim inf
k→∞

lim inf
n→∞

P



Eε













n
∑

j=1

ε j TFk
(Yn j)













≤ 2Bnδ



> 0 .

By (2.20), (2.17) follows.
The proof of (2.20) uses an isoperimetric inequality; see Theorem 1.4 (page 26) in [Ledoux and Talagrand, 1991].
Let

θ := lim inf
n→∞

P



Eε













n
∑

j=1

ε j TF (Yn j)













≤ 2Bnδ



> 0 .

In light of the isoperimetric inequality, by similar arguments as in page 291 of [Ledoux and Talagrand, 1991],
it follows that for k, q ≥ 1,

lim sup
n→∞

P



Eε













n
∑

j=1

ε j TF (Yn j)













> (2q+ 1)Bnδ





≤
�

K
�

log(1/θ)
k

+
1

q

��k

+ P
�

B−1
n max

j≤n
‖Yn j‖>

δ

k

�

,

where K is the universal constant in the isoperimetric inequality. Choose q = 2K and k to be large
enough (depending only on θ) so that

�

K
�

log(1/θ)
k

+
1

q

��k

≤
δ

2
.

All that remains to be shown is

lim
n→∞

P
�

B−1
n max

j≤n
‖Yn j‖>

δ

k

�

= 0 . (2.21)
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Note that
max
j≤n
‖Yn j‖ ≤max

j≤n
‖Xn j‖+max

j≤n
‖X̃n j‖

and that
max
j≤n
‖Xn j‖ ≤ Mn +max

j≤n
L j .

Since EL2
1 <∞, {n−1/2 max j≤n L j} is a tight family. This shows (2.21) and thus establishes (2.20)

with C = 4q+ 1 and hence completes the proof of the direct part.
The converse is straightforward. For 1., note that if (2.4) holds, by the continuous mapping
theorem,

lim
n→∞

P(B−1
n ‖Sn − ESn‖ ≤ ε) = γ ({x ∈ B : ‖x‖ ≤ ε}) ,

the right hand side being positive because in a separable Banach space a centered Gaussian law
puts positive mass on any ball with positive radius centered at origin, see the discussion on
page 60-61 in [Ledoux and Talagrand, 1991]. For proving 2. we shall appeal to Theorem 4.2
in [de Acosta and Giné, 1979]. All that needs to be shown is

lim
t→∞

limsup
n→∞

nE
�

‖ξn‖1(‖ξn‖> t)
�

= 0 , (2.22)

where
ξn := Un − E(Un)

and Un is as defined in (2.7). Note that

E‖Un‖ ≤ B−1
n

�

Mn + P(‖H‖> Mn)(Mn + EL)
�

→ 0 .

Fix t > 0. For n large enough so that ‖E(Un)‖< t/2, it follows that

nE
�

‖ξn‖1(‖ξn‖> t)
�

≤ nE
�

‖ξn‖1(‖Un‖> t/2)
�

≤ nE
�

‖Un‖1(‖Un‖> t/2)
�

+ nP(‖Un‖> t/2)E‖Un‖ .

By (2.8), the first term goes to zero. For the second term, notice that for n large enough,

nP(‖Un‖> t/2)E‖Un‖ ≤ nP(‖H‖> Mn)P
�

L >
t

2
Bn −Mn

�

E‖Un‖

= O
�

nP(‖H‖> Mn)B
−2
n

�

= o(1) .

This shows (2.22) and hence completes the proof.

Recall that a Banach space B is said to by of type 2 if there is C <∞ so that for all N ≥ 1 and zero
mean independent B-valued random variables X1, . . . , XN ,

E













n
∑

j=1

X j













2

≤ C
N
∑

j=1

E‖X j‖2 .

Banach spaces of type 2 are nice in the sense that every random variable X taking values there
with E||X‖2 < ∞ satisfies the Central Limit Theorem. In fact these are the only spaces where
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this is true. This is the statement of Theorem 10.5 (page 281) in [Ledoux and Talagrand, 1991].
We would like to mention at this point that while the assumption of type 2 is a rather restrictive
one, this is a fairly large class. For example, every Hilbert space and Lp spaces for 2 ≤ p < ∞
are Banach spaces of type 2. We show in the following result that (2.4) can be extended to these
spaces.

Theorem 2.2. If B is of type 2 and the model with power law tails (1.2) is in the hard truncation
regime, then there is a Gaussian measure γ on B such that

B−1
n (Sn − ESn)⇒ γ

The characteristic function of γ is given by (2.5).

Proof. In view of Lemma 2.1 and using similar arguments as in the proof of Theorem 2.1, it
suffices to prove that {L (Zn)} is relatively compact where the definition of Zn (and Yn j) is exactly
the same as in the proof of the latter theorem. Choose a sequence {Fk} of finite dimensional
subspaces satisfying (2.11). Since B is of type 2, so is B/F for any closed subspace F , with the
type 2 constant not larger than that of B. Thus, there is C ∈ [0,∞) so that

E‖TFk
(Zn)‖2 ≤ C[M2

n P(‖H‖> Mn)]
−1E‖TFk

(Yn1)‖2 .

Using (2.14), it follows that limk→∞ limsupn→∞ E‖TFk
(Zn)‖2 = 0 which shows (2.15) and thus

completes the proof.

3 Examples

In this section, we construct a couple of examples. In Example 1, the hypotheses of Theorem 2.1
can be verified. This helps to conclude that the result has some practical value. In Example 2,
(2.4) does not hold, and hence there is a need for a result like Theorem 2.1 or Theorem 2.2.

Example 1.

Let {T jk : j, k ≥ 1} be i.i.d. R-valued symmetric α-stable (SαS) random variables with 0 < α < 2,
i.e., have the following characteristic function:

E[exp iθT11] = e−|θ |
α

.

For all j ≥ 1, define the RN-valued random variable H j as

H j :=
∞
∑

k=1

ak T jkek ,

where (a j) is a sequence of non-negative numbers satisfying

∞
∑

j=1

aα/2j <∞ , (3.1)

and ek is the element of RN defined by

ek(n) =
�

1, k = n
0, otherwise. (3.2)
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Recall that P(|T11|> x) = O(x−α); see Property 1.2.15, page 16 in [Samorodnitsky and Taqqu, 1994].
This ensures that H1, H2, . . . are i.i.d. random variables taking values in c0, the space of sequences
limiting to zero, endowed with the sup norm. For that purpose, assuming that

∑∞
j=1 aαj <∞ would

have been sufficient. However, we shall need (3.1) for other reasons. It is immediate that H1, and
hence each H j , is a c0 valued symmetric α-stable random variable. This, in particular, means that
as n−→∞,

n−1/α
n
∑

j=1

H j =⇒ H1 . (3.3)

It is a well-known fact in finite dimensional spaces that the above implies

P(‖H1‖> x)∼ C x−α (3.4)

as x −→∞ for some C ∈ (0,∞). However, since we could not find a reference for this on Banach
spaces, we briefly sketch the argument for the sake of completeness. By Theorem 6.18, page 150 in
[Araujo and Giné, 1980] it follows that there is a measure µ on B\{0} satisfying µ(cD) = c−αµ(D)
for all c > 0 and D ⊂ B \ {0}, such that,

lim
n→∞

nP
�

n−1/αH1 ∈ A
�

= µ(A) (3.5)

for all A ⊂ B that is bounded away from the origin and µ(∂ A) = 0. It is also known that for all
δ > 0, 0< µ({x ∈ B : ‖x‖ ≥ δ})<∞. Set

A := {x ∈ B : ‖x‖> 1} .

Clearly, µ(∂ A) = 0. Using (3.5) with this A implies that
C := limn→∞ nP(‖H1‖ > n1/α) exists, and is finite and positive. Let (xk) be any sequence of
positive numbers going to infinity. Set nk := bxαk c. Observe that xαk P(‖H1‖ > xk) is sandwiched

between nk P(‖H1‖> (nk+1)1/α) and (nk+1)P(‖H1‖> n1/α
k ), and that both the bounds converge

to C . Thus, (3.4) follows. The letter C will be used to denote various such constants with possibly
different definition throughout this section.
Let (Mn) be a sequence such that 1 � Mn � n1/α. Then, the truncation of H j at level Mn with
L ≡ 0 is

Xn j :=
H j

‖H j‖
(‖H j‖ ∧Mn) .

As before, define the row sum by

Sn :=
n
∑

j=1

Xn j .

We shall show that for this set up, the hypotheses of Theorem 2.1 can be verified by purely ele-
mentary methods; the only sophisticated result that will be used is the contraction principle for
finite dimensional spaces. All that needs to be shown is

lim inf
n→∞

P(B−1
n ‖Sn‖< ε)> 0 for all ε > 0 , (3.6)

and
sup
n≥1

B−1
n E‖Sn‖<∞ (3.7)

where
Bn := n1/2M1−α/2

n .
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Note that in view of (3.4), this definition of Bn differs from that in the statement of Theorem 2.1
by only a constant multiple in the limit.
The following is a sketch of how we plan to show (3.6). Define for K ≥ 0,

SK ,1
n :=

n
∑

j=1

K
∑

k=1

akek T jk

�

1(‖H j‖ ≤ Mn) +
Mn

‖H j‖
1(‖H j‖> Mn)

�

,

SK ,2
n :=

n
∑

j=1

∞
∑

k=K+1

akek T jk

�

1(‖H j‖ ≤ Mn) +
Mn

‖H j‖
1(‖H j‖> Mn)

�

.

We shall show that for all ε > 0,

sup
K≥1

limsup
n→∞

P
�

B−1
n ‖S

K ,1
n ‖> ε

�

< 1 , (3.8)

and that
lim

K→∞
sup
n≥1

B−1
n E‖SK ,2

n ‖= 0 . (3.9)

The reason that (3.8) and (3.9) suffice for (3.6) is the following. Fix ε > 0. Note that

Sn = SK ,1
n + SK ,2

n ,

and hence it follows that

P(B−1
n ‖Sn‖> ε)≤ P(B−1

n ‖S
K ,1
n ‖> ε/2) + P(B−1

n ‖S
K ,2
n ‖> ε/2) .

Define
δ := 1− sup

K≥1
lim sup

n→∞
P
�

B−1
n ‖S

K ,1
n ‖> ε/2

�

,

which by (3.8) is positive. Using (3.9), choose K to be large enough so that,

sup
n≥1

B−1
n E‖SK ,2

n ‖<
εδ

2
.

Clearly, with this choice of K ,

lim sup
n→∞

P
�

B−1
n ‖S

K ,1
n ‖> ε/2

�

≤ 1−δ ,

and by the Markov inequality,

limsup
n→∞

P
�

B−1
n ‖S

K ,2
n ‖> ε/2

�

< δ .

This shows (3.6).
For n, K ≥ 1, define

Un,K :=
n
∑

j=1

K
∑

k=1

akek T jk

�

1(ak|T jk| ≤ Mn) +
Mn

ak|T jk|
1(ak|T jk|> Mn)

�

.

We start with showing that SK ,1
n is stochastically bounded by Un,K , i.e., for all x > 0,

P
�

‖SK ,1
n ‖> x

�

≤ 2P
�

‖Un,K‖> x
�

. (3.10)
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To that end, let (ε jk : j, k ≥ 1) be a family of i.i.d. Rademacher random variables, independent of
the family (T jk : j, k ≥ 1). Let Pε denote the conditional probability given (T jk : j, k ≥ 1). Note
that

P
�

‖SK ,1
n ‖> x

�

= P

�










n
∑

j=1

K
∑

k=1

akekε jk|T jk|
¨

1(‖H j‖ ≤ Mn) +
Mn

‖H j‖
1(‖H j‖> Mn)

«










> x

�

= EPε

�










n
∑

j=1

K
∑

k=1

akekε jk|T jk|
¨

1(‖H j‖ ≤ Mn) +
Mn

‖H j‖
1(‖H j‖> Mn)

«










> x

�

.

Since the function x 7→ 1(x ≤ M) + (M/x)1(x > M) is monotone non-increasing for x ≥ 0, it
follows that

|T jk|
¨

1(‖H j‖ ≤ Mn) +
Mn

‖H j‖
1(‖H j‖> Mn)

«

≤ |T jk|
¨

1(ak|T jk| ≤ Mn) +
Mn

ak|T jk|
1(ak|T jk|> Mn)

«

. (3.11)

Using Theorem 4.4, page 95 in [Ledoux and Talagrand, 1991], it follows that

Pε

�










n
∑

j=1

K
∑

k=1

akekε jk|T jk|
¨

1(‖H j‖ ≤ Mn) +
Mn

‖H j‖
1(‖H j‖> Mn)

«










> x

�

≤ 2Pε

�










n
∑

j=1

K
∑

k=1

akekε jk|T jk|
n

1(ak|T jk| ≤ Mn)

+
Mn

ak|T jk|
1(ak|T jk|> Mn)

o







> x

�

.

This shows (3.10). By the result in one dimension (Theorem 2.2 for example), it follows that for
all k ≥ 1,

B−1
n

n
∑

j=1

ak T jk

�

1(ak|T jk| ≤ Mn) +
Mn

ak|T jk|
1(ak|T jk|> Mn)

�

=⇒ N(0, aαkσ
2)

as n−→∞, where σ > 0 is independent of k. Thus, it follows that

lim
n→∞

P
�

B−1
n ‖Un,K‖> ε/2

�

= 1−ΠK
k=1P(|G| ≤ a−α/2k ε/2)

≤ 1−Π∞k=1P(|G| ≤ a−α/2k ε/2) ,
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where G is a normal random variable with mean zero and variance σ2. Thus, (3.8) will follows if
the following is shown: for all η > 0,

Π∞k=1P(|G| ≤ a−α/2k η)> 0 .

Clearly, it suffices to show that
∞
∑

k=1

P(|G|> a−α/2k η)<∞ ,

which immediately follows from the Markov inequality along with (3.1). Thus, (3.8) follows.
For showing (3.9), note that for all n≥ 1 and K ≥ 0,

B−1
n E‖SK ,2

n ‖

≤
∞
∑

k=K+1

E

�

�

�

�

�

B−1
n

n
∑

j=1

ak T jk

n

1(‖H j‖ ≤ Mn) +
Mn

‖H j‖
1(‖H j‖> Mn)

o

�

�

�

�

�

≤
∞
∑

k=K+1

E1/2

�

B−1
n

n
∑

j=1

ak T jk

n

1(‖H j‖ ≤ Mn) +
Mn

‖H j‖
1(‖H j‖> Mn)

o

�2

=
∞
∑

k=K+1

B−1
n n1/2E1/2

�

ak|T1k|
n

1(‖H1‖ ≤ Mn)

+
Mn

‖H1‖
1(‖H1‖> Mn)

o

�2

≤
∞
∑

k=K+1

B−1
n n1/2E1/2

�

ak|T1k|
n

1(ak|T1k| ≤ Mn) (3.12)

+
Mn

ak|T1k|
1(ak|T1k|> Mn)

o

�2

≤ C
∞
∑

k=K+1

aα/2k (3.13)

for some C < ∞ independent of n and K , where (3.11) has been used for (3.12), and (3.13)
follows by Karamata Theorem, the estimation being similar to that leading to (2.13). This, in view
of (3.1), shows (3.9). Thus, (3.6) follows. Also, using (3.13) for K = 0, (3.7) follows. Thus, the
hypotheses of Theorem 2.1 are satisfied.

Example 2

Fix 1 < p < 2. We first construct a bounded symmetric random variable X taking values in c0
(the space of sequences limiting to zero, equipped with the sup norm) so that n−1/p

∑n
i=1 X i does

not converge to zero in probability, where X1, X2, . . . are i.i.d. copies of X . Let (ε j : j ≥ 1) be a
sequence of i.i.d. Rademacher random variables. We shall use the fact that there exists K ∈ (0,∞)
so that

P

 

n
∑

i=1

εi > t

!

≥ exp
�

−K t2/n
�

(3.14)
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for all n ≥ 1 and t > 0 such that n1/2K ≤ t ≤ K−1n. This follows from (4.2) on page 90 in
[Ledoux and Talagrand, 1991]. Define

X :=
∞
∑

j=1

a jε je j ,

where
a j := K{log( j ∨ 2)}(1−p)/2, j ≥ 1 ,

K is the constant in (3.14) and e j is as defined in (3.2). Clearly, X is a c0 valued symmetric
bounded random variable. Let X1, X2, . . . denote i.i.d. copies of X . Note that for n≥ 1,

P

 

n−1/p









n
∑

k=1

Xk








> 1

!

= 1−Π∞j=1P

 

�

�

�

n
∑

k=1

εk

�

�

�≤ n1/pa−1
j

!

.

Thus, for proving that n−1/p
∑n

k=1 Xk does not converge to zero in probability, it suffices to show
that

limsup
n→∞

Π∞j=1P

 

�

�

�

n
∑

k=1

εk

�

�

�≤ n1/pa−1
j

!

< 1 . (3.15)

To that aim, define
ln :=

�

exp
�

n2/p
��

, n≥ 1 ,

and note that

Π∞j=1P

 

�

�

�

n
∑

k=1

εk

�

�

�≤ n1/pa−1
j

!

≤ Πln
j=1P

 

�

�

�

n
∑

k=1

εk

�

�

�≤ n1/pa−1
j

!

≤ P

 

�

�

�

n
∑

k=1

εk

�

�

�≤ n1/pa−1
ln

!ln

.

Note that

n1/pa−1
ln

= K−1n1/p(log ln)
−(1−p)/2

≤ K−1n .

Also, it is easy to see that as n−→∞,

log ln ∼ n2/p . (3.16)

Thus, n1/pa−1
ln
� n1/2. For n large enough, an appeal to (3.14) shows that

P

 

�

�

�

n
∑

k=1

εk

�

�

�≤ n1/pa−1
ln

!

≤ 1− exp
�

−Kn2/p−1a−2
ln

�

.

Using (3.16), it follows that
n2/p−1a−2

ln
= o(log ln) .

Thus, for n large enough it holds that

Kn2/p−1a−2
ln
≤ log ln ,
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and hence for such a n,

exp
�

−Kn2/p−1a−2
ln

�

≥
1

ln
.

What we have shown can be summed up as that for n large enough,

Π∞j=1P

 

�

�

�

n
∑

k=1

εk

�

�

�≤ n1/pa−1
j

!

≤
�

1−
1

ln

�ln

.

Thus, (3.15) follows.
Fix x ∈ B \ {0} and define

Y := X1(U = 0) + xS1(U = 1) (3.17)

where S is a R-valued (symmetric) Cauchy random variable and U is a Bernoulli(1/2) random
variable such that X , S, U are all independent. We start with showing that Y is in the domain of
attraction of an 1-stable law on B. Let ((X i , Si , Ui) : i ≥ 1) denote i.i.d. copies of (X , S, U). Since X
has zero mean, by Theorem 9.21 in [Ledoux and Talagrand, 1991], it follows that

n−1
n
∑

i=1

X i
P−→ 0 .

We shall show by an application of the contraction principle (Theorem 4.4 in [Ledoux and Talagrand, 1991])
that

n−1
n
∑

i=1

X i1(Ui = 0)
P−→ 0 . (3.18)

Let (ε j : j ≥ 1) be a sequence of i.i.d. Rademacher random variables independent of ((X i , Si , Ui) :
i ≥ 1). Let Pε denote the conditional probability given ((X i , Si , Ui) : i ≥ 1). Thus for all u> 0,

P

 










n
∑

i=1

X i1(Ui = 0)







> u

!

= EPε

 










n
∑

i=1

εiX i1(Ui = 0)







> u

!

≤ 2EPε

 










n
∑

i=1

εiX i








> u

!

= 2P

 










n
∑

i=1

X i








> u

!

,

the inequality following by the contraction principle. This shows (3.18). By Theorem 3 on page
580 in [Feller, 1971], it follows that

n−1
n
∑

i=1

Si1(Ui = 1) =⇒ Z

for some Cauchy random variable Z . Thus, it is immediate that

n−1
n
∑

i=1

Yi =⇒ x Z , (3.19)

where Y1, Y2, . . . denote i.i.d. copies of Y .
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For a positive number Mn,

Yni := Yi1
�

‖Yi‖ ≤ Mn
�

+Mn
Yi

‖Yi‖
1
�

‖Yi‖> Mn
�

is the truncation of Yi to the ball of radius Mn, as defined in (1.2) with L identically equal to zero.
Let

Sn :=
n
∑

i=1

Yni .

We will show n−1/pSn does not converge to 0 in probability whenever Mn −→ ∞. By arguments
similar to those leading to (3.18), it follows that for u> 0,

P

 










n
∑

i=1

Yi1
�

‖Yi‖ ≤ Mn
�








> u

!

≤ 2P(‖Sn‖> u) .

Note that since X is bounded and Mn goes to infinity, for n large enough,

Y 1(‖Y ‖ ≤ Mn) = X1(U = 0) + xS1(U = 1)1(|S| ≤ Mn/‖x‖) .

Observing that if (ε1,ε2) are i.i.d. Rademacher random variables independent of (X , S, U), then

X1(U = 0) + xS1(U = 1)1(|S| ≤ Mn/‖x‖)

d
= ε1X1(U = 0) + xε2|S|1(U = 1)1(|S| ≤ Mn/‖x‖) ,

exactly same arguments as before will show that for n large enough and u> 0,

P

 










n
∑

i=1

X i1(Ui = 0)







> u

!

≤ 2P

 










n
∑

i=1

Yi1
�

‖Yi‖ ≤ Mn
�








> u

!

.

The above can be summarized as that there exists N <∞ so that

P

 










n
∑

i=1

X i1(Ui = 0)







> u

!

≤ 4(P(‖Sn‖> u)

for all n≥ N and u> 0.
Denote

Nn := n−
n
∑

i=1

Ui ,

and the conditional probability given U1, U2, . . . by PU . Note that

P

 










n
∑

i=1

X i1(Ui = 0)







> u

!

≥ P

 










n
∑

i=1

X i1(Ui = 0)







> u, Nn > n/3

!

= E



PU

 










Nn
∑

i=1

X i








> u

!

1(Nn > n/3)



 .
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Another application of the contraction principle shows that on the set {Nn > n/3},

PU

 










Nn
∑

i=1

X i








> u

!

≥
1

2
PU

 










dn/3e
∑

i=1

X i








> u

!

=
1

2
P

 










dn/3e
∑

i=1

X i








> u

!

.

Thus, it follows that

P

 










n
∑

i=1

X i1(Ui = 0)







> u

!

≥
1

2
P

 










dn/3e
∑

i=1

X i








> u

!

P(Nn > n/3) .

All the above calculations put together shows

P

 










dn/3e
∑

i=1

X i








> u

!

= O
�

P(‖Sn‖> u)
�

uniformly in u. Since n−1/p
∑n

i=1 X i does not converge to zero in probability, it follows that n−1/pSn
does not converge to 0 in probability either.
The above calculations can be used to construct an example where (2.4) does not hold, in the
following way. Fix 1 < p < 2 and a sequence (Mn) satisfying 1 � Mn � n2/p−1. Define Y by
(3.17). The argument that leads to (3.4) from (3.3), applied to Y helps us conclude from (3.19)
that P(‖Y ‖ > x) ∼ C x−1 as x −→ ∞, for some C ∈ (0,∞). Since 2/p − 1 < 1, it follows that
Mn� n, which is a restatement of

lim
n→∞

nP(‖Y ‖> Mn) =∞ .

Thus, the assumption of hard truncation is satisfied. Set L ≡ 0, Yni to be the truncation of Yi at
level Mn, Sn to be the row sum of the triangular array {Yni : 1≤ i ≤ n} and

Bn :=
�

nM2
n P(‖Y ‖> Mn)

�1/2
.

Thus,

B2
n = O(nMn) = o

�

n2/p
�

.

This shows that B−1
n Sn does not converge weakly, for otherwise, n−1/pSn would converge to zero

in probability. Thus, (2.4) does not hold.
This is an example where the claim of Theorem 2.2 does not hold. The space c0 is not of
Rademacher type p for all p > 1. Hence it was possible to construct a zero mean random variable
with finite p-th moment, that does not satisfy the law of large numbers with rate n1/p.
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