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Abstract
We show that Varadhan’s small time asymptotics for densities of the solution of a stochastic differ-
ential equation in Rn [8] carries over to a Hilbert space-valued Ornstein-Uhlenbeck process whose
transition semigroup is strongly Feller and symmetric. In the Hilbert space setting, densities are
with respect to a Gaussian invariant measure.

1 Introduction

Varadhan [8] investigated the small time asymptotics of the probability densities of an Rn-valued
diffusion process (zζ(t))t≥0 with initial point ζ ∈ Rn. Denoting the density of zζ(t) by p(t,ζ, ·),
Varadhan showed that

lim
t→0

t ln p(t,ζ, y) =−
1

2
d2(ζ, y) (1)

uniformly for ζ and y in any bounded subset of Rn. In equality (1)

d(ζ, y) := inf

(

∫ 1

0

p

〈u̇(τ), a−1(u(τ))u̇(τ)〉Rn dτ : u : [0, 1]→ Rn is

absolutely continuous with derivative u̇ and u(0) = ζ and u(1) = y
�

,

where 〈·, ·〉Rn is the scalar product in Rn and a is the diffusion matrix in the stochastic differential
equation which (zζ(t))t≥0 solves.
The small time asymptotics formula for densities (1) has been shown to hold in many different
settings, for example Norris [6] showed that the formula holds in a finite dimensional Lipschitz
Riemannian manifold, with the definition of the distance function d depending on the manifold.

In the setting of an infinite dimensional separable Hilbert space H, let (X x(t))t≥0 be the mild
solution of the stochastic initial value problem

dX = AX d t + dW t > 0
X (0) = x ∈ H,

�

(2)
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where A is a linear operator on H and W is a (possibly cylindrical) Wiener process on H. Only in
special situations is the distribution of X x(t) absolutely continuous with respect to a natural refer-
ence measure on H at all times t > 0. We consider one such situation, namely when an invariant
measure µ exists and the transition semigroup is strongly Feller and symmetric on L2(H,µ). Un-
der these conditions we obtain the small time limiting behaviour of the probability density of
X x(t) with respect to µ. The continuous density k(t, x , ·) of X x(t) in Proposition 1 is valid when-
ever the transition semigroup is strongly Feller and symmetric; we have the small time limit in
Proposition 2 when Assumption 4 also holds. Assumption 4 is rather restrictive, nevertheless it is
interesting that the limit in equation (10) is of the same form as that in equation (1).

In the next section we present the main results and their proofs and finish with an example.

2 Small time limiting behaviour of densities

Let (H, 〈·, ·〉, | · |) be a separable infinite dimensional Hilbert space. Let A : D(A) ⊂ H → H be the
infinitesimal generator of the strongly continuous semigroup (S(t))t≥0 of bounded linear operators
on H. Let Q be a symmetric and positive definite bounded linear operator on H, in particular
kerQ = {0}. Define the Hilbert space (HW := Q

1
2 (H), | · |HW

:= |Q−
1
2 · |). Let (W (t))t≥0 be a

Hilbert space-valued Wiener process defined on a probability space (Ω,F , P) and such that the
distribution of W (1) has reproducing kernel Hilbert space HW . If Q is a trace class operator then
(W (t))t≥0 is a H-valued Wiener process, otherwise it is a cylindrical Wiener process on H (see
[3, Proposition 4.11]). In this article Q need not be trace class. The embedding of HW into H is
denoted by

i : HW ,→ H.

We use the symbol N (m, C) to denote a Gaussian measure on the Borel sets of H, with mean m
and covariance operator C .

Assumption 1 A trace class operator on H is defined by

Q∞x :=

∫ ∞

0

S(t)QS∗(t)x d t , x ∈ H.

Set µ :=N (0,Q∞). For each t > 0 the operator

Q t x :=

∫ t

0

S(s)QS∗(s)x ds , x ∈ H,

is trace class and kerQ t = {0}. The mild solution of the initial value problem (2) at positive times
t,

X x(t) := S(t)x +

∫ t

0

S(t − s)i dW (s), (3)

has distribution N (S(t)x ,Q t) and µ is an invariant measure for the equation in (2).
Define the strongly continuous transition semigroup (Rt)t≥0 on L2(H,µ) by

(Rtφ)(x) :=

∫

H

φ(y) dN (S(t)x ,Q t)(y) for µ a.e. x ∈ H

and for all φ ∈ L2(H,µ).
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Assumption 2 Semigroup (Rt)t≥0 is strongly Feller, that is, S(t)(H)⊂Q
1
2
t (H) for all positive times t.

Chojnowska-Michalik and Goldys have shown in [1, Proposition 2] that

S0(t) :=Q
− 1

2
∞ S(t)Q

1
2
∞ , t ≥ 0,

defines a strongly continuous semigroup of contractions on H. Some consequences of Assumption
2 are that for each t > 0

1. Q
1
2
∞(H) =Q

1
2
t (H), which is equivalent to ‖S0(t)‖L(H,H) < 1 and

2. S0(t) is Hilbert-Schmidt.

As shown in [4, Lemma 10.3.3], it follows that for each t > 0 and each x ∈ H the distribution of
X x(t),N (S(t)x ,Q t), is absolutely continuous with respect to µ and its Radon-Nikodym derivative
dN (S(t)x ,Q t )

dµ
is

dN (S(t)x ,Q t)
dµ

(y) = (det(IH −Θt))
− 1

2 exp
�

−
1

2
〈(IH −Θt)

−1Q
− 1

2
∞ S(t)x , Q

− 1
2
∞ S(t)x〉

+ 〈(IH −Θt)
−1Q

− 1
2
∞ S(t)x , Q

− 1
2
∞ y〉

−
1

2
〈Θt(IH −Θt)

−1Q
− 1

2
∞ y, Q

− 1
2
∞ y〉

�

(4)

for µ a.e. y ∈ H, where IH is the identity operator on H and Θt := S0(t)S∗0(t). The second and
third terms in the argument of the exponential function in equation (4) are defined for only µ a.e.
y , in terms of limits (see for example [4, Proposition 1.2.10]).

Assumption 3 The operators Rt are symmetric for all t ≥ 0.

Chojnowska-Michalik and Goldys [2, Lemma 2.2] have shown that symmetry of Rt is equivalent
to symmetry of S0(t) and this allows us to prove that there is a continuous version of the Radon-
Nikodym derivative in equation (4).

Proposition 1. Under Assumptions 1 to 3, there is a continuous version of the Radon-Nikodym
derivative dN (S(t)x ,Q t )

dµ
, which we denote by k(t, x , ·):

k(t, x , y) := (det(IH − S0(2t)))−
1
2 ×

exp
�

−
1

2
|Q
− 1

2
t S(t)x |2 + 〈Q

− 1
2

t S(t/2)x , Q
− 1

2
t S(t/2)y〉 −

1

2
|Q
− 1

2
t S(t)y|2

�

(5)

for all y ∈ H.

Proof. Define the bounded linear bijections

J(t) :=Q
− 1

2
∞ Q

1
2
t , t > 0.

The identity Q∞ =Q t + S(t)Q∞S∗(t) yields

J(t)J∗(t) = IH − S0(t)S
∗
0(t) = IH −Θt for t > 0 and

(IH −Θt)
−1 = (J−1(t))∗J−1(t) for t > 0. (6)
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From equality (6) we have

〈(IH −Θt)
−1Q

− 1
2
∞ S(t)x , Q

− 1
2
∞ S(t)x〉 = 〈J−1(t)Q

− 1
2
∞ S(t)x , J−1(t)Q

− 1
2
∞ S(t)x〉

= |Q
− 1

2
t S(t)x |2. (7)

The other two terms in the argument of the exponential in equation (4) are defined in terms of
limits. Let ( fk) be an orthonormal basis of H made up of eigenvectors of Q∞. For each n ∈ N define
Pn to be the orthogonal projection onto the linear span of { f1, . . . , fn}. In the following expressions
(nk) denotes some strictly increasing sequence of natural numbers. We have

〈Θt(IH −Θt)
−1Q

− 1
2
∞ y, Q

− 1
2
∞ y〉 = lim

k→∞
〈Θt(IH −Θt)

−1Q
− 1

2
∞ Pnk

y, Q
− 1

2
∞ Pnk

y〉 , µ a.e. y ∈ H,

= lim
k→∞
〈(IH −Θt)

−1Θ
1
2
t Q
− 1

2
∞ Pnk

y, Θ
1
2
t Q
− 1

2
∞ Pnk

y〉

= lim
k→∞
〈(IH −Θt)

−1Q
− 1

2
∞ S(t)Pnk

y, Q
− 1

2
∞ S(t)Pnk

y〉

= |Q
− 1

2
t S(t)y|2. (8)

We have

〈(IH −Θt)
−1Q

− 1
2
∞ S(t)x , Q

− 1
2
∞ y〉 = lim

k→∞
〈(IH −Θt)

−1Q
− 1

2
∞ S(t)x , Q

− 1
2
∞ Pnk

y〉 , µ a.e. y ∈ H,

= lim
k→∞
〈(IH −Θt)

−1Q
− 1

2
∞ S(t/2)x , S0(t/2)Q

− 1
2
∞ Pnk

y〉

= 〈Q
− 1

2
t S(t/2)x , Q

− 1
2

t S(t/2)y〉. (9)

Substituting the expressions from equalities (7), (8) and (9) into the right hand side of equation
(4), we get the formula for k(t, x , y) shown in equation (5).

When x and y belong to Q
1
2 (H) we can write k(t, x , y) in terms of the eigenvalues of A0, the

infinitesimal generator of (S0(t))t≥0; then it is straightforward to find limt→0 t ln k(t, x , y). The
results obtained in this way can be of interest only if µ(Q

1
2 (H)) = 1. We now introduce a further

assumption to ensure that µ(Q
1
2 (H)) = 1. Chojnowska-Michalik and Goldys [2, Theorems 2.7 and

2.9] showed that the symmetry of Rt , t > 0, implies that

SQ(t) :=Q−
1
2 S(t)Q

1
2 , t ≥ 0,

defines a strongly continuous semigroup of symmetric contractions on H and there is an isometric
isomorphism U : H → H such that

SQ(t) = US0(t)U
−1 for all t ≥ 0.

Hence, like S0(t), SQ(t) is a Hilbert-Schmidt strict contraction for each t > 0. Since (SQ(t)) is a
semigroup of compact, symmetric contractions, its infinitesimal generator AQ is self-adjoint and its
spectrum consists of real eigenvalues

0>−α1 ≥−α2 ≥−α3 ≥ · · ·
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where −α j → −∞ as j →∞ (see [5, Theorem 13 in chapter 34] and [7, Theorems 2.3 and 2.4
in chapter 2]). By [7, Theorem 3.3 in chapter 2], A−1

Q is compact as well as symmetric and hence
there is an orthonormal basis (gk) of H composed of eigenvectors of AQ:

AQ gk =−αk gk for all k ∈ N.

Assumption 4 A−1
Q is trace class, that is,

∑∞
k=1

1
αk
<∞.

Chojnowska-Michalik and Goldys [2, Theorem 5.1] showed that µ(Q
1
2 (H)) = 1 if and only if

∫∞
0
‖SQ(t)‖2

L2(H,H) d t <∞, where ‖ · ‖L2(H,H) denotes the Hilbert-Schmidt norm. We have

∫ ∞

0

‖SQ(t)‖2
L2(H,H) d t =

∞
∑

k=1

∫ ∞

0

e−2αk t d t =
∞
∑

k=1

1

2αk
.

Thus Assumption 4 is equivalent to the assumption that µ(Q
1
2 (H)) = 1.

Proposition 2. Under Assumptions 1 to 4 we have for all x and y in Q
1
2 (H)

lim
t→0

t ln k(t, x , y) =−
1

2
|Q−

1
2 (x − y)|2 (10)

and convergence is uniform for Q−
1
2 x and Q−

1
2 y in any compact subset of H.

Remark In the example following the proof we show that equality (10) does not necessarily hold
if x − y is in Q

1
2 (H) but x and y are in H\Q

1
2 (H).

Proof. Assumption 4 is sufficient (but not necessary) to ensure that

lim
t→0

t ln det(IH − S0(2t)) = 0.

We have for t > 0:

t lndet(IH − S0(2t)) = t ln
∞
∏

j=1

(1− e−2α j t) =
∞
∑

j=1

t ln(1− e−2α j t).

By L’Hôpital’s rule

lim
t→0

t ln(1− e−2α j t) = 0 for each j ∈ N; (11)

thus, since the function x ∈ (0,∞) 7→ x ln(1− e−x) is bounded we have

t lndet(IH − S0(2t)) =
∞
∑

j=1

2α j t ln(1− e−2α j t)

2α j

→ 0 as t → 0. (12)

It remains to find the limit of t times the argument of the exponential function in equation (5).
The key to this is equality (17), which we now derive.
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Let t > 0. We have

Q t x =

∫ t

0

S(2r)Qx dr

= Q
1
2

∫ t

0

AQSQ(2r)A−1
Q Q

1
2 x dr

=
1

2
Q

1
2 (SQ(2t)A−1

Q Q
1
2 x − A−1

Q Q
1
2 x)

=
1

2
Q

1
2 (IH − SQ(2t))(−AQ)

−1Q
1
2 x , x ∈ H.

Substituting x =Q−
1
2 y into this equation, where y ∈Q

1
2 (H), we have

Q−
1
2 Q tQ

− 1
2 y =

1

2
(IH − SQ(2t))(−AQ)

−1 y for y ∈Q
1
2 (H). (13)

By [2, Proposition 2.10]

Q
1
2
t (H) =Q

1
2 (D(

p

−AQ)) for t > 0, (14)

therefore Q−
1
2 Q

1
2
t is a bounded linear operator with range D(

p

−AQ). Since Q−
1
2 Q

1
2
t is one to one

and has a dense range, its adjoint (Q−
1
2 Q

1
2
t )
∗ has the same properties. From equation (13) we have

Q−
1
2 Q

1
2
t (Q

− 1
2 Q

1
2
t )
∗ =

1

2
(IH − SQ(2t))(−AQ)

−1; (15)

notice that, since ‖SQ(2t)‖L(H,H) < 1, (IH − SQ(2t)) is invertible and the range of the operator in
equation (15) is D(AQ). Taking inverses on both sides of equation (15) we have

((Q−
1
2 Q

1
2
t )
−1)∗Q

− 1
2

t Q
1
2 x =−2(IH − SQ(2t))−1AQ x , x ∈ D(AQ). (16)

Let r > 0. Then since AQ is self-adjoint,

SQ(r)(H)⊂ D(AQ).

Hence for u, v ∈ H equation (16) yields

− 2〈(IH − SQ(2t))−1AQSQ(r)u, SQ(r)v〉= 〈Q
− 1

2
t S(r)Q

1
2 u, Q

− 1
2

t S(r)Q
1
2 v〉. (17)

The expression on the right hand side of equality (17) appears in equation (5) when x and y are
both in Q

1
2 (H). The expression on the left hand side of equality (17) can be written in terms of

the eigenvalues (−α j) of AQ.
Recall that (gk) is an orthonormal basis of H such that AQ gk = −αk gk for each k ∈ N. Setting
uk := 〈u, gk〉 and vk := 〈v, gk〉 for k ∈ N, we have from equality (17):

t〈Q
− 1

2
t S(t/2)Q

1
2 u, Q

− 1
2

t S(t/2)Q
1
2 v〉 = −2t〈(IH − SQ(2t))−1AQSQ(t/2)u, SQ(t/2)v〉

=
∞
∑

k=1

2αk t

eαk t − e−αk t uk vk (18)

→
∞
∑

k=1

uk vk = 〈u, v〉 as t → 0, (19)
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and the convergence is uniform for u and v in any compact subset of H. The uniform convergence
on compact sets is because for any compact set K ⊂ H we have sup{

∑∞
j=n〈u, g j〉2 : u ∈ K} → 0 as

n goes to infinity.
Similarly we have

t|Q
− 1

2
t S(t)Q

1
2 u|2 =

∞
∑

k=1

2αk t

e2αk t − 1
u2

k →
∞
∑

k=1

u2
k = |u|

2 as t → 0, (20)

and the convergence is uniform for u in any compact subset of H.
Using the results in (12), (19) and (20), we have for x and y in Q

1
2 (H):

lim
t→0

t ln k(t, x , y) = lim
t→0
−

1

2
(t|Q

− 1
2

t S(t)x |2 − 2t〈Q
− 1

2
t S(t/2)x , Q

− 1
2

t S(t/2)y〉+ t|Q
− 1

2
t S(t)y|2)

= −
1

2
|Q−

1
2 x −Q−

1
2 y|2 ,

and the convergence is uniform for Q−
1
2 x and Q−

1
2 y in any compact subset of H.

Example. Let H = L2((0,π)) with the usual inner product 〈u, v〉 :=
∫ π

0
u(t)v(t) d t for all u and

v ∈ H. Define the operator (A, D(A)) on H by

Au := u′′ for all u ∈ D(A) where

D(A) :=
¦

u ∈ L2((0,π)) : u and u′ are absolutely continuous and

u′′ ∈ L2((0,π)) and lim
t→0

u(t) = lim
t→π

u(t) = 0
ª

.

As shown in [9, Proposition 1 of section 3.1], (A, D(A)) is a self-adjoint operator on H and gener-
ates the strongly continuous semigroup of operators:

S(t)u :=
∞
∑

m=1

e−m2 t〈u, gm〉gm , u ∈ H , t ≥ 0 , (21)

where {gm(y) :=
Æ

2
π

sin(my) , y ∈ (0,π) : m ∈ N} is an orthonormal basis of H. Moreover we
have Agm =−m2 gm for all m ∈ N. Define

Qu :=
∞
∑

m=1

1

m2 〈u, gm〉gm , u ∈ H . (22)

Straightforward computations show that Assumptions 1 to 4 are satisfied. Criteria for checking
that (Rt) is strongly Feller and symmetric are [3, Proposition B.1] and [2, Theorem 2.4], respec-
tively.
We shall show that equality (10) does not necessarily hold if x − y ∈ Q

1
2 (H) but x and y are in

H\Q
1
2 (H). We have

lim
t→0

t ln k(t, x , y)

= lim
t→0

�

−
t

2
|Q
− 1

2
t S(t)(x − y)|2 + t〈Q

− 1
2

t S(t/2)x ,Q
− 1

2
t S(t/2)y〉 − t〈Q

− 1
2

t S(t)x ,Q
− 1

2
t S(t)y〉

�

.
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Take x = y =
∑∞

k=1
1
k

gk. Clearly x /∈Q
1
2 (H). Proceeding as in equation (18), we have

t〈Q
− 1

2
t S(t/2)x ,Q

− 1
2

t S(t/2)y〉 − t〈Q
− 1

2
t S(t)x ,Q

− 1
2

t S(t)y〉 =
∞
∑

k=1

2k2 te−k2 t

1+ e−k2 t

≥
∫ ∞

0

r2 te−r2 t dr − 2e−1

=
1

4

Ç

π

t
− 2e−1;

hence in this case we have x = y and limt→0 t ln k(t, x , y) =∞.
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