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Abstract

The survival problem for a diffusing particle moving among random traps is considered. We

introduce a simple argument to derive the quenched asymptotics of the survival probability from

the Lifshitz tail effect for the associated operator. In particular, the upper bound is proved in fairly

general settings and is shown to be sharp in the case of the Brownian motion among Poissonian

obstacles. As an application, we derive the quenched asymptotics for the Brownian motion among

traps distributed according to a random perturbation of the lattice.

1 Introduction and main results

In this article, we consider a diffusing particle moving among random traps. The motion of the

particle is given by a simple random walk or a Brownian motion and it is killed at a certain rate

when it stays in a trap. Such a model naturally appears in chemical physics and also has some

relations to the quantum physics in disordered media. We refer to the papers by Havlin and

Ben-Avraham [9] and den Hollander and Weiss [4] for reviews on this model.

The mathematical description of the trapping model is given by the sub-Markov process with

generator

Hω =−κ∆+ Vω, (1.1)

where ∆ is the Laplacian on L2(Rd) or l2(Zd) and (Vω,P) a nonnegative, stationary, and ergodic

random field. Heuristically, the height of Vω corresponds to the rate of killing. Let us write

({X t}t≥0, {Px}x∈Rd or Zd ) for the Markov process generated by −κ∆. A quantity of primary interest

in the trapping model is the survival probability of the particle up to a fixed time t, which is

expressed as

uω(t, x) = Ex

�

exp

¨

−

∫ t

0

Vω(Xs) ds

«�

. (1.2)
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From this expression, we can identify the survival probability as the Feynman-Kac representation

of a solution of the initial value problem

∂tu(t, x) = κ∆u(t, x)− Vω(x)u(t, x) for (t, x) ∈ (0,∞)×Rd (or Zd),

u(0, · )≡ 1.
(1.3)

Therefore, it is natural to expect that the long time asymptotics of the survival probability gives

some information about the spectrum of Hω around the ground state energy and vice versa. This

idea has been made rigorous first by Fukushima [6], Nakao [12], and Pastur [13] (with the anal-

ysis of some concrete examples) in the following sense: from the annealed long time asymptotics

of the survival probability, one can derive the decay rate of the integrated density of states around

the ground state energy. Their arguments are based on the fact that the Laplace transform of the

integrated density of states can be expressed as the annealed survival probability for the process

conditioned to come back to the starting point at time t. Therefore, the above implication follows

by an appropriate Tauberian theorem and, since there is the corresponding Abelian theorem (see

e.g. Kasahara [10]), the converse is also true.

The aim of this article is to study a relation between the quenched asymptotics of uω(t, x) and the

integrated density of states. Let us start by recalling the notion of the integrated density of states.

To define it, we assume the following:

Assumption 1. In the continuous setting, Vω belongs to the local Kato class Kd,loc, that is,

lim
ε→0

sup
|x |≤R

∫

|y|≤ε

g(x − y)Vω(y) d y = 0 (1.4)

for each R> 0, where g(z) = 1 for d = 1, − log |z| for d = 2, and |z|2−d for d ≥ 3.

Under the above assumption, the integrated density of states of Hω can be defined as follows (see

e.g. Chap. VI of [3]):

N ∗(λ) = lim
R→∞

1

(2R)d
E
�

#
�

k ∈ N;λ∗ω, k

�

(−R,R)d
�

≤ λ
	�

, ∗= D or N, (1.5)

where λD
ω, k
((−R,R)d) (resp. λN

ω, k
((−R,R)d)) is the k-th smallest eigenvalue of Hω in (−R,R)d with

the Dirichlet (resp. Neumann) boundary condition. In fact, the above assumption is slightly more

than necessary to ensure the existence of the integrated density of states but we need it to utilize

a uniform bound for the semigroup e−tHω in the proof.

Before stating the results, let us recall some notations and a fact about regularly varying functions

from [16]. A function φ from (0,∞) to itself is said to be regularly varying with index L > 0 if

lim
x→∞

φ(λx)

φ(x)
= λL (1.6)

for each λ ∈ (0,∞). It is known that for a regularly varying function φ, there exists a function ψ

satisfying

lim
x→∞

ψ ◦φ(x)

x
= lim

x→∞

φ ◦ψ(x)

x
= 1. (1.7)

The functionψ is asymptotically unique—ifψ1 andψ2 satisfy (1.7), then limx→∞ψ1(x)/ψ2(x) =

1— and is called the asymptotic inverse of φ.

Now we state our first result.
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Theorem 1.1. Suppose that Assumption 1 holds and that there exists a regularly varying function

φ with index L > 0 such that the integrated density of states ND associated with the operator Hω
in (1.1) admits the upper bound

ND(λ)≤ exp
�

−φ(1/λ)(1+ o(1))
	

as λ→ 0. (1.8)

Then, for any fixed x ∈ Rd (or Zd),

P-a.s. uω(t, x)≤ exp
�

−t/ψ(d log t)(1+ o(1))
	

as t →∞, (1.9)

where ψ is the asymptotic inverse of φ.

The following assumptions are necessary only for the lower bound.

Assumption 2. (Moment condition) There exists α > 0 such that

E

�

sup
x∈[0,1)d

exp{Vω(x)
α}

�

<∞ (1.10)

in the continuous setting. In the discrete setting, the left-hand side is interpreted as E[exp{Vω(0)
α}].

Assumption 3. (Short range correlation) There exists β > 0 and r0 > 0 such that for λ > 0 and

boxes Ak ⊂ R
d or Zd (1≤ k ≤ n) with mink 6=l dist(Ak,Al)> r ≥ r0 and max1≤k≤n diam(Ak)< r,

�

�

�

�

P

�

⋂

1≤k≤n

Ek(λ)

�

− P(E1(λ))P

�

⋂

2≤k≤n

Ek(λ)

�
�

�

�

�

< exp{−rβ}, (1.11)

where Ek(λ) = {λ
N
ω, 1
(Ak)≤ λ}.

Now we are ready to state our second result.

Theorem 1.2. Suppose that Assumptions 1– 3 hold and that there exists a regularly varying function

φ with index L > 0 such that the integrated density of states ND associated with the operator Hω
in (1.1) admits the lower bound

ND(λ)≥ exp
�

−φ(1/λ)(1+ o(1))
	

as λ→ 0. (1.12)

Then, there exists a constant c1 > 1 such that for any fixed x ∈ Rd (or Zd),

P-a.s. uω(t, x)≥ exp
�

−c1 t/ψ(d log t)(1+ o(1))
	

as t →∞, (1.13)

where ψ is the asymptotic inverse of φ.

Remark 1. The exponential behavior (1.8) and (1.12) of the integrated density of states is called

the “Lifshitz tail effect” (cf. [11]) and is typical for the trapping Hamiltonian Hω. The index

L is called “Lifshitz exponent”. Using these terminologies, we can summarize our results as

follows: if we have the Lifshitz tail effect with exponent L > 0, then loguω(t, x) behaves like

−t/(log t)1/L+o(1).

In Section 4.2, we shall use the above general theorems to derive another new result. That is, the

quenched asymptotics of the survival probability of the Brownian motion among traps distributed

according to a randomly perturbed lattice. This model has recently been introduced by the author

in [7], where the annealed asymptotics was discussed.
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Finally we comment on the relation to early studies on the quenched asymptotics of uω(t, x). We

first give historical remarks. The first result in this direction has been obtained for the Brownian

motion among Poissonian traps by Sznitman [19] (see also [20]):

P-a.s. uω(t, 0) = exp
¦

−c t/(log t)2/d(1+ o(1))
©

as t →∞, (1.14)

with an explicit constant c > 0. The same asymptotics has also been proved for the discrete

counterpart (the simple random walk among Bernoulli traps) by Antal [1]. These results are

consistent to ours since in these cases, the Lifshitz exponent is known to be d/2 [12, 15]. Later,

Biskup and König [2] considered the simple random walk among i.i.d. traps with more general

distributions. A representative example in their framework is

P(Vω(0)< v)∼ exp
�

−v−γ
	

as v→ 0 (1.15)

for some γ ∈ (0,∞). For such a model, they proved the quenched asymptotics

P-a.s. uω(t, 0) = exp
¦

−χ t/(log t)2/(d+2γ)(1+ o(1))
©

as t →∞ (1.16)

with a constant χ > 0 described by a certain variational problem. It is remarkable that they also

discussed the annealed asymptotics and as a consequence, the Lifshitz tail effect with the Lifshitz

exponent (d + 2γ)/2 was proved. Hence the relation we mentioned in Remark 1 has already

appeared in this special class.

Next, we comment on some technical points. The lower bound (Theorem 1.2) is a slight modi-

fication of that of Theorem 4.5.1 in p.196 of [20] and not genuinely new. We include it for the

completeness and to use in an application given in Section 4.2. On the other hand, the upper

bound (Theorem 1.1) contains some novelties. Besides the generality of the statement, our proof

simplifies an existing argument. To be precise, in [2], the upper bound of quenched asymptotics

is derived essentially from the annealed one. This is in the same spirit of ours since the annealed

asymptotics and the Lifshitz tail effect have a direct relationship as mentioned before. However,

they need a certain localizing procedure (see Lemma 4.6 in [2]) which we do not need. Such

a localizing argument is also used, and in fact crucial, in the proof of the annealed asymptotics

but we find that it is not necessary in the step from the annealed asymptotics to the quenched

one. The arguments in [19, 1] on the other hand rely on the so-called “method of enlargement

of obstacles”. They have an advantage of avoiding any use of annealed results but they are quite

complicated themselves. We will see in Section 4.1 that, assuming the Lifshitz tail effect in [12],

our result indeed derives the correct upper bound of the quenched asymptotics for the Brownian

motion among Poissonian obstacles.

2 Proof of the upper bound

We take κ= 1/2 and x = 0 in the proof. The extension to general κ and x are verbatim. Also, we

give the proof only for the continuous setting. The proof of the discrete case follows by the same

argument. We begin with the following general upper bound for uω(t, x) in terms of the principal

eigenvalue.

Lemma 2.1. Under Assumption 1, there exist constants c2, c3 > 0 such that

uω(t, 0)≤ c2(1+ (λ
D
ω, 1

�

(−t, t)d
�

t)d/2)exp
¦

−λD
ω, 1

�

(−t, t)d
�

t
©

+ e−c3 t . (2.1)
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Proof. Let τ denote the exit time of the process from (−t, t)d . Then, by the reflection principle,

we have

uω(t, 0)≤ E0

�

exp

¨

−

∫ t

0

Vω(Xs) ds

«

;τ > t

�

+ P0(τ≤ t)

≤ E0

�

exp

¨

−

∫ t

0

Vω(Xs) ds

«

;τ > t

�

+ e−c3 t .

(2.2)

Now, (2.1) follows immediately from (3.1.9) in p.93 of [20] under Assumption 1.

Due to this lemma, it suffices for (1.9) to obtain the almost sure lower bound for the principal

eigenvalue λD
ω, 1

�

(−t, t)d
�

. We use the following inequality for the integrated density of states

ND(λ)≥
1

(2R)d
E
�

#
�

k ∈ N;λD
ω, k

�

(−R,R)d
�

≤ λ
	�

≥
1

(2R)d
P
�

λD
ω, 1

�

(−R,R)d
�

≤ λ
�

,

(2.3)

which holds for any λ > 0 and R > 0. The first inequality is an easy application of the so-

called “Dirichlet–Neumann bracketing” and can be found in [3], (VI.15) in p.311. Now, fix ε > 0

arbitrarily and let λ = (1− ε)ψ(d log t)−1 and R= t. Then it follows from (2.3) and (1.8) that

P

�

λD
ω, 1

�

(−t, t)d
�

≤ (1− ε)ψ(d log t)−1
�

≤ (2t)d exp
¦

−φ((1− ε)−1ψ(d log t))(1+ o(1))
©

= 2d td−d/(1−ε)L(1+o(1))

≤ t−δ(ε)

(2.4)

for some δ(ε) > 0 when t is sufficiently large. This right-hand side is summable along the se-

quence tk = ek and therefore Borel-Cantelli’s lemma shows

λD
ω, 1

�

(−tk, tk)
d
�

≥ (1− ε)ψ(d log tk)
−1 (2.5)

except for finitely many k, P-almost surely. We can extend this bound for all large t as follows:

since ψ(d log t) is slowly varying in t, we have

λD
ω, 1

�

(−t, t)d
�

≥ λD
ω, 1

�

(−tk, tk)
d
�

≥ (1− ε)ψ(d log tk)
−1

≥ (1− 2ε)ψ(d log t)−1

(2.6)

for tk−1 ≤ t ≤ tk when k is sufficiently large. Combined with Lemma 2.1, this proves the upper

bound (1.9).

3 Proof of the Lower bound

We take κ = 1/2 and x = 0 again. Also, we only consider the continuous case. As in the proof

of the upper bound, the principal eigenvalue plays a key role. Let us write λN
k
(U) for the k-

th smallest eigenvalue of −(1/2)∆ in U with the Neumann boundary condition. Then we have
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another inequality for the integrated density of states

ND(λ)≤
1

(2R)d
E
�

#
�

k ∈ N;λN
ω, k

�

(−R,R)d
�

≤ λ
	�

≤
1

(2R)d
#
�

k ∈ N;λN
k
((−R,R)d)≤ λ
	

P
�

λN
ω, 1

�

(−R,R)d
�

≤ λ
�

≤ c4P
�

λN
ω, 1

�

(−R,R)d
�

≤ λ
�

,

(3.1)

which holds for any λ ∈ (0,1) and R > 0. The first inequality can be found in [3] again, (VI.16)

in p. 331, the second one follows from λN
k
≤ λN

k,ω
, and the third one is a consequence of the

classical Weyl asymptotics for the free Laplacian, see e.g. Proposition 2 in Section XIII.15 of [14].

For arbitrary ε > 0, let λ = (1+ ε)ψ(d log t)−1. Then, using (3.1) and (1.12), we find

P
�

λN
ω, 1

�

(−R,R)d
�

> λ
�

≤ 1− c−1
4

ND((1+ ε)ψ(d log t)−1)

≤ 1− c−1
4
(2t)−d/(1+ε)L(1+o(1))

≤ 1− t−d+δ(ε)

(3.2)

for some δ(ε)> 0 when t is sufficiently large.

Now we introduce some notations to proceed the proof. Let us fix a positive number

M >
1

α
+

2

β
+

1

L
(3.3)

and define

I =
�

−t/(log t)M , t/(log t)M
�d
∩ (log t)MZd , (3.4)

Ci = i +
�

0,ψ(d log t)1/2
�d

(i ∈ I ). (3.5)

Note that mini 6= j d(Ci , C j) > diam(Ci) and both of them go to infinity as t → ∞. Therefore, by

using (3.2) and Assumption 3 recursively, we obtain

P
�

λN
ω, 1
(Ci)> (1+ ε)ψ(d log t)−1 for all i ∈ I

�

≤
∏

i∈I

P
�

λN
ω, 1
(Ci)> (1+ ε)ψ(d log t)−1

�

+ exp
�

−(log t)2
	

≤ (1− t−d+δ(ε))t
d (log t)−2dM

+ exp
�

−(log t)2
	

≤ exp{−tδ(ε)(log t)−2dM}+ exp
�

−(log t)2
	

(3.6)

for sufficiently large t. Since the right hand side is summable in t ∈ N, Borel-Cantelli’s lemma tells

us that P-almost surely,

there exists i ∈ I such that λN
ω, 1
(Ci)≤ (1+ ε)ψ(d log t)−1 (3.7)

for all large t ∈ N. The next lemma translates (3.7) to an upper bound for the Dirichlet eigenvalue:

Lemma 3.1. There exists a constant c1 > 1 such that P-almost surely,

there exists i ∈ I such that λD
ω, 1
(Ci)≤ c1ψ(d log t)−1 (3.8)

for all large t.
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Proof. We choose Ci (i ∈ I ) for which λN
ω, 1
(Ci) ≤ (1+ ε)ψ(d log t)−1. This is possible for large

t ∈ N by (3.7) and then it also holds for all large t with slightly larger ε by regularly varying

property of ψ. Let φN
i

denote the L2-normalized nonnegative eigenfunction corresponding to

λN
ω, 1
(Ci) and ∂εCi (i ∈ I ) the set

{x ∈ Ci; d(x ,∂ Ci)< εψ(d log t)1/2}. (3.9)

We further take a nonnegative function ρ ∈ C1
c
(Ci) which satisfies

ρ = 1 on Ci \ ∂εCi and ‖∇ρ‖∞ < 2ε−1ψ(d log t)−1/2. (3.10)

Such a function can easily be constructed by a standard argument using mollifier. Substituting

ρφN
i

to the variational formula for the principal eigenvalue, we obtain

λD
ω, 1
(Ci)≤

1

‖ρφN
i
‖22

∫

Ci

|∇(ρφN
i
)|2(x) + Vω(x)(ρφ

N
i
)2(x) d x . (3.11)

To bound the right hand side, we first use the uniform bound on eigenfunctions ‖φN
i
‖∞ ≤ c5λ

N
ω, 1
(Ci)

d/4

(see e.g. (3.1.55) in p.107 of [20]) to see

‖ρφN
i
‖2

2
≥

∫

Ci\∂εCi

φN
i
(x)2 d x ≥ 1− c6ε. (3.12)

Next, it is clear from (3.10) and the above uniform bound that
∫

Ci

|∇(ρφN
i
)|2(x) + Vω(x)(ρφ

N
i
)2(x) d x

≤ 2

∫

Ci

|∇φN
i
|2(x) + Vω(x)φ

N
i
(x)2 d x + 2

∫

Ci

|∇ρ|2(x)φN
i
(x)2 d x

≤ (2+ 8c6ε
−1)ψ(d log t)−1.

(3.13)

Taking ε= (2c6)
−1 and plugging these bounds into (3.11), the result follows.

We also need the following almost sure upper bound.

Lemma 3.2. Under Assumption 2, we have P-almost surely,

sup
x∈(−t,t)d

Vω(x)≤ (3d log t)1/α (3.14)

for sufficiently large t.

Proof. By Chebyshev’s inequality,

P

�

sup
x∈(−2t,2t)d

Vω(x)> (3d log t)1/α
�

≤ (4t)dP

�

sup
x∈[0,1)d

Vω(x)> (3d log t)1/α
�

≤ 4d t−2d
E

�

sup
x∈[0,1)d

exp{Vω(x)
α}

�

.

(3.15)

Since the last expression is summable in t ∈ N, the claim follows by Borel-Cantelli’s lemma and

monotonicity of supx∈(−t,t)d Vω(x) in t.
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Now, we can finish the proof of the lower bound. We pick ω for which Lemma 3.1 and Lemma 3.2

holds. Then we can find a box Ci (i ∈ I ) satisfying

λD
ω, 1
(Ci)≤ c1ψ(d log t)−1 (3.16)

for sufficiently large t. Let φD
i

denote L2-normalized nonnegative eigenfunction associated with

λD
ω, 1
(Ci). It is easy to see that there exists a box q+ [0,1]d ⊂ Ci (q ∈ Zd) such that

‖φD
i
‖∞

∫

q+[0,1]d

φD
i
(x)d x ≥

∫

q+[0,1]d

φD
i
(x)2d x ≥

1

2
ψ(d log t)−d . (3.17)

We also know the following uniform upper bound:

‖φD
i
‖∞ ≤ c5λ

D
ω, 1
(Ci)

d/4 (3.18)

from (3.1.55) in [20]. Let us recall that the semigroup generated by Hω has the kernel pω(s, x , y)

under Assumption 1 (see Theorem B.7.1 in [17]). We can bound this kernel from below by using

the Dirichlet heat kernel p(−t,t)d (s, x , y) in (−t, t)d as follows:

pω(s, 0, y)≥ exp
n

−s sup
x∈(−t,t)d

Vω(x)
o

p(−t,t)d (s, 0, y)

≥ c7s−d/2 exp
�

−s(3d log t)1/α − c8|y|
2/s
	

if |y|< t/2,

(3.19)

where the second inequality follows by Lemma 3.2 and a Gaussian lower bound for the Dirichlet

heat kernel in [21]. Taking s = t/(log t)M and noting that |q|< 2s, we arrive at

inf
y∈q+[0,1]d

pω(s, 0, y)≥ exp{−c8s/2} (3.20)

for sufficiently large t.

Plugging (3.16)–(3.20) into an obvious inequality, we arrive at

uω(t, 0) =

∫

R
d

pω(t, 0, x)d x

≥

∫

R
d

∫

q+[0,1]d

pω(s, 0, y)pω(t − s, y, x)
φD

i
(x)

‖φD
i
‖∞

d yd x

≥
1

‖φD
i
‖∞

exp
�

−λD
ω, 1
(Ci)t − c8s/2
	

∫

q+[0,1]d

φD
i
(x)d x

≥ c9ψ(log t)−3d/2 exp{−c1 t/ψ(d log t)− c8s/2},

(3.21)

where in the third line, we have replaced pω by the kernel of the semigroup generated by Hω
with the Dirichlet boundary condition outside Ci . This completes the proof of the lower bound of

Theorem 1.2 since s = t/(log t)M was chosen to be o(t/ψ(log t)).

4 Examples

We apply our results to two models in this section. The first is the Brownian motion among

Poissonian obstacles, where we see that our result recovers the correct upper bound. The second

is the Brownian motion among perturbed lattice traps introduced in [7], for which the quenched

result is new.
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4.1 Poissonian obstacles

Let us consider the standard Brownian motion (κ = 1/2) killed by the random potential of the

form

Vω(x) =
∑

i

W (x −ωi), (4.1)

where (ω =
∑

i δωi
,Pν) is a Poisson point process with intensity ν > 0 and W is a nonnegative,

bounded, and compactly supported function. As is mentioned in Section 1, Sznitman proved

in [19] the quenched asymptotics for this model:

Pν -a.s. uω(t, 0) = exp
¦

−c(d,ν)t/(log t)2/d(1+ o(1))
©

as t →∞, (4.2)

where c(d,ν) = λd(νωd/d)
2/d with λd denoting the principal Dirichlet eigenvalue of −1/2∆ in

B(0,1) and ωd = |B(0,1)|.

We can recover the upper bound by using classical Donsker-Varadhan’s result [5] and Theorem 1.1.

Indeed, the above potential clearly satisfies Assumption 1 and the asymptotics of the integrated

density of states

log ND(λ)∼−νωdλ
d/2

d
λ−d/2 as λ→ 0 (4.3)

has been derived by Nakao [12] by applying an exponential Tauberian theorem to Donsker-

Varadhan’s asymptotics

E[uω(t, 0)] = exp
n

−c̃(d,ν)t
d

d+2 (1+ o(1))
o

as t →∞ (4.4)

with

c̃(d,ν) =
d + 2

2
(νωd)

2

d+2

�2λd

d

�
d

d+2
. (4.5)

Now an easy computation shows that the asymptotic inverse of the right hand side of (4.3) is

ψ(λ) = λ−1
d
(νωd)

−2/dλ2/d (4.6)

and then Theorem 1.1 proves the upper bound in (4.2).

Remark 2. In this case, the lower bound given by Theorem 1.2 is not sharp as is obvious from the

statement. (In the proof, we lose the precision in Lemma 3.1.) However, the lower bound can be

complemented by a rather direct and simple argument in the Poissonian soft obstacles case, see

e.g. [19]. So our argument replaces the harder part.

4.2 Perturbed lattice traps

In this subsection, we use our results to derive the quenched asymptotics for the model introduced

in [7]. We consider the standard Brownian motion (κ= 1/2) killed by the potential of the form

Vω(x) =
∑

q∈Zd

W (x − q−ωq), (4.7)

where ({ωq}q∈Zd ,Pθ ) (θ > 0) is a collection of independent and identically distributed random

vectors with density

Pθ (ωq ∈ d x) = N(d,θ )exp
�

−|x |θ
	

d x (4.8)
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and W is a nonnegative, bounded, and compactly supported function. The author has derived the

annealed asymptotics for this model in [7] and also proved the following Lifshitz tail effect as a

corollary:

log ND(λ)≍λ→0







−λ−1− θ
2

�

log 1

λ

�− θ
2 (d = 2),

−λ−
d

2
− θ

d (d ≥ 3),

where f (x)≍x→∗ g(x) means 0< lim infx→∗ f (x)/g(x)≤ lim supx→∗ f (x)/g(x)<∞.

We can prove the quenched asymptotics from this result.

Theorem 4.1. For any θ > 0 and x ∈ Rd , we have

loguξ(t, x)≍t→∞







−t (log t)−
2

2+θ (log log t)−
θ

2+θ (d = 2),

−t (log t)
− 2d

d2+2θ (d ≥ 3),

(4.9)

with Pθ -probability one.

Proof. The Assumption 1 is clearly satisfied since Vω is locally bounded almost surely. Hence the

upper bound readily follows by computing the asymptotic inverse of (4.9) and using Theorem 1.1.

To use Theorem 1.2, we have to verify Assumptions 2 and 3. The former is rather easy and can be

found in Lemma 11 in [8]. The latter is verified as follows: we first fix r0 > 0 sufficiently large so

that supp W ⊂ B(0, r0/4). For r > r0 and boxes {Ak}1≤k≤n as in Assumption 3, let us define events

E1

def
=
�

for all q ∈ Zd with d(q,A1)≤ r/2,d(q+ωq,A1)≤ 3r/4
	

, (4.10)

E2

def
=
�

for all q ∈ Zd with d(q,A1)≥ r/2,d(q+ωq,A1)≥ r/4
	

. (4.11)

Then, λN
ω, 1
(A1) and {λN

ω, 1
(Ak)}2≤k≤n are mutually independent on E1 ∩ E2 thanks to our choice

of r0. Therefore, the left hand side of (1.11) is bounded by Pθ (E
c
1
) + Pθ (E

c
2
). Let us denote the

s-neighborhood of A1 by Ns(A1). The first term is estimated as

Pθ (E
c
1
)≤ Pθ
�

|ωq| ≥ r/4 for some q ∈ Zd ∩ Nr/2(A1)
�

≤ N(d,θ )#
�

q ∈ Zd ∩ Nr/2(A1)
	

∫

|x |≥r/4

exp
�

−|x |θ
	

d x

≤ N(d,θ )rd exp
�

−(r/8)θ
	

(4.12)

for large r, where we have used diam(A1) < r in the last line. Next, we bound the second term

Pθ (E
c
2
). Using the distribution of ωq, we have

Pθ (E
c
2
) = Pθ
�

q+ωq ∈ Nr/4(A1) for some q ∈ Zd \ Nr/2(A1)
�

≤ N(d,θ )
∑

q∈Zd\Nr/2(A1)

∫

Nr/4(A1)

exp
�

−|x − q|θ
	

d x

≤ N(d,θ )rd
∑

q∈Zd\Nr/2(A1)

exp
�

−d(q, Nr/4(A1))
θ
	

.

(4.13)
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We can assume by shift invariance that A1 is centered at the origin. We divide the sum into two

parts {|q| ≤ r} and {|q|> r}. The former part of the sum is bounded by

#
�

q ∈ Zd ∩ B(0, r)
	

sup
q∈Zd\Nr/2(A1)

exp
�

−d(q, Nr/4(A1))
θ
	

≤ c10rd exp
�

−(r/4)θ
	

.

(4.14)

For the latter part, we use the fact that Nr/4(A1)⊂ B(0,3r/4), which follows from the assumption

diam(A1)< r. By using this fact, we find

d(q, Nr/4(A1))≥ |q| − 3r/4> |q|/4 for |q|> r (4.15)

and therefore

∑

q∈Zd\Nr/2(A1), |q|>r

exp
�

−d(q, Nr/4(A1))
θ
	

≤
∑

q∈Zd , |q|>r

exp
�

−|q/4|θ
	

. (4.16)

It is not difficult to see that this right hand side is bounded by exp{−(r/8)θ } for sufficiently large

r. Combining all the estimates, we arrive at

Pθ (E
c
1
) + Pθ (E

c
2
)≤ N(d,θ )rd
�

2+ c10rd
�

exp
�

−(r/8)θ
	

(4.17)

for large r, which verifies Assumption 3.
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