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Abstract

The mixer chain on a graph G is the following Markov chain: Place tiles on the vertices of G, each
tile labeled by its corresponding vertex. A “mixer” moves randomly on the graph, at each step
either moving to a randomly chosen neighbor, or swapping the tile at its current position with
some randomly chosen adjacent tile.
We study the mixer chain on Z, and show that at time t the expected distance to the origin is t3/4,
up to constants. This is a new example of a random walk on a group with rate of escape strictly
between t1/2 and t.

1 Introduction

Let G = (V, E) be a graph. On each vertex v ∈ V , place a tile marked v. Consider the following
Markov chain, which we call the mixer chain. A “mixer” performs a random walk on the graph.
At each time step, the mixer chooses a random vertex adjacent to its current position. Then, with
probability 1/2 it moves to that vertex, and with probability 1/2 it remains at the current location,
but swaps the tiles on the current vertex and the adjacent vertex. If G is the Cayley graph of a
group, then the mixer chain turns out to be a random walk on a different group.
Aside from being a canonical process, the mixer chain is interesting because of its rate of escape.
The rate of escape is the asymptotic growth of E[d(X t , X0)] as a function of t, where d(·, ·) is the
graphical distance. For a random walk

�

X t

	

on some graph G, we use the terminology degree of

escape for the limit

lim
t→∞

logE[d(X t , X0)]

log t
.

When restricting to random walks on groups, it is still open what values in [0,1] can be obtained
by degrees of escape. For example, if the group is Zd then the degree of escape is 1/2. On a d-ary
tree (free group) the degree of escape is 1. As far as the author is aware, the only other examples
known were given by Erschler in [1] (see also [4]). Erschler iterates a construction known as the
lamp-lighter (slightly similar to the mixer chain), and produces examples of groups with degrees
of escape 1− 2−k, k = 1,2, . . . ,.
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After formally defining the mixer chain on general groups, we study the mixer chain on Z. Our
main result, Theorem 2.1, shows that the mixer chain on Z has degree of escape 3/4.
It is not difficult to show (perhaps using ideas from this note) that on transient groups the mixer
chain has degree of escape 1. Since all recurrent groups are essentially Z and Z2, it seems that
the mixer chain on other groups cannot give examples of other degrees of escape. As for Z2, one
can show that the mixer chain has degree of escape 1. In fact, the ideas in this note suggest that
the distance to the origin in the mixer chain on Z2 is n log−1/2(n) up to constants, (we conjecture
that this is the case). For the reader interested in logarithmic corrections to the rate of escape, in
[2] Erschler gave examples of rates of escape that are almost linear with a variety of logarithmic
corrections. Logarithmic corrections are interesting because linear rate of escape is equivalent to
the the existence of non-constant bounded harmonic functions, to non-trivial Poisson boundary,
and to the positivity of the associated entropy, see [3].
After introducing some notation, we provide a formal definition of the mixer chain as random
walk on a Cayley graph. The generalization to general graphs is immediate.

Acknowledgements. I wish to thank Itai Benjamini for suggesting this construction, and for
useful discussions. I also wish to thank an anonymous referee for pointing out useful references.

1.1 Notation

Let G be a group and U a generating set for G, such that if x ∈ U then x−1 ∈ U (U is called
symmetric). The Cayley graph of G with respect to U is the graph with vertex set G and edge
set
¦
�

g,h
	

: g−1h ∈ U
©

. Let D be a distribution on U . Then we can define the random walk

on G (with respect to U and D) as the Markov chain with state space G and transition matrix
P(g,h) = 1
¦

g−1h ∈ U
©

D(g−1h). We follow the convention that such a process starts from the
identity element in G.
A permutation of G is a bijection from G to G. The support of a permutation σ, denoted supp(σ),
is the set of all elements g ∈ G such that σ(g) 6= g. Let Σ be the group of all permutations of
G with finite support (multiplication is composition of functions). By < g,h > we denote the
transposition of g and h; that is, the permutation σ with support

�

g,h
	

such that σ(g) = h,
σ(h) = g. By < g1, g2, . . . , gn > we denote the cyclic permutation σ with support

�

g1, . . . , gn

	

,
such that σ(g j) = g j+1 for j < n and σ(gn) = g1.
For an element g ∈ G we associate a canonical permutation, denoted byφg , defined byφg(h) = gh

for all h ∈ G. It is straightforward to verify that the map g 7→ φg is a homomorphism of groups,
and so we use g to denote φg . Although g 6∈ Σ, we have that gσg−1 ∈ Σ for all σ ∈ Σ.
We now define a new group, that is in fact the semi-direct product of G and Σ, with respect to the
homomorphism g 7→ φg mentioned above. The group is denoted by G ⋉Σ, and its elements are
G ×Σ. Group multiplication is defined by:

(g,σ)(h,τ)
def
= (gh, gτg−1σ).

We leave it to the reader to verify that this is a well-defined group operation. Note that the
identity element in this group is (e, id), where id is the identity permutation in Σ and e is the
identity element in G. Also, the inverse of (g,σ) is (g−1, g−1σ−1 g).
We use d(g,h) = dG,U(g,h) to denote the distance between g and h in the group G with respect

to the generating set U; i.e., the minimal k such that g−1h =
∏k

j=1 u j for some u1, . . . ,uk ∈ U .
The generating set also provides us with a graph structure. g and h are said to be adjacent if
d(g,h) = 1, that is if g−1h ∈ U . A path γ in G (with respect to the generating set U) is a sequence
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(γ0,γ1, . . . ,γn). |γ| denotes the length of the path, which is defined as the length of the sequence
minus 1 (in this case |γ|= n).

1.2 Mixer Chain

In order to define the mixer chain we require the following

Proposition 1.1. Let U be a finite symmetric generating set for G. Then,

Υ= {(u, id), (e,< e,u>) : u ∈ U}

generates G ⋉Σ. Furthermore, for any cyclic permutation σ =< g1, . . . , gn >∈ Σ,

dG⋉Σ,Υ((g1,σ), (g1, id))≤ 5
n
∑

j=1

d(g j ,σ(g j)).

Proof. Let D((g,σ), (h,τ)) denote the minimal k such that (g,σ)−1(h,τ) =
∏k

j=1υ j , for some
υ1, . . . ,υk ∈ Υ, with the convention that D((g,σ), (h,τ)) =∞ if there is no such finite sequence
of elements of Υ. Thus, we want to prove that D((g,σ), (e, id)) < ∞ for all g ∈ G and σ ∈ Σ.
Note that by definition for any f ∈ G and π ∈ Σ, D((g,σ), (h,τ)) = D(( f ,π)(g,σ), ( f ,π)(h,τ)).
A generator simple path in G is a finite sequence of generators u1, . . . ,uk ∈ U such that for any
1≤ ℓ≤ k,
∏k

j=ℓ u j 6= e. By induction on k, one can show that for any k ≥ 1, and for any generator
simple path u1, . . . ,uk,

(e,< e,
k
∏

j=1

u j >) =





k−1
∏

j=1

(e,< e,u j >)(u j , id)



 · (e,< e,uk >) ·




k−1
∏

j=1

(e,< e,u−1
k− j
>)(u−1

k− j
, id)



 .

(1.1)

If d(g,h) = k then there exists a generator simple path u1, . . . ,uk such that h = g
∏k

j=1 u j . Thus,
we get that for any h ∈ G,

D((e,< e,h>), (e, id))≤ 4d(h, e)− 3.

Because g < e, g−1h> g−1 =< g,h>, we get that if τ=< g,h> σ then

D((g,τ), (g,σ)) = D((g,σ)(e,< e, g−1h>), (g,σ)(e, id))≤ 4d(g−1h, e)− 3= 4d(g,h)− 3.

The triangle inequality now implies that D((h,τ), (g,σ))≤ 5d(g,h)− 3.
Thus, if σ =< g1, g2, . . . , gn >, since σ =< g1, g2 >< g2, g3 > · · ·< gn−1, gn >, we get that

D((g1,σ), (g1, id))≤ 5
n−1
∑

j=1

d(g j , g j+1) + d(gn, g1). (1.2)

The proposition now follows from the fact that any σ ∈ Σ can be written as a finite product of
cyclic permutations. ⊓⊔

We are now ready to define the mixer chain:
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Definition 1.2. Let G be a group with finite symmetric generating set U . The mixer chain on G

(with respect to U) is the random walk on the group G ⋉Σ with respect to uniform measure on
the generating set Υ= {(u, id), (e,< e,u>) : u ∈ U}.
An equivalent way of viewing this chain is viewing the state (g,σ) ∈ G ⋉Σ as follows: The first
coordinate corresponds to the position of the mixer on G. The second coordinate corresponds to
the placing of the different tiles, so the tile marked x is placed on the vertex σ(x). By Definition
1.2, the mixer chooses uniformly an adjacent vertex of G, say h. Then, with probability 1/2 the
mixer swaps the tiles on h and g, and with probability 1/2 it moves to h. The identity element in
G ⋉Σ is (e, id), so the mixer starts at e with all tiles on their corresponding vertices (the identity
permutation).

1.3 Distance Bounds

In this section we show that the distance of an element in G ⋉Σ to (e, id) is essentially governed
by the sum of the distances of each individual tile to its origin.
Let (g,σ) ∈ G ⋉Σ. Let γ = (γ0,γ1, . . . ,γn) be a finite path in G. We say that the path γ covers σ

if supp(σ) ⊂
�

γ0,γ1, . . . ,γn

	

. The covering number of g and σ, denoted Cov(g,σ), is the minimal
length of a path γ, starting at g, that covers σ; i.e.

Cov(g,σ) =min
�

|γ| : γ0 = g and γ is a path covering σ
	

.

To simplify notation, we denote D = dG⋉Σ,Υ.

Proposition 1.3. Let (g,σ) ∈ G ⋉Σ. Then,

D((g,σ), (g, id))≤ 2Cov(g,σ) + 5
∑

h∈supp(σ)

d(h,σ(h)).

Proof. The proof of the proposition is by induction on the size of supp(σ). If |supp(σ)| = 0, then
σ = id so the proposition holds. Assume that |supp(σ)|> 0.
Let n = Cov(g,σ), and let γ be a path in G such that |γ| = n, γ0 = g and γ covers σ. Write
σ = c1c2 · · · ck, where the c j ’s are cyclic permutations with pairwise disjoint non-empty supports,
and

supp(σ) =
k
⋃

j=1

supp(c j).

Let
j =min
�

m≥ 0 : γm ∈ supp(σ)
	

.

So, there is a unique 1≤ ℓ≤ k such that γ j ∈ supp(cℓ). Let τ= c−1
ℓ
σ. Thus,

supp(τ) =
⋃

j 6=ℓ
supp(c j),

and specifically, |supp(τ)| < |supp(σ)|. Note that h ∈ supp(γ−1
j

cℓγ j) if and only if γ jh ∈ supp(cℓ),

and specifically, e ∈ supp(γ−1
j

cℓγ j). γ
−1
j

cℓγ j is a cyclic permutation, so by Proposition 1.1, we
know that

D((γ j ,σ), (γ j ,τ)) = D((γ j ,τ)(e,γ−1
j

cℓγ j), (γ j ,τ)) = D((e,γ−1
j

cℓγ j), (e, id))

≤ 5
∑

h∈supp(cℓ)

d(γ−1
j

h,γ−1
j

cℓ(h)) = 5
∑

h∈supp(cℓ)

d(h,σ(h)). (1.3)
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By induction,

D((γ j ,τ), (γ j , id))≤ 2Cov(γ j ,τ) + 5
∑

h∈supp(τ)

d(h,τ(h)). (1.4)

Let β be the path (γ j ,γ j+1, . . . ,γn). Since γ j is the first element in γ that is in supp(σ), we get that

supp(τ) ⊂ supp(σ) ⊆
¦

γ j ,γ j+1, . . . ,γn

©

, which implies that β is a path of length n− j that covers
τ, so Cov(γ j ,τ)≤ n− j. Combining (1.3) and (1.4) we get,

D((g,σ), (g, id))≤ D((γ0,σ), (γ j ,σ)) + D((γ j ,σ), (γ j ,τ)) + D((γ j ,τ), (γ j , id)) + D((γ j , id), (γ0, id))

≤ j + 5
∑

h∈supp(cℓ)

d(h,σ(h)) + 5
∑

h∈supp(τ)

d(h,σ(h)) + 2(n− j) + j

= 2Cov(g,σ) + 5
∑

h∈supp(σ)

d(h,σ(h)).

⊓⊔

Proposition 1.4. Let (g,σ) ∈ G ⋉Σ and let g ′ ∈ G. Then,

D((g,σ), (g ′, id))≥
1

2

∑

h∈supp(σ)

d(h,σ(h)).

Proof. The proof is by induction on D = D((g,σ), (g ′, id)). If D = 0 then σ = id, and we are done.
Assume that D > 0. Let υ ∈ Υ be a generator such that D((g,σ)υ, (g ′, id)) = D− 1. There exists
u ∈ U such that either υ= (u, id) or υ= (e,< e,u>). If υ= (u, id) then by induction

D ≥ D((g,σ)υ, (g ′, id))≥
1

2

∑

h∈supp(σ)

d(h,σ(h)).

So assume that υ= (e,< e,u>). If σ(h) 6∈
�

g, gu
	

, then < g, gu> σ(h) = σ(h), and

supp(σ) \
¦

σ−1(g),σ−1(gu)
©

= supp(< g, gu> σ) \
¦

σ−1(g),σ−1(gu)
©

.

Since d(g, gu) = 1,
∑

h∈supp(σ)

d(h,σ(h)) = d(g,σ−1(g)) + d(gu,σ−1(gu)) +
∑

h6∈{σ−1(g),σ−1(gu)}
d(h,σ(h))

≤ d(g, gu) + d(gu,σ−1(g)) + d(gu, g) + d(g,σ−1(gu))

+
∑

h6∈{σ−1(g),σ−1(gu)}
d(h,< g, gu> σ(h))

≤ 2+
∑

h∈supp(<g,gu>σ)

d(h,< g, gu> σ(h)).

So by induction,

D = 1+ D((g,< g, gu> σ), (g ′, id))≥ 1+
1

2

∑

h∈supp(<g,gu>σ)

d(h,< g, gu> σ(h))

≥
1

2

∑

h∈supp(σ)

d(h,σ(h)).

⊓⊔
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2 The Mixer Chain on Z

We now consider the mixer chain on Z, with {1,−1} as the symmetric generating set. We denote
by
�

ωt = (St ,σt)
	

t≥0 the mixer chain on Z.
For ω ∈ Z⋉Σ we denote by D(ω) the distance of ω from (0, id) (with respect to the generating
set Υ, see Definition 1.2). Denote by Dt = D(ωt) the distance of the chain at time t from the
origin.
As stated above, we show that the mixer chain on Z has degree of escape 3/4. In fact, we prove
slightly stronger bounds on the distance to the origin at time t.

Theorem 2.1. Let Dt be the distance to the origin of the mixer chain on Z. Then, there exist constants

c, C > 0 such that for all t ≥ 0, c t3/4 ≤ E[Dt]≤ C t3/4.

The proof of Theorem 2.1 is in Section 3.
For z ∈ Z, denote by X t(z) = |σt(z)− z|, the distance of the tile marked z to its origin at time t.
Define

X t =
∑

z∈Z
X t(z),

which is a finite sum for any given t. As shown in Propositions 1.3 and 1.4, X t approximates Dt

up to certain factors.
For z ∈ Z define

Vt(z) =

t
∑

j=0

1
�

St = σt(z)
	

.

Vt(z) is the number of times that the mixer visits the tile marked z, up to time t.

2.1 Distribution of X t(z)

The following proposition states that the “mirror image” of the mixer chain has the same distribu-
tion as the original chain. We omit a formal proof, as the proposition follows from the symmetry
of the walk.

Proposition 2.2. For σ ∈ Σ define σ′ ∈ Σ by σ′(z) = −σ(−z) for all z ∈ Z. Then, for any t ≥ 1,

((S1,σ1), . . . , (St ,σt)) and ((−S1,σ′1), . . . , (−St ,σ
′
t
)) have the same distribution.

By a lazy random walk on Z, we refer to the integer valued process Wt , such that Wt+1 −Wt are
i.i.d. random variables with the distribution P[Wt+1 −Wt = 1] = P[Wt+1 −Wt = 1] = 1/4 and
P[Wt+1 −Wt = 0] = 1/2.

Lemma 2.3. Let t ≥ 0 and z ∈ Z. Let k ≥ 1 be such that P[Vt(z) = k] > 0. Then, conditioned on

Vt(z) = k, the distribution of σt(z)− z is the same as Wk−1 + B, where
�

Wk

	

is a lazy random walk

on Z and B is a random variable independent of
�

Wk

	

such that |B| ≤ 2.

Essentially the proof is as follows. We consider the successive time at which the mixer visits the
tile marked z. The movement of the tile at these times is a lazy random walk with the number of
steps equal to the number of visits. The difference between the position of the tile at time t and its
position at the last visit is at most 1, and the difference between the tile at time 0 and its position
at the first visit is at most 1. B is the random variable that measures these two differences.

Proof. Define inductively the following random times: T0(z) = 0, and for j ≥ 1,

T j(z) = inf
¦

t ≥ T j−1(z) + 1 : St = σt(z)
©

.
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Claim 2.4. Let T = T1(0). For all ℓ such that P[T = ℓ]> 0,

P

�

σT (0) = 1
�

� T = ℓ
�

= P
�

σT (0) = −1
�

� T = ℓ
�

= 1/4,

and

P

�

σT (0) = 0
�

� T = ℓ
�

= 1/2,

Proof. Note that |S1−σ1(0)|= 1 and that for all 1≤ t < T , σt(0) = σ1(0). Thus, σT−1(0) = σ1(0)
and ST−1 = S1. So we have the equality of events

{T = ℓ}=
ℓ−1
⋂

t=1

�

St 6= σt(0)
	

⋂

�

Sℓ−1 = S1,σℓ−1(0) = σ1(0)
	

⋂

�

Sℓ = σ1(0) or σℓ(0) = S1

	

.

Hence, if we denote E =
⋂ℓ−1

t=1

�

St 6= σt(0)
	⋂�

Sℓ−1 = S1,σℓ−1(0) = σ1(0)
	

, then

P[T = ℓ] = P[E] · P
�

Sℓ = σ1(0) or σℓ(0) = S1

�

� E
�

= P[E] ·
1

2
. (2.1)

Since the events
�

S1 = 0
	

and
�

σ1(0) = 0
	

are disjoint and their union is the whole space, we get
that

P[σT (0) = 0, T = ℓ] = P[E ,Sℓ = σ1(0) = 0] + P[E ,σℓ(0) = S1 = 0]

= P
�

E ,σ1(0) = 0
�

· P
�

Sℓ = σ1(0)
�

� Sℓ−1 = S1,σℓ−1(0) = σ1(0) = 0
�

+ P
�

E ,S1(0) = 0
�

· P
�

σℓ(0) = S1

�

� Sℓ−1 = S1 = 0,σℓ−1(0) = σ1(0)
�

= P[E] ·
1

4
. (2.2)

Combining (2.1) and (2.2) we get that

P

�

σT (0) = 0
�

� T = ℓ
�

=
1

2
.

Finally, by Proposition 2.2,

P
�

σT (0) = 1, T = ℓ
�

= P
�

E , Sℓ = σℓ(0) = 1
�

= P
�

σT (0) =−1, T = ℓ
�

.

Since the possible values for σT (0) are −1,0,1, the claim follows. ⊓⊔

We continue with the proof of Lemma 2.3.
We have the equality of events

�

Vt(z) = k
	

=
�

Tk(z)≤ t < Tk+1(z)
	

.
Let t1, t2, . . . , tk, tk+1 be such that

P[T1(z) = t1, . . . , Tk+1(z) = tk+1]> 0,

and condition on the event E =
�

T1(z) = t1, . . . , Tk+1(z) = tk+1

	

. Assume further that tk ≤ t <

tk+1, so that Vt(z) = k. Write

σt(z)− z = σt(z)−σTk(z)
(z) +

k
∑

j=2

σT j(z)
(z)−σT j−1(z)

(z) +σT1(z)
(z)− z. (2.3)
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For 1 ≤ j ≤ k − 1 denote Yj = σT j+1(z)
(z) − σT j(z)

(z). By Claim 2.4 and the Markov property,

conditioned on E ,
¦

Yj

©

are independent with the distribution P[Yj = 1|E] = P[Yj = −1|E] = 1/4

and P[Yj = 0|E] = 1/2. So conditioned on E ,
∑k−1

j=1 Yj has the same distribution of Wk−1.
Finally, |σt(z)−σTk(z)

(z)| ≤ 1, and |σT1(z)
(z)− z| ≤ 1. Since conditioned on E , σt(z)−σTk(z)

(z),

and σT1(z)
(z)− z are independent of

¦

Yj

©

, this completes the proof of the lemma. ⊓⊔

Corollary 2.5. There exist constants c, C > 0 such that for all t ≥ 0 and all z ∈ Z,

cE[
p

Vt(z)]− 2P[Vt(z)≥ 1]≤ E[X t(z)]≤ C E[
p

Vt(z)] + 2P[Vt(z)≥ 1].

Proof. Let
�

Wt

	

be a lazy random walk on Z. Note that
�

2Wt

	

has the same distribution as
¦

S′2t

©

where
¦

S′
t

©

is a simple random walk on Z. It is well known (see e.g. [5]), that there exist universal
constants c1, C1 > 0 such that for all t ≥ 0,

c1

p
t ≤ E[|S′2t

|] = 2E[|Wt |]≤ C1

p
t.

By Lemma 2.3, we know that for any k ≥ 0,

E[|Wk|]− 2≤ E
�

X t(z)
�

� Vt(z) = k+ 1
�

≤ E[|Wk|] + 2.

Thus, summing over all k, there exists constants c2, C2 > 0 such that

c2E[
p

Vt(z)]− 2P[Vt(z)≥ 1]≤ E[X t(z)]≤ C2E[
p

Vt(z)] + 2P[Vt(z)≥ 1].

⊓⊔

Lemma 2.6. Let
¦

S′
t

©

be a simple random walk on Z started at S′0 = 0, and let

Lt(z) =

t
∑

j=0

1
n

S′
j
= z
o

.

Then, for any z ∈ Z, and any k ∈ N,

P[L2t(2z)≥ k]≤ P[Vt(z)≥ k].

Specifically, E[
p

L2t(2z)]≤ E[
p

Vt(z)].

Proof. Fix z ∈ Z. For t ≥ 0 define Mt = St −σt(z) + z. Note that

Vt(z) =

t
∑

j=0

1
¦

M j = z
©

,

so Vt(z) is the number of times
�

Mt

	

visits z up to time t.
�

Mt

	

is a Markov chain on Z with the following step distribution.

P

�

Mt+1 = Mt + ǫ
�

� Mt

�

=























1/2 Mt = z, ǫ ∈ {−1,1} ,
1/2 |Mt − z|= 1, ǫ = −Mt + z,
1/4 |Mt − z|= 1, ǫ = 0,
1/4 |Mt − z|= 1, ǫ = Mt − z,
1/4 |Mt − z|> 1, ǫ ∈ {−1,1} ,
1/2 |Mt − z|> 1, ǫ = 0.
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Specifically,
�

Mt

	

is simple symmetric when at z, lazy symmetric when not adjacent to z, and has
a drift towards z when adjacent to z.
Define
�

Nt

	

to be the following Markov chain on Z: N0 = 0, and for all t ≥ 0,

P

�

Nt+1 = Nt + ǫ
�

� Nt

�

=







1/2 Nt = z, ǫ ∈ {−1,1} ,
1/2 Nt 6= z, ǫ = 0,
1/4 Nt 6= z, ǫ ∈ {−1,1} .

So
�

Nt

	

is simple symmetric at z, and lazy symmetric when not at z. Let

V ′
t
(z) =

t
∑

j=0

1
¦

N j = z
©

,

be the number of times
�

Nt

	

visits z up to time t.
Define inductively ρ0 = ρ

′
0 = 0 and for j ≥ 0,

ρ j+1 =min
n

t ≥ 1 : Mρ j+t = z
o

,

ρ′
j+1 =min
n

t ≥ 1 : Nρ′
j
+t = z
o

.

If Nt ≥ Mt > z then

P

�

Mt+1 = Mt + 1
�

� Mt

�

= P
�

Nt+1 = Nt + 1
�

� Nt

�

,

and
P

�

Mt+1 = Mt − 1
�

� Mt

�

≥ P
�

Nt+1 = Nt − 1
�

� Nt

�

.

Thus, we can couple Mt+1 and Nt+1 so that Mt+1 ≤ Nt+1. Similarly, if Nt ≤ Mt < z then Mt+1

moves towards z with higher probability than Nt+1, and they both move away from z with proba-
bility 1/4. So we can couple Mt+1 and Nt+1 so that Mt+1 ≥ Nt+1. If Nt = Mt = z then Mt+1 and
Nt+1 have the same distribution, so they can be coupled so that Nt+1 = Mt+1.
Thus, we can couple

�

Mt

	

and
�

Nt

	

so that for all j ≥ 0, ρ j ≤ ρ′j a.s.

Let
¦

S′
t

©

be a simple random walk on Z. For x ∈ Z, let

τx =min
¦

2t ≥ 2 : S′2t
= 2z , S′0 = 2x
©

.

That is, τx is the first time a simple random walk started at 2x hits 2z (this is necessarily an even
number). In [5, Chapter 9] it is shown that τx has the same distribution as τ2z − 2|z − x |. Note
that if Nt 6= z then S′2t+2 − S′2t

has the same distribution as 2(Nt+1 − Nt). Since |Nρ′
j−1+1 − z| = 1,

we get that for all j ≥ 2, ρ′
j

has the same distribution as 1
2
(τ2z − 2) + 1. Also, ρ′1 has the same

distribution as 1
2
τ0 if z 6= 0, and the same distribution as 1

2
(τ2z − 2) + 1 if z = 0. Hence, we

conclude that for any k ≥ 1,
∑k

j=1ρ
′
j

has the same distribution as 1
2

∑k

j=1 ρ̃ j , where
¦

ρ̃ j

©

j≥1
are

defined by

ρ̃ j+1 =min
n

2t ≥ 2 : S′ρ̃ j+2t
= 2z
o

.

Finally note that Vt(z) ≥ k if and only if
∑k

j=1ρ j ≤ t, V ′
t
(z) ≥ k if and only if

∑k

j=1ρ
′
j
≤ t, and

Lt(2z) ≥ k if and only if
∑k

j=1 ρ̃ j ≤ t. Thus, under the above coupling, for all t ≥ 0, Vt(z) ≥ V ′
t
(z)

a.s. Also, V ′
t
(z) has the same distribution as L2t(2z). The lemma follows. ⊓⊔
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2.2 The Expectation of X t

Recall that X t =
∑

z X t(z).

Lemma 2.7. There exists constants c, C > 0 such that for all t ≥ 0,

c t3/4 ≤ E[X t]≤ C t3/4.

Proof. We first prove the upper bound. For z ∈ Z let A(z) be the indicator of the event that the
mixer reaches z up to time t; i.e. At(z) = 1

�

Vt(z)≥ 1
	

. Note that (σt(z)−z)(1−At(z)) = 0. Also,
by definition
∑

z Vt(z) = t. By Corollary 2.5, using the Cauchy-Schwartz inequality,

E[X t] =
∑

z

E[X t(z)]≤ C1

∑

z

E[
p

Vt(z)] + 2E
∑

z

At(z)

≤ C1E

r

∑

z

Vt(z) ·
∑

z

At(z) + 2E
∑

z

At(z),

for some constant C1 > 0. For any z ∈ Z, if At(z) = 1, then there exists 0 ≤ j ≤ t such that
|S j − z| = 1. That is, At(z) = 1 implies that z ∈ [mt − 1, Mt + 1], where Mt = max0≤ j≤t S j and
mt = min0≤ j≤t S j . Thus,

∑

z A(z) ≤ Mt −mt + 2. Since Mt −mt is just the number of sites visited
by a lazy random walk, we get (see e.g. [5]) E[

∑

z At(z)] ≤ C2
p

t, for some constant C2 > 0.
Hence, there exists some constant C3 > 0 such that

E[X t]≤ C1

p

t · C2

p
t + 2C2

p
t ≤ C3 t3/4.

This proves the upper bound.
We turn to the lower bound. Let

¦

S′
t

©

be a simple random walk on Z started at S′0 = 0, and let

Lt(z) =

t
∑

j=0

1
n

S′
j
= z
o

.

Let
T (z) =min
¦

t ≥ 0 : S′
t
= z
©

.

By the Markov property,

P
�

L2t(z)≥ k
�

≥ P [T (z)≤ t]P
�

Lt(0)≥ k
�

,

so
E[
p

L2t(2z)]≥ P [T (2z)≤ t]E[
p

Lt(0)].

Theorem 9.3 of [5] can be used to show that E[
p

Lt(0)] ≥ c1 t1/4, for some constant c1 > 0. By
Corollary 2.5, and Lemma 2.6, there exists a constant c2 > 0 such that

E[X t]≥ c2

∑

z

E[
p

L2t(2z)]− 2
∑

z

At(z)

≥ c1 t1/4 · c2E

∑

z

1{T (2z)≤ t} − 2C2

p
t.

Let M ′
t
=max0≤ j≤t S′

j
and m′

t
=min0≤ j≤t S′

j
. Then,

∑

z

1{T (2z)≤ t}= [m′
t
, M ′

t
]
⋂

2Z.
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So for some constants c3, c4 > 0,

E[X t]≥ c3 t1/4 ·
1

2
E[M ′

t
−m′

t
− 1]− 2C2

p
t ≥ c4 t3/4.

⊓⊔

3 Proof of Theorem 2.1

Proof. Recall that Cov(z,σ) is the minimal length of a path on Z, started at z, that covers supp(σ).
Let Mt =max0≤ j≤t S j and mt =min0≤ j≤t S j , and let It = [mt−1, Mt+1]. Note that supp(σt)⊂ It .
So for any z ∈ It , Cov(z,σt)≤ 2|It |.

�

St

	

has the distribution of a lazy random walk on Z, so
�

2St

	

has the same distribution as
¦

S′2t

©

, where
¦

S′
t

©

is a simple random walk on Z. It is well known
(see e.g. [5, Chapter 2]) that there exist constants c1, C1 > 0 such that c1

p
t ≤ E[|It |] ≤ C1

p
t.

Since St ∈ It , we get that E[Cov(St ,σt)] ≤ 2C1
p

t. Together with Propositions 1.3 and 1.4, and
with Lemma 2.7, we get that there exist constants c, C > 0 such that for all t ≥ 0,

c t3/4 ≤
1

2
E[X t]≤ E[Dt]≤ 2E[Cov(St ,σt)] + 5E[X t]≤ C t3/4.

⊓⊔
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