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Abstract

Under iterated barycentric subdivision of a triangle, most triangles become flat in the sense that

the largest angle tends to π. By analyzing a random walk on SL2(R) we give asymptotics with

explicit constants for the number of flat triangles and the degree of flatness at a given stage of

subdivision. In particular, we prove analytical bounds for the upper Lyapunov constant of the

walk.

1 Introduction

The iterated barycentric subdivision of a triangle ∆ is defined as follows. In the first stage the

three medians are drawn resulting in six smaller triangles ∆1 through ∆6. At stage 2 the process

is repeated in each∆i , 1≤ i ≤ 6, producing in 36 triangles∆i j , 1≤ i, j ≤ 6. In general, on the nth

stage the medians are drawn in each triangle produced in the n− 1st stage, so that 6n triangles

∆i1...in ,1≤ i1, ..., in ≤ 6, result. We ask: as n grows do the triangles in stage n become “flat”, in the

sense that they have largest angle approaching π?

It is not hard to show that not all triangles that result from barycentric subdivision become flat: if

∆ = ABC has m(A) ≤ m(B) ≤ m(C), with centroid O and X the midpoint of BC , then it is a nice

exercise in Euclidean geometry to check that the least angle in COX is at least min(m(A), 30◦);
in particular, min(m(A), 30◦) is a lower bound on the maximum least angle appearing among

triangles in the nth stage of subdivision, for any n. Nonetheless, Stakhovskii has proposed that

as n → ∞ nearly one hundred percent of all triangles at stage n have largest angle near π and

in 1996 Bárány, Beardon and Carne [1] gave an elegant proof of this conjecture. They identify

iterated barycentric subdivision with a random walk Xn on SL2(R), the triangles at the nth stage of

subdivision being similar to the images of∆ under Xn. Their key observation is that the generators

of the random walk generate a dense subgroup of SL2(R), and so a theorem of Furstenberg [6]

implies that there exists γ > 0 such that for any v ∈ R2, limn→∞
1

n
log‖Xnv‖ = γ with probability

1. (This γ is called the upper Lyapunov constant of the random walk.) It then follows easily that

almost all triangles become flat.
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Figure 1: The first three stages of barycentric subdivision for equilateral ∆

While the argument [1] (rediscovered independently in [4] with some generalizations) gives a

very satisfactory characterization of barycentric subdivision as n → ∞, it has the disadvantage

that the Ergodic Theoretic approach does not readily yield information for “finite” n. Recently

Diaconis and Miclo [5] have given another formulation using iterated random function Markov

chains that allows them to deduce more information about the limiting shape of triangles after

many subdivisions, but this approach also does not translate easily to giving bounds for the number

of triangles at a given stage having largest angle of a certain size. The strongest approach in this

finite direction is due to David Blackwell [2], who has proved (at least computationally) that

barycentric subdivision decreases a certain “pseudo-fatness” metric on average.

In the following I give a hybrid of the methods of [2] and [1] together with a relatively simple

geometric construction, which yields an explicit lower bound tending to 1 for the proportion of

triangles in stage n having largest angle in a certain range. This range converges to π exponentially

quickly with respect to n; in particular, I obtain analytic upper and lower bounds for the constant

γ, which, while not matching, can be made to give γ to arbitary precision by working with later

stages of subdivision.
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2 Formalism

Embed ∆ ⊂ R2 with the standard basis, and let ∆0 be the equilateral triangle with vertices

v1 = (1,0), v2 = (−1/2,
p

3/2), v3 = (−1/2,−
p

3/2).
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Figure 2: The affine linear

transform T .

Let T : R2→ R2 be the affine linear map defined by

T v1 =
1

2
(v1 + v2), T v2 = v2, T v3 =

1

3
(v1 + v2 + v3)

that carries ∆0 onto the uppermost right triangle formed by draw-

ing the medians of ∆0. For w ∈ R2, Tw = 1p
6
Aw + T0 where

A =





p
6

3

p
2

2

0
p

6

2



 is the linear component of T , normalized to

have determinant 1. If ρ : D6 → SL2(R) is the representation of

the dihedral group

D6 = 〈r, s : r3 = s2 = 1, rs = sr−1〉

given by

ρ(s) =

�

−1 0

0 1

�

, ρ(r) =





−1

2

−
p

3

2p
3

2

1

2





reflection in the x-axis and rotation by 2π

3
respectively, then writing T x for ρ(x) ◦ T ◦ρ(x)−1, x ∈

D6, a collection of affine linear maps carrying ∆0 onto ∆1
0
, . . . ,∆6

0
is

T D6 = {T x : x ∈ D6},

and AD6 is the corresponding collection of normalized linear components of these maps.

For affine linear map Sw = λBw + v, det B = 1 carrying ∆0 onto ∆, linearity of barycentric

subdivision implies that the six triangles ∆i are the images under S of the six triangles ∆i
0
. In

particular, if we let µ be the uniform distribution on AD6 and define the usual n-fold convolution

µ(n) = µ
n times∗ · · · ∗ µ=

1

6n

∑

M1,...,Mn∈AD6

δM1...Mn
,

then, up to dilation and translation, the distribution of triangles appearing in ∆0 after n stages of

barycentric subdivision is given by Y∆0, where Y is chosen from SL2(R) according to µ(n), and

the distribution of triangles in ∆ is given by BY∆0.

The following observations allow us to reformulate statements about barycentric subdivision in

terms of operators in SL2(R).

Observation 1. Let ∆ be a triangle of area A . If the shortest two sides of ∆ have length ℓ ≤ m,

lm> 4Ap
3

and the largest angle of ∆ has measure θ , then 2A
ℓm
≤ π− θ ≤ 2πA

ℓm
.

Observation 2. With A the linear component of T defined above and ‖ · ‖ the operator norm ‖B‖ =
supv∈R2:‖v‖=1 ‖Bv‖ we have α := ‖A‖=

q

4+
p

7

3
.

For a proof of these calculations see the notes at the end. Observation 1 shows that the difference

betweenπ and the largest angle in∆
i1...in
0 is less than a constant factor times min{‖Y s1‖,‖Y s2‖,‖Y s3‖}−2

where Y is the corresponding operator chosen from µ(n) and s1 = (0,1), s2 = (
p

3

2
, −1

2
), s3 =

(−
p

3

2
, −1

2
) are unit vectors in the direction of the sides of ∆0. Meanwhile, observation 1 and
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‖B‖−1‖x‖ ≤ ‖Bx‖ ≤ ‖B‖‖x‖ for B ∈ SL2(R) and x ∈ R2 implies that if ∆
i1...in
0 is sufficiently flat,

the distances from π of the largest angles in ∆
i1...in
0 and (B∆0)

i1...in are within a factor of π2‖B‖2,

so that henceforth we consider only barcentric subdivision of ∆0 and restrict our attention to

describing the distribution of ‖Y v‖ for v a unit vector and Y chosen from µ(n).

Theorem 1. With µ defined as above, v an arbitrary unit vector in R2 and for any λ > 0

µ(n)
�

{M ∈ SL2(R) :

0.05857n− 0.8874λ
p

n< log‖M v‖ < 0.09461n+ 0.8874λ
p

n
�

≥ 1− 2e−λ
2/2.

Here the numerical constants 0.05857 and 0.09461 come from solving a certain algebraic equation

pertaining to the dilatation of a circle under the operator A, above, while 0.8874 bounds the step

size in a random walk.

Specializing our result to λ =
p

2 log n we have

e0.05857n−1.255
p

n log n ≤ min
i=1,2,3
‖Ynsi‖ ≤ max

i=1,2,3
‖Ynsi‖ ≤ e0.09461n+1.255

p
n log n

with probability at least 1 − 6

n
. Applying this with observation 1, (and recalling that A

s2 =
p

3

4
in an equilateral triangle) we obtain that in the nth stage of barycentric subdivision of ∆0, the

proportion of triangles having largest angle θ with

π
p

3

2
e−0.11714n+2.51(n log n)1/2 > π− θ >

p
3

2
e−0.18921n−2.51(n log n)1/2

is at least 1− 6

n
.

3 Proof of Theorem

Define random walk Y0, Y1, Y2, ... on SL2(R) by Y0 = I , Yi = X iYi−1 for i ≥ 1 where X1, X2, ... are

chosen i.i.d. from µ. Thus, µ(n) is the measure of Yn. For v an arbitary unit vector in R2, the walk

Yn induces a natural random walk Ynv on R2. The random difference Zn = log‖Ynv‖− log‖Yn−1v‖
depends only on the direction vn−1 =

Yn−1 v

‖Yn−1 v‖ and is bounded: − log‖A‖ ≤ Zn ≤ log‖A‖. We show

that independent of the direction vn−1, C ≥ E[Zn]≥ c > 0 and deduce the listed bounds for ‖Ynv‖
by the method of bounded differences.

Let w ∈ R2 \ {0} be arbitrary. Given X chosen from AD6 according to µ, we have

E[log‖X w‖− log‖w‖] = E[log‖X w‖] =
1

6
log
∏

x∈D6

‖Ax w‖ ,

with w = w

‖w‖ . Now A may be expressed as U1DU2 where U1 and U2 are unitary matrices and D is

a diagonal matrix such that ‖D‖ = ‖A‖, i.e. we may take D =

�

α 0

0 α−1

�

where α = ‖A‖. Since

ρ(x) is unitary for each x we have

E[log‖X w‖] =
1

6
log
∏

i∈{0,1,2}, j∈{0,1}
‖DU2r is jw‖.
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Note that the triples of vectors [U2w, U2rw, U2r2w] and [U2sw, U2rsw, U2r2sw] each form the

sides of an equilateral triangle. Thus by the symmetry w↔ sw we have the bounds 1

6
logβ2

− ≤
E[log‖X w‖]≤ 1

6
logβ2

+
where

β− = min
‖w‖=1
‖Dw‖‖Drw‖‖Dr2w‖, β+ = max

‖w‖=1
‖Dw‖‖Drw‖‖Dr2w‖.

We now calculate1 β− and β+.

Lemma 2. We have β− =
�

3

4
α+ 1

4
α−3
�

, β+ =
�

3

4
α−1 + 1

4
α3
�

. In particular, β2
− =

172−7
p

7

108
,

β2
+
= 172+7

p
7

108
so that δ− =

1

6
logβ2

− > 0.05857 and δ+ =
1

6
logβ2

+
< 0.09461.

Proof. Choose coordinates so that D expands the x direction and contracts the y direction. With-

out loss of generality, w is in the upper half plane, i.e.

w = (cosθ , sinθ ), rw =

�

cos(θ +
2π

3
), sin(θ +

2π

3
)

�

, r2w =

�

cos(θ +
4π

3
), sin(θ +

4π

3
)

�

with θ ∈ [0,π]. Put x = cosθ ∈ [−1,1], y = sinθ ≥ 0. Then

‖Dw‖2‖Drw‖2‖Dr2w‖2 = f (x) =
�

α2 x2 +α−2 y2
�

·


α2

�

−x

2
−
p

3y

2

�2

+α−2

�p
3x

2
−

y

2

�2






α2

�

−x

2
+

p
3y

2

�2

+α−2

�

−
p

3x

2
−

y

2

�2


 .

This is a degree six polynomial in x . Indeed, y2 = 1−x2 so the first term has degree 2. Distributing

the two bracketed terms gives

α4

�

1

4
x2 −

3

4
y2

�2

+α−4

�

1

4
y2 −

3

4
x2

�2

+

�p
3

4
x2 +

p
3

4
y2 + x y

�2

+

�p
3

4
x2 +

p
3

4
y2 − x y

�2

.

The two terms in parentheses are degree 4, while the two in brackets sum to 3

8
+ 2x2 y2, which is

also degree 4.

Since f (x) is degree 6 in x , f ′(x) has at most 5 zeros on [−1,1]. Now calculate the maxima and

minima another way. Write

f (x) = g(θ ) =

2
∏

j=0

�

(α2 −α−2) cos2(θ +
2π j

3
) +α−2

�

(1)

and take the logarithmic derivative:

g ′(θ )

g(θ )
=−2

2
∑

j=0

sin(2(θ +
2π j

3
))

γ+ cos(2(θ +
2π j

3
))

, γ= 2(α4 − 1)−1 + 1.

This expression is π
3

-periodic and vanishes at 0 and π

2
since in each case one of the sine terms

is zero while the other two cancel. Hence
g ′

g
has a zero at kπ

6
for all k. But then g ′(θ ) =

1The qualitative statement β− > 0 follows from compactness of the unit circle, together with the fact that among

triangles of a given area, the equilateral minimizes the product of the lengths of the sides.
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f ′(cosθ ) sinθ , so we obtain all five zeros of f ′(x) from θ = kπ

6
, 1 ≤ k ≤ 5. Since any local

maxima or minima of g(θ ), 0 < θ < π translates to a local maxima/minima of f (x) on (−1,1),

we have found all extreme points of g(θ ) on this interval, hence for all θ by periodicity. It follows

that β2
− =minθ g(θ ) =min{g(0), g(π

6
)} and β+ =max{g(0), g(π

6
)}. Substituting this into (1),

g(0) = α2

�

1

4
α2 +

3

4
α−2

�2

, g

�π

6

�

= α−2

�

3

4
α2 +

1

4
α−2

�2

so that by observation 2

g(0) =
172+ 7

p
7

108
, g

�π

6

�

=
172− 7

p
7

108

and thus β2
− = g(π

6
) > 1.4211, β2

+
= g(0) < 1.7641 and δ− > 0.05857, δ+ < 0.09461 as desired.

It remains to describe the bounded differences argument proving almost certain exponential

growth. Recall that Zn = log‖Ynv‖ − log‖Yn−1v‖ is the log-length increment of each step of

our walk, and put Wn = Zn − E[Zn|vn−1]. The sum

n
∑

i=1

Wn = log‖Ynv‖−
n
∑

i=1

E[Zn|vn−1]

is a Martingale with increments bounded by

|Wn| ≤ sup
vn−1

|Zn|+ sup
vn−1

|E[Zn|vn−1]| ≤ log‖A‖+δ+,

and hence by Azuma’s inequality

P





�

�

�

�

�

log‖Ynv‖−
n
∑

i=1

E[Zn|vn−1]

�

�

�

�

�

> λ(log‖A‖+δ+)
p

n



 ≤ 2e−λ
2/2.

Now
∑n

i=1
E[Zn|vn−1] is itself a random quantity, but in view of Lemma 2,

nδ− ≤
n
∑

i=1

E[Zn|vn−1]≤ nδ+.

We recover

P
h

nδ− −λ(log‖A‖+δ+)
p

n≤ log‖Ynv‖ ≤ nδ+ +λ(log‖A‖+δ+)
p

n
i

≥ 1− e−λ
2/2,

and in view of the bounds on δ−, δ+, and log‖A‖+δ+ < 0.8874 this proves the theorem.

4 Remarks and related problems

Our constants δ− ≈ 0.05857 and δ+ ≈ 0.09461 give lower and upper bounds for the upper

Lyapunov constant γ := limn→∞
1

n
E[log‖Ynv‖] (v 6= 0 arbitrary). We could improve our constants
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by averaging over the linear operators resulting from later stages of subdivision, but, as it stands,

a result of type ‖Ynv‖ = exp(γn− o(n)) with probability 1− o(1) is beyond the limitations of our

method. Based upon computer calculations, γ≈ 0.071. For a nice exposition of growth of random

walks in matrix groups and Lyapunov constants see [3].

Barycentric subdivision also produces flat simplices in higher dimension (this is done in [4]). In

dimension k the corresponding random walk is on SLk(R) and the analogue of the dihedral group

D6 is the symmetric group Sk+1. Furstenberg’s theorem applies as before, giving limn
1

n
log‖Ynv‖ =

γ > 0. One might again expect to obtain upper and lower bounds for γ by allowing a (k + 1)-

cycle σ to play the role of the rotation r in Lemma 2, although the explicit calculations become

increasingly difficult.

Returning to R2, there remain interesting questions. Put θn for the maximum of the least angles

among triangles at stage n; in our introduction we sketched an argument that θn ≥ min(θ0, 30◦).
Pictures suggest that more is true, e.g. in stage 3 of subdivision of an equilateral triangle we

already have sub-triangles that are almost equilateral. One conjectures that θn → 60◦ as n→∞
and exponentially quickly, although the best argument that I know applies only to subsequences

of stages and is polynomial in n.

Figure 3: Frequency of angle in 106 trials of the RP1 random walk after 200 steps, starting from

the uniform distribution.

Finally, our theorem shows that after many subdivisions most of the resulting triangles are rela-

tively flat, so that they take on the direction of their longest side. One could ask for the distribution

of these sides, as n → ∞, which is closely related to stationary distribution of the random walk

on RP1 defined by choosing v0 ∈ RP1 according to some distribution and putting vn = Xnvn−1,

where the Xn are chosen independently uniformly from AD6 . Such a limiting distribution exists

independent of the initial distribution by the application of Furstenberg’s work [6] in [1] and [4].

Proving anything else about this distribution, e.g. an explicit description, existence of a density, a

rate of convergence, however, seems to be a nice and challenging open problem. A Monte Carlo
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approximation of the distribution is shown above.

5 End notes

Proof of Observation 1. The largest angle θ of ∆ lies opposite the longest side, that is, between

the sides of length ℓ and m. Hence A = 1

2
ℓm sinθ . Provided ℓm > 4Ap

3
we get sinθ <

p
3

2
and

so θ ≥ π

3
, by virtue of being the largest angle of a triangle, forces θ ≥ 2π

3
. The observation then

follows from the identity sinθ < π− θ < π sinθ , valid for π
2
< θ < π.

Proof of Observation 2. For v = (cosθ , sinθ ),

‖Av‖2 =
2

3
cos2 θ + 2 sin2 θ +

2
p

3

3
cosθ sinθ =

4

3
−

2

3
cos 2θ +

p
3

3
sin 2θ .

This takes on its extreme values when tan 2θ = −
p

3

2
, i.e. for cos 2θ = ±

Æ

4

7
, sin2θ = ∓
Æ

3

7
so we

have the desired result.
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