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Abstract

Several Itô formulas have been already established for Lévy processes. We explain according to

which criteria they are not optimal and establish an extended Itô formula that satisfies that criteria.

The interest, in particular, of this formula, is to obtain the explicit decomposition of F(X t , t), for

X Lévy process and F deterministic function with locally bounded first order Radon-Nikodym

derivatives, as the sum of a Dirichlet process and a bounded variation process.

1 Introduction and main results

Let X be a general real-valued Lévy process with characteristic triplet (a,σ,ν), i.e. its characteristic

exponent is equal to

ψ(u) = iua−σ2
u2

2
+

∫

R

(eiuy − 1− iuy1{|y|≤1})ν(d y)

where a and σ are real numbers and ν is a Lévy measure. We will denote by (σBt , t ≥ 0) the

Brownian component of X . Let F be a C2,1 function from R×R+ to R. The classical Itô formula

gives

F(X t , t) = F(X0, 0) +

∫ t

0

∂ F

∂ t
(Xs−, s)ds

+

∫ t

0

∂ F

∂ x
(Xs−, s)dXs +

σ2

2

∫ t

0

∂ 2F

∂ x2
(Xs, s)ds (1.1)

+
∑

0<s≤t

{F(Xs, s)− F(Xs−, s)−
∂ F

∂ x
(Xs−, s)∆Xs}
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This formula can be rewritten under the following form (see [8]): (F(X t , t), t ≥ 0) is a semi-

martingale admitting the decomposition

F(X t , t) = F(X0, 0) +Mt + Vt (1.2)

where the local martingale M and the adapted with bounded variation process V are given by

Mt = σ

∫ t

0

∂ F

∂ x
(Xs−, s)dBs +

∫ t

0

∫

{|y|<1}

{F(Xs− + y, s)− F(Xs−, s)}µ̃X (d y, ds) (1.3)

Vt =
∑

0<s≤t

{F(Xs, s)− F(Xs−, s)}1{|∆Xs |≥1} +

∫ t

0

A F(Xs, s)ds (1.4)

where µ̃X (d y, ds) denotes the compensated Poisson measure associated to the jumps of X , andA

is the operator associated to X defined by

A G(x , t) =
∂ G

∂ t
(x , t) + a

∂ G

∂ x
(x , s) +

1

2
σ2
∂ 2G

∂ x2
(x , t)

+

∫

R

{G(x + y, t)− G(x , t)− y
∂ G

∂ x
(x , t)}1(|y|<1)ν(d y)

for any function G defined on R×R+, such that ∂ G

∂ x
, ∂ G

∂ t
and ∂ 2G

∂ x2 exist as Radon-Nikodym deriva-

tives with respect to the Lebesgue measure and the integral is well defined. The later condition is

satisfied when ∂ 2G

∂ x2 is locally bounded.

Note that the existence of locally bounded first order Radon-Nikodym derivatives alone guarantees

the existence of

F(X t , t)− F(X0, 0)−

∫ t

0

∂ F

∂ t
(Xs−, s)ds−

∫ t

0

∂ F

∂ x
(Xs−, s)dXs (1.5)

but then to say that this expression coincides with

σ2

2

∫ t

0

∂ 2F

∂ x2
(Xs, s)ds+
∑

0<s≤t

{F(Xs, s)− F(Xs−, s)−
∂ F

∂ x
(Xs−, s)∆Xs}

we need to assume much more on F .

In that sense one might say that the classical Itô formula is not optimal. The interest of an optimal

formula is two-fold. It allows to expand F(X t , t) under minimal conditions on F but also to know

explicitly the structure of the process F(X t , t). Such an optimal formula has been established in

the particular case when X is a Brownian motion [4]. Indeed in that case, under the minimal

assumption on F for the existence of (1.5), namely that F admits locally bounded first order

Radon-Nikodym derivatives, we know that this expression coincides with

−
1

2

∫ t

0

∫

R

∂ F

∂ x
(x , s)d L x

s

where (L x
s
, x ∈ R, s ≥ 0) is the local time process of X . Moreover the process

(
∫ t

0

∫

R

∂ F

∂ x
(x , s)d L x

s
, t ≥ 0) has a 0-quadratic energy.
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In the general case, various extensions of (1.1) have been established. We will quote here only the

extensions exploiting the notion of local times, we send to [4] for a more exhaustive bibliography.

Meyer [9] has been the first to relax the assumption on F by introducing an integral with respect to

local time, followed then by Bouleau and Yor [3], Azéma et al [1], Eisenbaum [4], [5], Ghomrasni

and Peskir [7], Eisenbaum and Kyprianou [6]. In the discontinuous case, none of the obtained

Itô formulas is optimal because of the presence of the expression
∑

0<s≤t{F(Xs, s) − F(Xs−, s) −
∂ F

∂ x
(Xs−, s)∆Xs}.

The Itô formula for Lévy processes presented below in Theorem 1.1, is available for X admitting

a Brownian component. It lightens the condition on the jumps of X required by [5], and it also

lightens the condition on the first order derivatives of F required by [6]. Besides it is optimal. To

introduce it we need the operator I defined on the set of locally bounded measurable functions G

on R×R+ by

IG(x , t) =

∫ x

0

G(y, t)d y.

We will denote the Markov local time process of X by (L x
t
, x ∈ R, t ≥ 0).

Theorem 1.1. : Assume that σ 6= 0. Let F be a function from R×R+ to R such that ∂ F

∂ x
and ∂ F

∂ t
exist

as Radon-Nikodym derivatives with respect to the Lebesgue measure and are locally bounded. Then

the process (F(X t , t), t ≥ 0) admits the following decomposition

F(X t , t) = F(X0, 0) +Mt + Vt +Q t

with M the local martingale given by (1.3), V is the bounded variation process

Vt =
∑

0≤s≤t

{F(Xs, s)− F(Xs−, s)}1{|∆Xs |≥1}

and Q the following adapted process with 0-quadratic variation

Q t =−

∫ t

0

∫

R

A I F(x , s)d L x
s
.

As a simple application of Theorem 1.1 consider the example of the function F(x , s) = |x | in the

case
∫ 1

0
yν(d y) = +∞. This function does not satisfy the assumption of Theorem 3 of [6] nor X

does satisfy the assumption of Theorem 2.2 in [5]. But, thanks to Theorem 1.1, we immediately

obtain Tanaka’s formula.

The proofs are presented in Section 2.

2 Proofs

We first remind the meaning of integration with respect to the semimartingale local time process

of X denoted (ℓx
s
, x ∈ R, s ≥ 0). Theorem 1.1 is expressed in terms of the Markov local time

process (L x
s
, x ∈ R, s ≥ 0). The two processes are connected by:

(L x
s
, x ∈ R, s ≥ 0) = ( 1

σ2 ℓ
x
s
, x ∈ R, s ≥ 0).

Let σB be the Brownian component of X . Defined the norm ||.|| of a measurable function f from

R×R+ to R by

|| f ||= 2IE(

∫ 1

0

f 2(Xs, s)ds)1/2 + IE(

∫ 1

0

| f (Xs, s)|
|Bs|

s
ds).
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In [6], integration with respect to ℓ of locally bounded mesurable function f has been defined by

∫ t

0

∫

R

f (x , s)dℓx
s
= σ

∫ t

0

f (Xs−, s)dBs +σ

∫ 1

1−t

f (X̂s−, 1− s)dB̂s, 0≤ t ≤ 1 (2.1)

where B̂ and X̂ are the time reversal at 1 of B and X .

We have the following properties:

(i) IE(|
∫ t

0

∫

R
f (x , s)dℓx

s
|)≤ |σ||| f ||.

(ii) If f admits a locally bounded Radon-Nikodym derivative with respect to x , then:
∫ t

0

∫

R
f (x , s)dℓx

s
=

−σ2
∫ t

0

∂ f

∂ x
(Xs, s)ds.

(iii) The process (
∫ t

0

∫

R
f (x , s)dℓx

s
, 0≤ t ≤ 1) has 0-quadratic variation.

Proof of Theorem 1.1 : We start by assuming that F and ∂ F

∂ x
are bounded. We set

Fn(x , t) =

∫ ∫

R2

F(x − y/n, t − s/n) f (y)h(s)d yds

where f and h are nonnegative C∞ functions with compact supports such that :
∫

R
f (x)d x =

∫

R
h(x)d x = 1. Thanks to the usual Itô formula we have:

Fn(X t , t) = Fn(0,0) +σ

∫ t

0

∂ Fn

∂ x
(Xs−, s)dBs +

∫ t

0

∂ Fn

∂ t
(Xs, s)ds

+a

∫ t

0

∂ Fn

∂ x
(Xs, s)ds+
∑

0≤s≤t

{Fn(Xs, s)− Fn(Xs−, s)}1{|∆Xs |≥1}

+

∫ t

0

∫

R

{Fn(Xs− + y, s)− Fn(Xs−, s)}1{|y|<1}µ̃(ds, d y) (2.2)

+
σ2

2

∫ t

0

∂ 2Fn

∂ x2
(Xs, s)ds

+

∫ t

0

∫ 1

−1

{Fn(Xs + y, s)− Fn(Xs, s)−
∂ Fn

∂ x
(Xs, s)y}ν(d y)ds

With the same arguments as in the proof of Theorem 2.2 of [5], we see that as n tends to ∞,

Fn(X t , t) and each of the first five terms of the RHS of (2.2) converges at least in probability to the

corresponding expression with F replacing Fn. Besides we note that

∫ t

0

∂ F

∂ t
(Xs, s)ds = −

1

σ2

∫ t

0

∫

R

(

∫ x

0

∂ F

∂ t
(y, s)d y)dℓx

s

= −

∫ t

0

∫

R

(
∂

∂ t

∫ x

0

F(y, s)d y)d L x
s

since ∂ F

∂ t
is locally bounded. Hence we have:

∫ t

0

∂ F

∂ t
(Xs, s)ds =−

∫ t

0

∫

R

∂ (I F)

∂ t
(x , s)d L x

s
. (2.3)
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Since : F(x , s) =
∂ (I F)

∂ x
(x , s), we immediately obtain:

a

∫ t

0

∂ F

∂ x
(Xs, s)ds =−

∫ t

0

∫

R

a
∂ (I F)

∂ x
(x , s)d L x

s
. (2.4)

The convergence in L2 of the sixth term of the RHS is obtained with the same proof as in [6]. The

limit is equal to
∫ t

0

∫

R

{F(Xs− + y, s)− F(Xs−, s)}1{|y|<1}µ̃(ds, d y) (2.5)

For the seventh term of the RHS of (2.2), we note that :
σ2

2

∫ t

0

∂ 2 Fn

∂ x2 (Xs, s)ds =− 1

2

∫ t

0

∫

R

∂ Fn

∂ x
(x , s)dℓx

s
. Thanks to the properties (i) and (ii) of the integration

with respect to the local times, this expression converges in L1 to − 1

2

∫ t

0

∫

R

∂ F

∂ x
(x , s)dℓx

s
. We can

obviously write:

−
1

2

∫ t

0

∫

R

∂ F

∂ x
(x , s)dℓx

s
=−

σ2

2

∫ t

0

∫

R

∂ 2(I F)

∂ x2
(x , s)d L x

s
. (2.6)

We now study the convergence of the last term of the RHS of (2.2). We have:

∫ t

0

∫ 1

−1

{Fn(Xs + y, s)− Fn(Xs, s)−
∂ Fn

∂ x
(Xs, s)y}ν(d y)ds

= −

∫ t

0

∫

R

Hn(x , s)d L x
s

(2.7)

where: Hn(x , s) =
∫ x

0

∫ 1

−1
{Fn(z + y, s)− Fn(z, s)−

∂ Fn

∂ x
(z, s)y}ν(d y)dz. We have:

|Fn(z + y, s) − Fn(z, s)−
∂ Fn

∂ x
(z, s)y|1{|y|<1}

= |

∫ z+y

z

∂ Fn

∂ x
(v, t)−

∂ Fn

∂ x
(z, t)dv|1{|y|<1}

≤ y2sup|
∂ 2Fn

∂ x2
|1{|y|<1}.

Noting that:
∂ 2 Fn

∂ x2 (x , t) = n2
∫ ∫

R2 F(x − y/n, t − s/n) f ′′(y)h(s)d yds, we obtain |Fn(z + y, s) −

Fn(z, s)−
∂ Fn

∂ x
(z, s)y|1{|y|<1} ≤ cste n2 y21{|y|<1}sup|F |

Consequently :

Hn(x , s) =

∫ 1

−1

∫ x

0

{Fn(z + y, s)− Fn(z, s)−
∂ Fn

∂ x
(z, s)y}dzν(d y)

=

∫ 1

−1

{

∫ x+y

0

Fn(z, s)dz−

∫ x

0

Fn(z, s)dz− yFn(x , s) + yFn(0, s)−

∫ y

0

Fn(z, s)dz}ν(d y)

= Gn(x , s) +

∫ 1

−1

(yFn(0, s)−

∫ y

0

Fn(z, s)dz)ν(d y)
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where Gn(x , s) =
∫ 1

−1
(I Fn(x+ y, s)− I Fn(x , s)− yFn(x , s))ν(d y). Thanks to Corollary 8 of [6], we

know that
∫ t

0

∫

R

Hn(x , s)d L x
s
=

∫ t

0

∫

R

Gn(x , s)d L x
s
. (2.8)

By dominated convergence, we have as n tends to∞ for every (x , s)

I Fn(x + y, s)− I Fn(x , s)− yFn(x , s)→ I F(x + y, s)− I F(x , s)− yF(x , s).

Besides, for every n : |I Fn(x + y, s)− I Fn(x , s)− yFn(x , s)| ≤ y21{|y|<1}sup| ∂ F

∂ x
|, hence for every

(x , s) : Gn(x , s) tends to G(x , s), where

G(x , s) =

∫

R

(I F(x + y, s)− I F(x , s)− yF(x , s))1{|y|<1}ν(d y).

By dominated convergence, (Gn)n>0 converges for the norm ||.|| to G. Consequently the limit of

the last term of the RHS of (2.2) is equal by (2.7) and (2.8) to

−

∫ t

0

∫

R

∫

R

(I F(x + y, s)− I F(x , s)− yF(x , s))1{|y|<1}ν(d y)d L x
s
. (2.9)

Summing all the limits (2.3), (2.4), (2.5), (2.6) and (2.9), we finally obtain

F(X t , t) = F(X0, 0) +σ

∫ t

0

∂ F

∂ x
(Xs−, s)dBs (2.10)

+

∫ t

0

∫

R

{F(Xs− + y, s)− F(Xs−, s)}1{|y|<1|}µ̃(ds, d y)

+
∑

0<s≤t

{F(Xs, s)− F(Xs−, s)}1{|∆Xs |≥1}

−

∫ t

0

∫

R

{
∂ (I F)

∂ t
(x , s) + a

∂ (I F)

∂ x
(x , s) +

σ2

2

∂ 2(I F)

∂ x2
(x , s)}d L x

s

−

∫ t

0

∫

R

{

∫

{I F(x + y, s)− I F(x , s)− yF(x , s)}1{|y|<1}ν(d y)}d L x
s
.

which summarizes in

F(X t , t) = F(X0, 0) +σ

∫ t

0

∂ F

∂ x
(Xs−, s)dBs

+

∫ t

0

∫

R

{F(Xs− + y, s)− F(Xs−, s)}1{|y|<1|}µ̃(ds, d y)

+
∑

0<s≤t

{F(Xs, s)− F(Xs−, s)}1{|∆Xs |≥1} −

∫ t

0

∫

R

A I F(x , s)d L x
s
.

In the general case, we set:

F̃n(x , s) = F(x , s)1[an,bn]
(x) + F(an, s)1(−∞,an)

(x) + F(bn, s)1(bn,∞)(x)
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where (−an)n∈N and (bn)n∈N are two positive real sequences increasing to∞.

We write (2.10) for F̃n and stop the process (F̃n(Xs, s), 0 ≤ s ≤ 1) at Tm = 1 ∧ inf{s ≥ 0 : |Xs| >

m}. We let n tend to ∞ and then m tend to ∞. The behavior of two terms deserves specific

explanations, the other terms converging respectively to the expected expressions.

The first one is :
∫ t∧Tm

0

∫

R
{
∫

{I F̃n(x+ y, s)− I F̃n(x , s)− y F̃n(x , s)}1{|y|<1}ν(d y)}d L x
s
. Thanks to the

definition of the integral with respect to local time (2.1), it is equal to

1

σ

∫ t∧Tm

0

H̃n(Xs−, s)dBs +
1

σ

∫ 1

1−(t∧Tm)

H̃n(X̂s−, s)dB̂s (2.11)

where H̃n(x , s) =
∫

{I F̃n(x + y, s)− I F̃n(x , s)− y F̃n(x , s)}1{|y|<1}ν(d y).

We set H(x , s) =
∫

{I F(x + y, s)− I F(x , s)− yF(x , s)}1{|y|<1}ν(d y).

We can choose n big enough to have |an| and bn bigger than m+ 1. Hence (2.11) is equal to

1

σ

∫ t∧Tm

0

H(Xs−, s)dBs +
1

σ

∫ 1

1−(t∧Tm)

H(X̂s−, s)dB̂s.

For every ε > 0

IP( sup
0≤t≤1

|

∫ 1

1−(t∧Tm)

H(X̂s−, s)dB̂s −

∫ 1

1−t

H(X̂s−, s)dB̂s| ≥ ε)

≤ IP(Tm < 1)

= IP( sup
0≤t≤1

|X t |> m)

which shows that as m tends to ∞,
∫ 1

1−(t∧Tm)
H(X̂s−, s)dB̂s converges in probability uniformly on

[0,1] to
∫ 1

1−t
H(X̂s−, s)dB̂s. Similarly

∫ t∧Tm

0
H(Xs−, s)dBs converges in probability to

∫ t

0
H(Xs−, s)dBs.

Consequently as m tends to∞, (2.11) converges to

∫ t

0

∫

R

{

∫

{I F(x + y, s)− I F(x , s)− yF(x , s)}1{|y|<1}ν(d y)}d L x
s
.

The second term is :
∫ t

0

∫

R
{F̃n(Xs− + y, s)− F̃n(Xs−, s)}1{s<Tm}

1{|y|<1|}µ̃(ds, d y). For n big enough

such that |an|, bn > m, this term is equal to
∫ t

0

∫

R
{F(Xs− + y, s) − F(Xs−, s)}1{s<Tm}

1{|y|<1|}µ̃(ds, d y). As Ikeda and Watanabe [8], we then

denote by (
∫ t

0

∫

R
{F(Xs− + y, s) − F(Xs−, s)}1{|y|<1|}µ̃(ds, d y), 0 ≤ t ≤ 1) the local martingale

(Yt , 0≤ t ≤ 1) defined by :

Yt∧Tm
=

∫ t

0

∫

R

{F̃(Xs− + y, s)− F̃(Xs−, s)}1{s<Tm}
1{|y|<1|}µ̃(ds, d y).�
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