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Abstract

In this paper, we prove an almost sure limit theorem for the maxima of strongly dependent Gaus-

sian sequences under some mild conditions. The result is an expansion of the weakly dependent

result of E. Csáki and K. Gonchigdanzan.

1 Introduction and main result

In past decades, the almost sure central limit theorem (ASCLT) has been studied for independent

and dependent random variables more and more profoundly. Cheng et al.[CPQ98], Fahrner and

Stadtmüller[FS98] and Berkes and Csáki[BC01] considered the ASCLT for the maximum of i.i.d.

random variables. An influential work is Csáki and Gonchigdanzan[CG02], which proved an

almost sure limit theorem for the maximum of stationary weakly dependent sequence.

Theorem A. Let X1, X2, · · · be a standardized stationary Gaussian sequence with rn = Cov(X1, Xn+1)

satisfying rn log n(log log n)1+ǫ = O(1) as n → ∞. Let Mk = maxi≤k X i . If an = (2 log n)1/2,

bn = (2 log n)1/2 − 1

2
(2 log n)−1/2(log log n+ log(4π)), then

lim
n→∞

1

log n

n∑

k=1

1

k
I(ak(Mk − bk)≤ x) = exp(−e−x) a.s., (1)

where I is indicator function.

Shouquan Chen and Zhengyan Lin[CL06] extended the results in [CG02] to the non-stationary

case.

Leadbetter et al [LLR83] showed the following theorem.

Theorem B. Let X1, X2, · · · be a standardized stationary Gaussian sequence with rn = Cov(X1, Xn+1)

and Mn = max1≤i≤n X i . Let an = (2 log n)1/2 and bn = (2 log n)1/2 − 1

2
(2 log n)−1/2(log log n +
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log(4π)). If rn log n→ r > 0, then

lim
n→∞

P
�

an(Mn − bn)≤ x
�
=

∫ ∞

−∞
exp
�
− e−x−r+

p
2rz
�
φ(z)dz, (2)

where and in the sequel φ is standard normal density.

In the paper, we consider the ASCLT version of (2). The theorem below is useful in our proof.

Theorem C. [Leadbetter et al., 1983, Theorem 4.2.1, Normal Comparison Lemma] Suppose

X1, X2, · · · , Xn are standard normal variables with covariance matrix Λ1 = (Λ1
i j
), and Y1, Y2, · · · , Yn

similarly with covariance Λ0 = (Λ0
i j
), and ρi j :=max(|Λ1

i j
|, |Λ0

i j
|), assuming that maxi 6= j ρi j =: δ <

1. Further, let u1, · · · ,un be real numbers. Then

|P(X j ≤ u j , j = 1, · · · , n)− P(Yj ≤ u j , j = 1, · · · , n)|

≤ K1

∑

1≤i< j≤n

|Λ1
i j
−Λ0

i j
|exp

�
−

u2
i
+ u2

j

2(1+ρi j)

�
(3)

with some positive constant K1 depending only on δ.

Throughout this paper, ξ1,ξ2, · · · is stationary dependent Gaussian sequence and Mn =max1≤i≤n ξi ,

Mk,n =maxk+1≤i≤n ξi . Let rn = Cov(ξ1,ξn+1). If

rn log n→ r ≥ 0, as n→∞. (4)

ξ1,ξ2, · · · was called as dependent: weakly dependent for r = 0 and strongly dependent for r > 0.

Let

ρn =
r

log n
, r defined in (4). (5)

In the paper, a very natural and mild assumption is

|rn −ρn| log n(log log n)1+ǫ = O(1). (6)

We mainly consider the ASCLT of the maximum of stationary Gaussian sequence satisfying (4),

under the mild condition (6), which is crucial to consider other versions of the ASCLT such as that

of the maximum of non-stationary strongly dependent sequence and the function of the maximum.

In the sequel, a = O(b) is denoted by a≪ b, C is a constant which may change from line to line.

The main result is as follows.

Theorem. Let {ξn} be a sequence of stationary standard Gaussian random variables with co-

variances ri j = r| j−i| satisfying (4). Mk = maxi≤k ξi . The definitions of an, bn is the same as in

Theorem A. Assume ri j = r| j−i| satisfies (6). Then

lim
n→∞

1

log n

n∑

k=1

1

k
I
�

ak(Mk − bk)≤ x
�
=

∫ +∞

−∞
exp
�
− e−x−r+

p
2rz
�
φ(z)dz a.s.. (7)

Remark 1. When r = 0, clearly, Theorem induces Theorem A. When r > 0, ξ1,ξ2, · · · is strongly

dependent. We mainly focus on the proof of Theorem 1 for this case.

Remark 2. In the above definition of ρn, when n= 1, the definition is incompatible. In the paper,

we mainly consider the case of n→∞. So here, n may be assumed in a neighborhood of +∞ and

the incompatibility doesn’t result in the invalidation of our argument.
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2 Auxiliary lemmas

In this section, we present and prove some lemmas which are useful in our proof of the main

result.

Lemma 2.1. Assume |rn −ρn| log n(log log n)1+ǫ = O(1). Let the constants un be such that n(1−
Φ(un)) is bounded where Φ is standard normal distribution function. Then

sup
1≤k≤n

k

n∑

j=1

|r j −ρn|exp

�
−

u2
k
+ u2

n

2(1+ |ω j |)

�
≪ (log log n)−(1+ǫ), (8)

and

sup
1≤k≤n

k

n∑

j=1

|r j −ρn|exp

�
−

u2
n

1+ |ω j |

�
≪ (log log n)−(1+ǫ), (9)

where ω j =max{|r j |,ρn}.
Proof. The proof of (8). According to Leadbetter et al.[LLR83], we have σ1(k) := supk<m≤n |rm|<
1 when rn → 0. By assumption, we have σ2(k) := supk<m≤n |ρm| < 1. Therefore, we have

σ(k) := supk<m≤n |ωm| < 1. By assumption again, n(1− Φ(un)) ≤ K for some constant K > 0.

Define {vn} by vn = un, if n≤ K and n(1−Φ(vn)) = K , if n> K . Then clearly un ≥ vn and hence

k

n∑

j=1

|r j −ρn|exp

�
−

u2
k
+ u2

n

2(1+ |ω j |)

�
≤ k

n∑

j=1

|r j −ρn|exp

�
−

v2
k
+ v2

n

2(1+ |ω j |)

�
. (10)

Then it is sufficient to prove (8) for the sequence {vn}. Using a usual fact

1−Φ(x)∼
φ(x)

x
, x →∞, (11)

we can write that

exp
�
−

v2
n

2

�
∼

K
p

2πvn

n
, vn ∼ (2 log n)1/2 (12)

Define α to be 0< α < (1−σ(0))/(1+σ(0)). Write

k

n∑

j=1

|r j −ρn|exp

�
−

v2
k
+ v2

n

2(1+ |ω j |)

�

= k
∑

1≤ j≤[nα]
|r j −ρn|exp

�
−

v2
k
+ v2

n

2(1+ |ω j |)

�
+ k
∑

[nα]< j≤n

|r j −ρn|exp

�
−

v2
k
+ v2

n

2(1+ |ω j |)

�

= T1 + T2. (13)

Using (12), we have

T1 ≤ knα exp

�
−

v2
k
+ v2

n

2(1+σ(0))

�
= knα

�
exp
�
−

v2
k
+ v2

n

2

��1/(1+σ(0))

≪ knα
� vk vn

kn

�1/(1+σ(0))
≪ k1−1/(1+σ(0))nα−1/(1+σ(0))(log k log n)1/2(1+σ(0))

≪ n1+α−2/(1+σ(0))(log n)1/(1+σ(0)). (14)
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Since 1+α− 2/(1+σ(0))< 0, we know T1≪ n−δ, for some δ > 0, uniformly for 1≤ k ≤ n. For

the estimation of the bound of T2, we can let p = [nα]. We have

T2 ≤ k exp

�
−

v2
k
+ v2

n

2(1+σ(p))

� ∑

p+1≤ j≤n

|r j −ρn|

=
nk

log n
exp

�
−

v2
k
+ v2

n

2(1+σ(p))

�
log n

n

∑

p+1≤ j≤n

|r j −ρn|. (15)

As rn log n→ r, there must be a constant C such that rn log n≤ C , for n≥ 1. Using (12), similarly

to the proof of Lemma 6.4.1 in Leadbetter et al.[LLR83], it can be shown

nk

log n
exp

�
−

v2
k
+ v2

n

2(1+σ(p))

�

≤
nk

log n
exp

�
−

v2
k
+ v2

n

2(1+ C/ log nα)

�

=
nk

log n

�
exp
�
−

v2
k

2

��1/(1+C/ log nα)�
exp
�
−

v2
n

2

��1/(1+C/ log nα)

≪ C

�
n2

log n

� vn

n

�2/(1+C/ log nα)
�1/2�

k2

log k

� vk

k

�2/(1+C/ log nα)
�1/2

≪ Cn(C/ log nα)/(1+C/ log nα) = O(1), (16)

and

log n

n

∑

p+1≤ j≤n

|r j −ρn| ≤
1

αn

∑

p+1≤ j≤n

|r j log j − r|+ r
1

n

∑

p+1≤ j≤n

���1−
log n

log j

���. (17)

Consider the first term on the right-hand side, using (6), we have

1

αn

∑

p+1≤ j≤n

|r j log j − r| ≪
1

αn

∑

p+1≤ j≤n

(log log j)−(1+ǫ)≪ (log log n)−(1+ǫ). (18)

According to Leadbetter et al.[LLR83](page 135), we can write

1

n

∑

p+1≤ j≤n

���1−
log n

log j

���= O

�
1

α log n

∫ 1

0

| log x |d x

�
≪ (log log n)−(1+ǫ). (19)

Combining (15), (16), (17), (18)and (19), we have T2 ≪ (log log n)−(1+ǫ). Clearly (8) follows,

(9) does similarly. The proof is completed.

Lemma 2.2. Let eξ1, eξ2, · · · , eξn be standard stationary Gaussian variables with constant covariance

ρn = r/ log n and ξ1,ξ2, · · · ,ξn satisfy the conditions of the Theorem. Denote eMn =maxi≤n
eξi and

Mn =maxi≤n ξi . Assume n(1−Φ(un)) is bounded and (6) is satisfied. Then

|E(I(Mn ≤ un)− I( eMn ≤ un))| ≪ (log log n)−(1+ǫ) (20)

Proof. Using Theorem C and Lemma 2.1, the proof can be gained simply.
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Lemma 2.3. Let η1,η2, · · · be a sequence of bounded random variables. If

Var

�
n∑

k=1

1

k
ηk

�
≪ log2 n(log log n)−(1+ǫ) for some ǫ > 0, (21)

then

lim
n→∞

1

log n

n∑

k=1

1

k
(ηk − Eηk) = 0 a.s. (22)

Proof. The proof can be found in Csáki and Gonchigdanzan[CG02].

3 Proof of main result

The proof of Theorem. When an = (2 log n)1/2, bn = (2 log n)1/2 − 1

2
(2 log n)−1/2(log log n +

log(4π)), we have un = x/an + bn satisfying n(1−Φ(un)) < C . Under the assumptions, we firstly

show

lim
n→∞

1

log n

n∑

k=1

1

k
(I(Mk ≤ uk)− P(Mk ≤ uk)) = 0 a.s. (23)

Using Lemma 2.3, it is sufficient to prove

Var

�
n∑

k=1

1

k
I(Mk ≤ uk)

�
≪ log2 n(log log n)−(1+ǫ) for some ǫ > 0. (24)

Let ζ,ζ1,ζ2, · · · be independent standard normal variables. Obviously (1 − ρk)
1/2ζ1 + ρ

1/2

k
ζ,

(1−ρk)
1/2ζ2 +ρ

1/2

k
ζ, · · · have constant covariance ρk = r/ log k. Define

Mk(ρk) = max
1≤i≤k

((1−ρk)
1/2ζi +ρ

1/2

k
ζ) = (1−ρk)

1/2 max(ζ1,ζ2, · · · ,ζk) +ρ
1/2

k
ζ

=: (1−ρk)
1/2Mk(0) +ρ

1/2

k
ζ.

Using the well-known c2− inequality, the left-hand side of (24) can be written as

Var

�
n∑

k=1

1

k
I(Mk ≤ uk)−

n∑

k=1

1

k
I(Mk(ρk)≤ uk) +

n∑

k=1

1

k
I(Mk(ρk)≤ uk)

�

≤ 2

�
Var

�
n∑

k=1

1

k
I(Mk(ρk)≤ uk)

�

+Var

�
n∑

k=1

1

k
I(Mk ≤ uk)−

n∑

k=1

1

k
I(Mk(ρk)≤ uk)

��

=: L1 + L2.
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We will show Li ≪ log2 n(log log n)−(1+ǫ), i=1,2. For i = 1, Write L1 as

E

�
n∑

k=1

1

k
(I(Mk(ρk)≤ uk)− P(Mk(ρk)≤ uk))

�2

= E

�
n∑

k=1

1

k
(I(Mk(0)≤ (1−ρk)

−1/2(uk −ρ1/2

k
ζ))

−P(Mk(0)≤ (1−ρk)
−1/2(uk −ρ1/2

k
ζ))

�2

=

∫ +∞

−∞
E

�
n∑

k=1

1

k
(I(Mk(0)≤ (1−ρk)

−1/2(uk −ρ1/2

k
z))

−P(Mk(0)≤ (1−ρk)
−1/2(uk −ρ1/2

k
z))

�2
dΦ(z)

=:

∫ +∞

−∞
E

�
n∑

k=1

1

k
ηk

�2
dΦ(z). (25)

Write

E

�
n∑

k=1

1

k
ηk

�2
=

n∑

k=1

1

k2
E|ηk|2 + 2
∑

1≤k<l≤n

|E(ηkηl)|
kl

=: H1 + H2. (26)

H1≪
∑n

k=1
1

k2 <∞. For H2, note

|E(ηkηl)| ≤ |Cov(I(Mk(0)≤ (1−ρk)
−1/2(uk −ρ1/2

n
z)),

I(Ml(0)≤ (1−ρl)
−1/2(ul −ρ1/2

l
z))− I(Mk,l(0)≤ (1−ρl)

−1/2(ul −ρ1/2

l
z))|

≪ E|I(Ml(0)≤ (1−ρl)
−1/2(ul −ρ1/2

l
z)− I(Mk,l(0)≤ (1−ρl)

−1/2(ul −ρ1/2

l
z)|

= P(Mk,l(0)≤ (1−ρl)
−1/2(ul −ρ1/2

l
z))− P(Ml(0)≤ (1−ρl)

−1/2(ul −ρ1/2

l
z))

= Φl−k((1−ρl)
−1/2(ul −ρ1/2

l
z))−Φl((1−ρl)

−1/2(ul −ρ1/2

l
z))

≤
k

l
.

So, we have

H2≪
∑

1≤k<l≤n

1

kl

�k
l

�
≪ log n≪ (log n)2(log log n)−(1+ǫ). (27)
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Combining (25), (26) and (27), we can get L1≪ log2 n(log log n)−(1+ǫ). For i = 2, write L2 as

Var

�
n∑

k=1

1

k
(I(Mk(ρk)≤ uk)− I(Mk ≤ uk))

�

≤ E

�
n∑

k=1

1

k
(I(Mk(ρk)≤ uk)− I(Mk ≤ uk))

�2

= E

�
n∑

k=1

1

k2
(I(Mk(ρk)≤ uk)− I(Mk ≤ uk))

2

�

+2
∑

1≤i< j≤n

|E((I(Mi(ρi)≤ ui)− I(Mi ≤ ui))(I(M j(ρ j)≤ u j)− I(M j ≤ u j)))|
i j

=: J1 + J2. (28)

Obviously J1 <∞. To estimate J2, using Lemma 2.2, we have

|E((I(Mi(ρi)≤ ui)− I(Mi ≤ ui))(I(M j(ρ j)≤ u j)− I(M j ≤ u j)))|
≤ |E(I(M j(ρ j)≤ u j)− I(M j ≤ u j))| ≪ (log log j)−(1+ǫ).

So

J2≪
n∑

j=3

1

j(log log j)1+ǫ

j−1∑

i=1

1

i
≪

n∑

j=3

log j

j(log log j)1+ǫ

≪ log n

n∑

j=3

1

j(log log j)1+ǫ
≪ (log n)2(log log n)−(1+ǫ). (29)

Combining (28) and (29) induces L2≪ log2 n(log log n)−(1+ǫ).
Secondly, according to Leadbetter et al.[LLR83](page 136), we have P{an(Mn − bn) ≤ x} →∫∞
−∞ exp(−e−x−r+

p
2rz)φ(z)dz, as n→∞. Clearly this induces

1

log n

n∑

k=1

1

k
P(Mk ≤ uk)→
∫ ∞

−∞
exp(−e−x−r+

p
2rz)φ(z)dz a.s.,

as n→∞. The conclusion follows.
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