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Abstract

A Brownian motion observed at equidistant sampling points renders a random walk with normally
distributed increments. For the difference between the expected maximum of the Brownian mo-
tion and its sampled version, an expansion is derived with coefficients in terms of the drift, the
Riemann zeta function and the normal distribution function.

1 Introduction

Let {B(t)}t≥0 denote a Brownian motion with drift coefficient µ and variance parameter σ2, so
that

B(t) = µt +σW (t), (1)

with {W (t)}t≥0 a Wiener process (standard Brownian motion). Without loss of generality, we
set B(0) = 0, σ = 1 and consider the Brownian motion on the interval [0,1]. When we sample
the Brownian motion at time points n

N
, n = 0,1, . . . N , the resulting process is a random walk

with normally distributed increments (Gaussian random walk). The fact that Brownian motion
evolves in continuous space and time leads to great simplifications in determining its properties. In
contrast, the Gaussian random walk, moving only at equidistant points in time, is an object much
harder to study. Although it is obvious that, for N →∞, the behavior of the Gaussian random walk
can be characterized by the continuous time diffusion equation, there are many effects to take
into account for finite N . This paper deals with the expected maximum of the Gaussian random
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walk and, in particular, its deviation from the expected maximum of the underlying Brownian
motion. This relatively simple characteristic already turns out to have an intriguing description.
In Section 2 we derive an expansion with coefficients in terms of the Riemann zeta function and
(the derivatives of) the normal distribution function. Some historical remarks follow, and the
proof is presented in Section 3.

2 Main result and discussion

By Spitzer’s identity (see [19, 14]) we have

E max
n=0,...,N

B(n/N) =

N
∑

n=1

1

n
EB+(n/N), (2)

where B+(t) = max{0, B(t)}. The monotone convergence theorem, in combination with a Rie-
mann sum approximation of the right-hand side of (2), gives (see [1])

E max
0≤t≤1

B(t) =

∫ 1

0

1

t
EB+(t)d t. (3)

The mean sampling error, as a function of the number of sampling points is then given by

E∆N (µ) =

∫ 1

0

1

t
EB+(t)d t −

N
∑

n=1

1

n
EB+(n/N). (4)

Since B(t) is normally distributed with mean µt and variance t one can compute

EB+(t) = µtΦ(µ
p

t) +

�

t

2π

�1/2

e−
1
2
µ2 t , (5)

where Φ(x) = 1p
2π

∫ x

−∞ e−
1
2

u2

du. Substituting (5) into (4) yields

E∆N (µ) =

∫ 1

0

g(t)d t −
1

N

N
∑

n=1

g(n/N), (6)

where

g(t) = µΦ(µ
p

t) +
1
p

2πt
e−

1
2
µ2 t . (7)

We are then in the position to present our main result.

Theorem 1. The difference in expected maximum between {B(t)}0≤t≤1 and its associated Gaussian

random walk obtained by sampling {B(t)}0≤t≤1 at N equidistant points, for |µ/
p

N |< 2
p
π, is given

by

E∆N (µ) =−
ζ(1/2)
p

2πN
−

2g(1)−µ
4N

−
p
∑

k=1

B2k

(2k)!

g(2k−1)(1)

N2k

−
1
p

2πN

∞
∑

r=0

ζ(−1/2− r)(−1/2)r

r!(2r + 1)(2r + 2)

�

µ
p

N

�2r+2

+O(1/N2p+2), (8)

with O uniform in µ, ζ the Riemann zeta function, p some positive integer, Bn the Bernoulli numbers,

and g(k) defined as the kth derivative of g in (7).



Equidistant sampling for the maximum of a Brownian motion 145

E∆N (µ) shows up in a range of applications. Examples are sequentially testing for the drift of
a Brownian motion [7], corrected diffusion approximations [17], simulation of Brownian motion
[1, 5], option pricing [3], queueing systems in heavy traffic [12, 13, 15], and the thermodynamics
of a polymer chain [8].
The expression in (8) for E∆N (µ) involves terms c jN

− j/2 with

c1 =−
ζ(1/2)
p

2π
, c2 = −

µ− 2µΦ(−µ) + 2φ(µ)

4
, c3 = −

ζ(−1/2)µ2

2
p

2π
, c4 =

φ(µ)

24
, (9)

φ(x) = e−x2/2/
p

2π and c j = 0 for j = 6,10,14, . . .. The first term c1 has been identified by
Asmussen, Glynn & Pitman [1], Thm. 2 on p. 884, and Calvin [5], Thm. 1 on p. 611, although
Calvin does not express c1 in terms of the Riemann zeta function. The second term c2 was derived
by Broadie, Glasserman & Kou [3], Lemma 3 on p. 77, using extended versions of the Euler-
Maclaurin summation formula presented in [1]. To the best of the authors’ knowledge, all higher
terms appear in the present paper for the first time.
The distribution of the maximum of Brownian motion with drift on a finite interval is known to be
(see Shreve [18], p. 297)

P(max
0≤t≤T

B(t)≤ x) = Φ
� x −µT
p

T

�

− e2µxΦ
�−x −µT
p

T

�

, x ≥ 0, (10)

and integration thus yields

E(max
0≤t≤T

B(t)) =
1

2µ
(2Φ(µ

p
T )− 1) +Φ(µ

p
T )µT +φ(µ

p
T )
p

T . (11)

A combination of (11) and (8) leads to a full characterization of the expected maximum of the
Gaussian random walk. Note that the mean sampling error for the Brownian motion defined in
(1) on [0, T], sampled at N equidistant points, is given by σ

p
T ·E∆N (µ

p
T/σ).

When the drift µ is negative, results can be obtained for the expected all-time maximum. That is,
for the special case µ < 0, σ = 1, T = N and N →∞, one finds that limN→∞

p
N ·E∆N (µ

p
N) is

equal to

−
ζ(1/2)
p

2π
+

1

4
µ−

µ2

p
2π

∞
∑

r=0

ζ(−1/2− r)

r!(2r + 1)(2r + 2)

�

−µ2

2

�r

, (12)

for −2
p
π < µ < 0. Note that (12) follows from Theorem 1. The result, however, was first

derived by Pollaczek [16] in 1931 (see also [11]). Apparently unaware of this fact, Chernoff
[7] obtained the first term −ζ(1/2)/

p
2π, Siegmund [17], Problem 10.2 on p. 227, obtained the

second term 1/4 and Chang & Peres [6], p. 801, obtained the third term −ζ(−1/2)/2
p

2π. The
complete result was rediscovered by the authors in [9], and more results for the Gaussian random
walk were presented in [9, 10], including series representations for all cumulants of the all-time
maximum.

3 Proof of Theorem 1

We shall treat separately the cases µ < 0, µ > 0 and µ = 0. The proof for µ < 0 in Subsection 3.1
largely builds upon Euler-Maclaurin summation and the result in Section 4 of [9] on the expected
value of the all-time maximum of the Gaussian random walk. The result for µ > 0 in Subsection
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3.2 then follows almost immediately due to convenient symmetry properties of Φ. Finally, in
Subsection 3.3, the issue of uniformity in µ is addressed and the result for µ = 0 is established in
two ways: First by taking the limit µ ↑ 0 and subsequently by a direct derivation that uses Spitzer’s
identity (4) for µ= 0 and an expression for the Hurwitz zeta function.

3.1 The negative-drift case

Set µ=−γ with γ > 0. We have from (6)

E∆N (µ) =

(
∫ ∞

0

g(t)d t −
1

N

∞
∑

n=1

g(n/N)

)

−
(
∫ ∞

1

g(t)d t −
1

N

∞
∑

n=N+1

g(n/N)

)

. (13)

We compute by partial integration

∫ ∞

0

g(t)d t = −
∫ ∞

0

γΦ(−γ
p

t)d t +
1
p

2π

∫ ∞

0

t−1/2e−
1
2
γ2 t d t

=
−1

2γ
+

1

γ
=

1

2γ
. (14)

Furthermore, with β = γ/
p

N ,

1

N

∞
∑

n=1

g(n/N) =
1

N

∞
∑

n=1

�

− γΦ(−γ
p

n/
p

N) +
1

p

2πn/N
e−

1
2
γ2n/N

�

=
1
p

N

∞
∑

n=1

� e−
1
2
β2n

p
2πn
− βΦ(−β

p
n)
�

=
EM
p

N
, (15)

with EM as in (4.1) of [9]. From (14), (15) and [9], (4.25), it follows that

∫ ∞

0

g(t)d t −
1

N

∞
∑

n=1

g(n/N) =
−ζ(1/2)
p

2πN
−
γ

4N

−
1
p

2πN

∞
∑

r=0

ζ(−1/2− r)(−1/2)r

r!(2r + 1)(2r + 2)

�

γ
p

N

�2r+2

. (16)

This handles the first term on the right-hand side of (13).

For the second term, we use Euler-Maclaurin summation (see De Bruijn [4], Sec. 3.6, pp. 40-42)
for the series 1

N

∑∞
n=N+1 g(n/N). With

f (x) =
1

N
g(x/N), x ≥ N , (17)



Equidistant sampling for the maximum of a Brownian motion 147

we have for p = 1,2, . . .

∞
∑

n=N+1

f (n) =− f (N) +

∞
∑

n=N

f (n)

=− f (N) + lim
M→∞





∫ M

N

f (x)d x + 1
2

f (N) +

p
∑

k=1

B2k

(2k)!

�

f (2k−1)(M)− f (2k−1)(N)
�

−
∫ M

N

f (2p)(x)
B2p (x − ⌊x⌋)
(2p)!

d x





=− 1
2

f (N) +

∫ ∞

N

f (x)d x −
p
∑

k=1

B2k

(2k)!
f (2k−1)(N) + Rp,N , (18)

where Bn(t) denotes the nth Bernoulli polynomial, Bn = Bn(0) denotes the nth Bernoulli number,
and

Rp,N = −
∫ ∞

N

f (2p)(x)
B2p (x − ⌊x⌋)
(2p)!

d x . (19)

Since f (l)(x) = g(l)(x/N)/N l+1, we thus obtain

1

N

∞
∑

n=N+1

g(n/N) =
−1

2N
g(1) +

∫ ∞

1

g(x)d x −
p
∑

k=1

B2k

(2k)!

1

N2k
g(2k−1)(1) + Rp,N , (20)

where

Rp,N =−
1

N2p

∫ ∞

1

g(2p)(x)
B2p (N x − ⌊N x⌋)

(2p)!
d x . (21)

From the definition of g in (7) it is seen that g(2p) is smooth and rapidly decaying, hence Rp,N =

O(1/N2p). Since

Rp,N =−
B2p+2

(2p+ 2)!

1

N2p+2
g(2p+1)(1) + Rp+1,N , (22)

we even have Rp,N = O(1/N2p+2). Therefore, from (20),

∫ ∞

1

g(t)d t −
1

N

N
∑

n=N+1

g(n/N) =
1

2N
g(1) +

p
∑

k=1

B2k

(2k)!

1

N2k
g(2k−1)(1) +O(1/N2p+2). (23)

Combining (16) and (23) completes the proof, aside from the uniformity issue, for the case that
µ=−γ < 0.

3.2 The positive-drift case

The analysis so far was for the case with negative drift µ = −γ with γ > 0. The results can be
transferred to the case that µ > 0 as follows. Note first from Φ(−x) = 1 − Φ(x) that g(t) =

µ−Φ(−µ
p

t) + (2πt)−1/2 exp(− 1
2
(−µ)2 t). Therefore, by (6)

E∆N (µ) = E∆N (−µ), (24)
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since the term µ vanishes from the right-hand side of (6). Then use the result already proved with
−µ < 0 instead of µ. This requires replacing g(t) from (7) by

−µΦ(−µ
p

t) + (2πt)−1/2e−
1
2
(−µ)2 t (25)

and µ by −µ everywhere in (8). The term 2g(t)−µ then becomes

2
�

−µΦ(−µ
p

t) + (2πt)−1/2 exp(− 1
2
(−µ)2 t)

�

− (−µ) =
2
�

µΦ(µ
p

t) + (2πt)−1/2 exp(− 1
2
µ2 t)

�

−µ, (26)

which is in the form 2g(t)−µ with g from (7). Next we compute

g ′(t) =
−1

2
p

2π
t−3/2e−

1
2
µ2 t

=
d

dt

h

−µΦ(−µ
p

t) + (2πt)−1/2e−
1
2
(−µ)2 t

i

. (27)

Finally, the infinite series with the ζ-function involves µ quadratically. Thus writing down (8)
with −µ < 0 instead of µ turns the right-hand side into the same form with g given by (7). This
completes the proof of Theorem 1 for µ 6= 0.

3.3 The zero-drift case

We shall first establish the uniformity in µ < 0 of the error term O in (8), for which we need that

Rp,N =
−1

N2p

∫ ∞

1

g(2p)(x)
B2p (N x − ⌊N x⌋)

(2p)!
d x (28)

can be bounded uniformly in µ < 0 as O(N−2p). Write ν = 1
2
µ2, and observe from (27) and

Newton’s formula that for k = 1,2, . . .

g(k)(t) =
−1

2
p

2π

�

d

dt

�k−1
�

t−3/2e−ν t
�

=
(−1)k

2
p

2π
e−ν t

k−1
∑

n=0

�

k− 1

n

�

3
2
· 5

2
· · · · · ( 3

2
+ n− 1)ν k−1−n t−3/2−n. (29)

Hence, g(2p)(t)> 0 and g(2p−1)(1)< 0 for p = 1,2, . . .. Therefore, with C an upper bound for
¯

¯B2p (N x − ⌊N x⌋)/(2p)!
¯

¯ , (30)

we have

|Rp,N | ≤
C

N2p

∫ ∞

1

g(2p)(t)d t = −
C

N2p
g(2p−1)(1)

=
C

N2p

e−ν

2
p

2π

2p−2
∑

n=0

�

2p− 2

n

�

3
2
· 5

2
· · · · · ( 3

2
+ n− 1)ν2p−2−n, (31)

which is bounded in ν > 0 when p = 1,2 . . . is fixed. This settles the uniformity issue and thus the
case µ= 0 by letting µ ↑ 0.
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A direct derivation of the result (8) for the case µ= 0 is also possible. When ζ(s, x) is the analytic
continuation to C \ {−1} of the function

ζ(s, x) =
∑

n>−x

(n+ x)−s, Re(s)> 1, x ∈ R, (32)

then for s ∈ C \ {−1} and p = 1,2, . . . with 2p+ 1 > −Re(s), there holds (see Borwein, Bradley &
Crandall [2], Section 3, for similar expressions)

ζ(s, x) =
∑

−x<n≤N

(n+ x)−s −
(x + N)1−s

1− s
− 1

2
(x + N)−s

−
p
∑

k=1

�

1− s

2k

�

B2k

1− s
(x + N)−s−2k+1 +O(N−s−2p−1). (33)

Combination of

E∆N (0) =
1
p

2π

 

2−
1

N1/2

N
∑

n=1

n−1/2

!

(34)

and (33) with s = 1/2, x = 1 and N replaced by N − 1, leads to

E∆N (0) = −
ζ(1/2)
p

2πN
−

1

2N
p

2π
−

2
p

2π

p
∑

k=1

�

1/2

2k

�

B2kN−2k +O(N−2p−2). (35)

Note that
2
p
π

�

1/2

2k

�

B2k =
B2k

(2k)!
h(2k−1)(t)

¯

¯

¯

t=1
; h(t) =

1
p

2πt
, (36)

and so (35) corresponds to (8) with µ= 0, indeed.
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