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Abstract

In a non-parametric framework, we establish some non-asymptotic bounds for self-normalized

sums and quadratic forms in the multivariate case for symmetric and general random variables.

This bounds are entirely explicit and essentially depends in the general case on the kurtosis of the

Euclidean norm of the standardized random variables.

1 Introduction

Let Z , Z1, ..., Zn be i.i.d. random centered vectors from a probability space (Ω,A , Pr) to (Rq,B ,P).

We denote E the expectation under P. In the following we put Zn = n−1
∑n

i=1
Zi . Define S a square

root of the matrix S2 = E(Z Z ′) and similarly Sn a square root of S2
n
= n−1

∑n

i=1
Zi Z

′

i
. We assume

in the following that S2 is full rank and therefore S2
n

is also full rank with probability 1 as soon as

n > p. For further use, we define γr = E(‖S−1Z‖r
2
), r > 0, where || ||2 is the Euclidean norm on

R
q. Now consider the self-normalized sum

n1/2S−1
n

Zn =

 
n∑

i=1

Zi Z
′

i

!−1/2 n∑

i=1

Zi . (1)

and its Euclidean norm

nZ
′
n
S−2

n
Zn (2)
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Self-normalized sums have recently given rise to an important literature : see for instance [13, 6]

or [4] for self-normalized processes. It has been proved that non-asymptotic exponential bounds

can be obtained for these quantities under very weak conditions on the underlying moments of the

variables Zi . Unfortunately, except in the symmetric case, these bounds established in the real case

(q = 1) are not universal and depend on the skewness γ3 = E|S−1Z |3 or even an higher moments

for instance γ10/3 = E|S−1Z |10/3, see [13]. Actually, uniform bounds in P are impossible to obtain,

otherwise this would contradict Bahadur and Savage’s Theorem, see [2, 18]. Recall that the

behaviour of self-normalized sums is closely linked to the behaviour of the statistics of Student,

which is the basic asymptotic root for constructing confidence intervals (see Remark 2 below).

Moreover, available bounds are not explicit and only valid for n ≥ n0, n0 large and unknown. To

our knowledge, non-asymptotic exponential bounds with explicit constants are only available for

symmetric distribution [12, 9, 17], in the unidimensional case (q = 1). In this paper, we obtain

generalizations of these bounds for (2) in the multivariate case by using a multivariate extension

of the symmetrization method developed in [16] as well as arguments taken from the literature

on self-normalized process, see [4]. Our bounds are explicit but depend on the kurtosis γ4 of the

Euclidean norm of S−1Z rather than on the skewness. They hold for any value of the parameter

size q. One technical difficulty in the multidimensional case is to obtain an explicit exponential

bound for the smallest eigenvalue of the empirical variance which allows to control the deviation

of S2
n

from S2, a result which has its own interest.

2 Exponential bounds for self-normalized sums

Some bounds for self-normalized sums may be quite easily obtained in the symmetric case (that is

for random variables having a symmetric distribution) and are well-known in the unidimensional

case. In non-symmetric and/or multidimensional case theses bounds are new and not trivial

to prove. One of the main tools for obtaining exponential inequalities in various setting is the

famous Hoeffding inequality (see [12]) yielding that for independent real random variables (r.v.)

Yi , i = 1, ..., n, with finite support say [0,1], we have

Pr


n−1

 
n∑

i=1

Yi

!2

≥ t


 ≤ 2 exp

�
−

t

2

�
.

A direct application of this inequality to self-normalized sums (via a randomization step introduc-

ing Rademacher r.v.’s) yields (see [9, 8]) that, for n independent random variables Zi symmetric

about 0, and not necessarily bounded (nor identically distributed), we have

Pr




�∑n

i=1
Zi

�2

∑n

i=1
Z2

i

≥ t


 ≤ 2 exp

�
−

t

2

�
. (3)

In the general non-symmetric case, the master result of [13] for q = 1 states that if γ10/3 < ∞,

then for some A∈ R and some a ∈]0,1[,

Pr




�∑n

i=1
Zi

�2

∑n

i=1
Z2

i

≥ t


 ≤ 2F1(t) + Aγ10/3n−1/2e−at/2, (4)
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where Fq is the survival function of a χ2(q) distribution defined by Fq(t) =
∫ +∞

t
fq(y)d y with

fq(y) =
1

2q/2Γ(q/2)
yq/2−1e−

y

2 and Γ(p) =
∫ +∞

0
y p−1e−y d y .

However the constants A and a are not explicit and, despite of its great interest to understand the

large deviation behaviour of self-normalized sums, the bound is of no direct practical use. In the

non-symmetric case our bounds are worse than (4) as far as the control of the approximation by a

χ2(q) distribution are concerned, but entirely explicit.

Theorem 1. Let Z , (Zi)1≤i≤n, be an i.i.d. sample in Rq with probability P. Suppose that S2 is of

rank q. Then the following inequalities hold, for finite n> q and for t < nq,

a) if Z has a symmetric distribution, then, without any moment assumption,

Pr
�

nZ
′
n
S−2

n
Zn ≥ t

�
≤ 2qe

− t

2q ; (5)

b) for general distribution of Z , with γ4 <∞, for any a > 1,

Pr
�

nZ
′
n
S−2

n
Zn ≥ t

�
≤ 2qe

1− t

2q(1+a) + C(q) n3q̃γ
−q̃

4 e
− n

γ4(q+1)

�
1− 1

a

�2

(6)

≤ 2qe
1− t

2q(1+a) + K(q) n3q̃e
− n

γ4(q+1)

�
1− 1

a

�2

with q̃ =
q−1

q+1
and

C(q) =
(2eπ)2q̃(q+ 1)

22/(q+1)(q− 1)3q̃
and K(q) =

C(q)

q2q̃
≤ 8.

Moreover for nq ≤ t, we have

Pr
�

nZ
′
n
S−2

n
Zn ≥ t

�
= 0.

The proof is postponed to Appendix (1). Part a) in the symmetric multidimensional case follows

by an easy but crude extension of [12] or [9, 8]. It is also given under a different form in [10].

The exponential inequality (5) is classical in the unidimensional case. Other type of inequalities

with suboptimal rate in the exponential term have also been obtained by [14].

In the general multidimensional framework, the main difficulty is actually to keep the self-normalized

structure when symmetrizing the original sum. We first establish the inequality in the symmet-

ric case by an appropriate diagonalization of the estimated covariance matrix, which reduces the

problem to q -unidimensional inequalities. The next step is to use a multidimensional version

of Panchenko’s symmetrization lemma (see [16]). However this symmetrization lemma destroys

partly the self-normalized structure (the normalization is then S2
n
+S2 instead of the expected S2

n
),

which can be retrieved by obtaining a lower tail control of the distance between S2
n

and S2. This

is done by studying the behavior of the smallest eigenvalue of the normalizing empirical variance.

The second term in the right hand side of inequality (6) is essentially due to this control.

However, for q > 1, the bound of part a) is clearly not optimal. A better bound, which has not

exactly an exponential form, has been obtained by [17] following previous works by [7]. Pinelis’

result gives a much more precise evaluation of the tail for moderate q. It essentially says that in

the symmetric case the tail of the self-normalized sum can essentially be bounded by the tail of a
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χ2(q) distribution. Notice that this tail Fq satisfies the following approximation (see [1], p. 941,

result 26.4.12 )

Fq(t) ∼
t→∞

1

Γ(
q

2
)

�
t

2

� q

2
−1

exp(−
t

2
).

This bounds gives the right behavior of the tail (in q) as t grows, which is not the case for a).

However, in the unidimensional case a) still gives a better approximation than [17]. a) can still

be used in the multidimensional case to get crude but exponential bounds. We expect however

Pinelis’ inequality to give much better bounds for moderate q and moderate sample size n in the

symmetric case. For these reason, we will extend the results of Theorem 1 by using a χ2(q) type

of control. This essentially consists in extending Lemma 1 of [16] to non exponential bound.

Theorem 2. The following inequalities hold, for finite n> q and for t < nq:

a) (Pinelis 1994) if Z has a symmetric distribution, without any moment assumption, then we

have

Pr
�

nZ
′
n
S−2

n
Zn ≥ t

�
≤

2e3

9
Fq(t), (7)

b) for general distribution of Z with kurtosis γ4 <∞, for any a > 1 and for t ≥ 2q(1+ a) and

q̃ =
q−1

q+1
we have

Pr
�

nZ
′
n
S−2

n
Zn ≥ t

�

≤
2e3

9Γ(
q

2
+ 1)

�
t − q(1+ a)

2(1+ a)

� q

2

e
− t−q(1+a)

2(1+a) + C(q)

�
n3

γ4

�q̃

e
−

n(1− 1
a )

2

γ4(q+1)

≤
2e3

9Γ(
q

2
+ 1)

�
t − q(1+ a)

2(1+ a)

� q

2

e
− t−q(1+a)

2(1+a) + K(q) n3q̃e
−

n(1− 1
a )

2

γ4(q+1) (8)

For t ≥ nq, we have Pr
�

nZ
′
n
S−2

n
Zn ≥ t

�
= 0.

Remark 1. Notice that the constant K(q) does not increase with large q as it can be seen on Figure 1.

A close examination of the bounds shows that essentially γ4(q + 1) has to be small compared to n

1 2 3 4 5 6 7 8 9 10
0

1

2
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4

5

6
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8

q

K(q)

Figure 1: Value of K(q) as a function of q

for practical use of these bounds. Of course practically γ4 is not known, however one may use an

estimator or an upper bound for this quantity to get some insight on a given estimation problem.
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Remark 2. It can be tempting to compare our bounds with some more classical results in statistics. We

recall that, in an unidimensional framework, the studentized ratio is given by eTn =
p

neS−1
n

Z̄n where

eSn is the unbiased estimator of the variance eSn = (
1

n−1

∑n

i=1
(Zi− Z̄n)

2)−1/2. In a Gaussian framework,

eTn has a Student distribution with (n−1) degrees of freedom. In opposition, our self-normalized sum

is defined by Tn =
p

n
�

1

n

∑n

i=1
Z2

i

�−1/2
Z̄n. It is related to eTn by the relation Tn = fn(eTn) with

fn(x) =
p

n

n−1

�
1+ x2

n−1

�−1/2

x. As a consequence, one gets in an unidimensional symmetric case,

for t > 0,

Pr(eTn ≥ t)≤ exp



−

1

2

n

n− 1

t2

1+ t2

n−1



 .

For large n we recover an sub-gaussian type of inequality. At fixed n, , this inequality is noninformative

for t → ∞ since the right-hand side tends to 1. Recall that, in a Gaussian framework, the tail

P r(eTn > t) is of order O( 1

tn−1 ) as t →∞.

Remark 3. In the best case, past studies give some bounds for n sufficiently large, without an exact

value for ”sufficiently large”. Here, the bounds are valid and explicit for any n> q.

These bounds are motivated by some statistical applications to the construction of non-asymptotic

confidence intervals with conservative coverage probability in a semi-parametric setting. Self-

normalized sums appear naturally in the context of empirical likelihood and its generalization to

Cressie-Read divergences, see [11, 15]. In particular, [5] shows how the bounds obtained here

may be used to construct explicit non asymptotic confidence regions, even when q depends on n.

A Proofs of the main results

A.1 Some lemmas

The first lemma is a direct extension of Panchenko, 2003, Corollary 1 to the multidimensional

case, which will be used both in theorem 1 and 2.

Lemma 1. Let Jq be the unit sphere of Rq, Jq = {λ ∈ Rq, ‖λ‖2 = 1}. Let Z (n) = (Zi)1≤i≤n and

Y (n) = (Yi)1≤i≤n be i.i.d. centered random vectors in Rq with Z (n) independent of Y (n). We denote, for

any random vector W = (Wi)1≤i≤n with coordinates in Rq, S2
n,W
= 1

n

∑n

i
WiW

′
i
.

If there exists D > 0 and d > 0 such that, for all t ≥ 0,

Pr


 sup
λ∈Jq



p

nλ′(Zn − Y n)Æ
λ′S2

n,(Z (n)−Y (n))
λ


 ≥
p

t


 ≤ De−d t , (9)

then, for all t ≥ 0,

Pr


 sup
λ∈Jq

p
nλ′Znp

λ′S2
n
λ+λ′S2λ

≥
p

t


 ≤ De1−d t . (10)
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Proof. This proof follows Lemma 1 of [16] with some adaptations to the multidimensional case.

Denote

An(Z
(n)) = sup

λ∈Jq

sup
b>0

n
E
h

4b(λ′(Zn − Y n)− bλ′S2

n,Z (n)−Y (n)
λ)|Z (n)

io

Cn(Z
(n), Y (n)) = sup

λ∈Jq

sup
b>0

n
4b(λ′(Zn − Y n)− bλ′S2

n,Z (n)−Y (n)
λ)
o

.

By Jensen inequality, we have Pr-almost surely

An(Z
(n))≤ E[Cn(Z

(n), Y (n))|Z (n)]

and, for any convex function Φ, by Jensen inequality, we also get

Φ(An(Z
(n)))≤ E[Φ(Cn(Z

(n), Y (n)))|Z (n)].

We obtain

E(Φ(An(Z
(n))))≤ E(Φ(Cn(Z

(n), Y (n)))). (11)

Now remark that

An(Z
(n)) = sup

λ∈Jq

sup
b>0

¦
4b
�
λ′Zn − bλ′S2

n
λ− bλ′S2λ

�©

= sup
λ∈Jq


 λ′Znp

λ′S2
n
λ+λ′S2λ




2

and

Cn(Z
(n), Y (n)) = sup

λ∈Jq



λ′(Zn − Y n)Æ
λ′S2

n,Z (n)−Y (n)
λ




2

.

Now, notice that supλ∈Jq

λ′Znp
λ′S2

nλ
> 0 and apply the arguments of the proof of [16]’s Corollary 1

applied to inequality (11) to obtain the result.

The next lemma allows to establish an non exponential version of the preceding lemmas. Indeed

a consequence of this lemma is that, if the tail of the symmetrized version in inequality (9) is con-

trolled by a chi-square tail, then the non symmetrized version may be controlled by an exponential

multiplied by a polynomial. The rate in the exponential is asymptotically correct.

Lemma 2. For any t > q, let Φt(x) =max(x − t + q; 0). Let ν and ξ be two r.v.’s, such that for any

t > q, E
�
Φt(ξ)

�
≤ E

�
Φt(ν)

�
. Suppose that, there exists a constant C > 0 such that, for t > 0,

Pr(ν > t)≤ C F q(t).

Then, for t ≥ 2q, we have

Pr(ξ > t)≤ C

�
(t − q)

2

� q

2 e−
(t−q)

2

Γ(q/2+ 1)
.

and for t > q, we have

Pr(ξ > t)≤ C F q+2(t − q).
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Proof. We follow the lines of the proof of Panchenko’s lemma, with function Φt . Remark that

Φt(0) = 0 and Φt(t) = q, then we have

Pr(ξ≥ t) ≤
1

Φt(t)

 
Φt(0) +

∫ +∞

0

Φ′
t
(x)Pr(ν ≥ x)d x

!

≤
C

q

∫ +∞

t−q

Fq(x)d x .

By integration by parts, we have

∫ +∞

t−q

Fq(x)d x =

∫ +∞

t−q

x fq(x)d x − (t − q)

∫ +∞

t−q

fq(x)d x .

It follows by straightforward calculations that, for t > q,

Pr(ξ≥ t) ≤
C

q

∫ +∞

t−q

Fq(x)d x ≤ C

�
Fq+2(t − q)−

t − q

q
Fq(t − q)

�
.

For t ≥ 2q, and using the recurrence relation 26.4.8 of [1], page 941.

Pr(ξ≥ t) ≤ C
�

Fq+2(t − q)− F q(t − q)
�
=

�
(t − q)

2

�q/2 Ce−
(t−q)

2

Γ(
q

2
+ 1)

.

Moreover, for t > q we have Pr(ξ≥ t)≤ C F q+2(t − q).

We now extend a result of [3], which controls the behavior of the smallest eigenvalue of the

empirical variance. In the following, for a given symmetric matrix A, we denote µ1(A) its smallest

eigenvalue.

Lemma 3. Let (Zi)1≤i≤n be i.i.d. random vectors in Rq with common mean 0. Assume 1 ≤ eγ4 =

E(‖Z1‖42)< +∞. Then, for any n> q and 0< t ≤ µ1(S
2),

Pr
�
µ1(S

2
n
)≤ t

�
≤ C(q)

n3eqµ1(S
2)2q̃

eγq̃

4

exp

�
−

n(µ1(S
2)− t)2

eγ4(q+ 1)

�
∧ 1,

with eq = q−1

q+1
and

C(q) = π2q̃(q+ 1)e2q̃(q− 1)−3q̃2
2q̃− 2

q+1 (12)

≤ 4π2(q+ 1)e2(q− 1)−3q̃. (13)

Proof. The proof of this result is adapted from [3] and makes use of some idea of [4] .

We first have by a truncation argument and applying Markov’s inequality on the last term in the

inequality (see the proof of [3], Lemma 4), for every M > 0,

Pr

 
µ1

 
n∑

i=1

Zi Z
′
i

!
≤ nt

!
≤ Pr

 
inf

v∈Jq

n∑

i=1

(v′Zi)
2 ≤ nt, sup

i=1,...,n

||Zi ||2 ≤ M

!
+ n

eγ4

M4
(14)
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We call I the first term on the right hand side of this inequality.

Notice that by symmetry of the sphere, we can always work with the northern hemisphere of the

sphere rather than the sphere. In the following, we denote by Nq the northern hemisphere of the

sphere. Notice that, if the supremum of the ||Zi ||2 is smaller than M , then for u, v in Nq, we have

¯̄
¯̄
¯

n∑

i=1

(v′Zi)
2 −

n∑

i=1

(u′Zi)
2

¯̄
¯̄
¯≤ 2n||u− v||2M2.

Thus if u and v are apart by at most tη/(2M2) then |
∑n

i=1
(v′Zi)

2 −
∑n

i=1
(u′Zi)

2| ≤ ηnt. Now let

N(Nq,ǫ) be the smallest number of caps of radius ǫ centered at some points on Nq (for the ||.||2
norm) needed to cover Nq. Now we follow the same arguments as [3] to control I : I is bounded

by the sum of the probabilities that the infimum of
∑n

i=1
(v′Zi)

2 over each cap is smaller thant

nt and that supi=1,...,n ||Zi ||2 ≤ M . We bound this sum by the number of caps times the larger

probability: for any η > 0,

I ≤ N

�
Nq,

tη

2M2

�
max
u∈Nq

Pr

 
n∑

i=1

(u′Zi)
2 ≤ (1+η)nt

!
.

The proof is now divided in three steps, i) control of N(Nq,
tη

2M2 ), ii) control of the maximum over

Nq of the last expression in I , iii) optimization over all the free parameters.

i) On the one hand, we have, for some constant b(q)> 0,

N(Nq,ǫ)≤ b(q)ǫ−(q−1) ∨ 1. (15)

For instance, we may choose b(q) = πq−1. Indeed, following [3], the northern hemisphere can

be parameterized in polar coordinates, realizing a diffeomorphism with Jq−1 × [0,π]. Now pro-

ceed by induction, notice that for q = 2, Nq, the half circle can be covered by [π/2ǫ] ∨ 1+ 1 ≤
2([π/2ǫ] ∨ 1) ≤ π/ǫ ∨ 1 caps of diameter 2ǫ, that is, we can choose the caps with their cen-

ter on a ǫ−grid on the circle. Now, by induction we can cover the cylinder Jq−1 × [0,π] with

[π/2ǫ (π)q−2/ǫq−2] ∨ 1+ 1 ≤ πq−1/ǫq−1 intersecting cylinders which in turn can be mapped to

region belonging to caps of radius ǫ, covering the whole sphere (this is still a covering because the

mapping from the cylinder to the sphere is contractive).

ii) On the other hand, for all t > 0, we have by exponentiation and Markov’s inequality, and

independence of (Zi)1≤i≤n, for any λ > 0

max
u∈Nq

Pr

 
n∑

i=1

u′Zi Z
′
i
u≤ nt

!
≤ enλt max

u∈Nq

�
E
�

e−λu′Z1 Z ′1u
��n

.
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Now, using the classical inequalities, log(x)≤ x−1 and e−x−1≤−x+ x2/2, both valid for x > 0,

we have

max
u∈Nq

�
E
�

e−λu′Z1 Z ′1u
��n
=max

u∈Nq

exp
¦

n log
�

E
�

e−λu′Z1 Z ′1u
��©

≤max
u∈Nq

exp
¦

nE
�

e−λu′Z1 Z ′1u − 1
�©

(16)

≤max
u∈Nq

exp

¨
n

�
−λu′S2u+

λ2

2
eγ4

�«

= exp

�
λ2

2
neγ4 −λnµ1(S

2)

�
. (17)

iii) From (17) and (15), we deduce that, for any t > 0,λ > 0, η > 0,

I ≤ b(q)

�
2M2

tη

�q−1

exp

�
λ(1+η)nt +

λ2

2
neγ4 −λnµ1(S

2)

�
.

Optimizing the expression exp(−(q−1) log(η)+ληnt) in η > 0, yields immediately, for any t > 0,

any M > 0, any λ > 0

I ≤ b(q)

�
2enM2λ

q− 1

�q−1

exp

�
λn
�

t −µ1(S
2)
�
+
λ2

2
neγ4

�
.

The infimum in λ in the exponential term is attained at λ=
µ1(S

2)−t

eγ4

, provided that 0< t < µ1(S
2).

Therefore, for such t and all M > 0, we get that Pr(µ1(
∑n

i=1
Zi Z
′
i
)≤ nt) is less than

b(q)

�
2enM2µ1(S

2)

eγ4(q− 1)

�q−1

exp

�
−

n

2eγ4

�
µ1(S

2)− t
�2
�
+ n

eγ4

M4
.

We now optimize in M2 > 0 and the optimum is attained at

M2
∗ =

�
2neγ4

(q− 1)b(q)

� 1

q+1

�
2en

q− 1

µ1(S
2)

eγ4

�− (q−1)

q+1

exp

�
n(µ1(S

2)− t)2

2eγ4(q+ 1)

�
,

yielding the bound

Pr

 
µ1

 
n−1

n∑

i=1

Zi Z
′
i

!
≤ t

!
≤ C̃(q) n

3
q−1

q+1µ1(S
2)

2(q−1)

q+1 eγ
− q−1

q+1

4 exp


−

n
�
µ1(S

2)− t
�2

eγ4(q+ 1)


 ,

with

C̃(q) = b(q)
2

q+1 (q+ 1)e
2(q−1)

q+1 (q− 1)
−3

q−1

q+1 2
2q−4

q+1 .

Using the constant b(q) = πq−1 we get the expression of C(q), which is bounded by the simpler

bound (for large q this bound will be sufficient) 4π2(q+1)e2(q−1)
−3

q−1

q+1 , using the fact that eγ4 ≥ 1.

The result of the Lemma follows by using this inequality combined with inequality 14.
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A.2 Proof of Theorem 1

Proof. Notice that we have always Z̄ ′
n
S−2

n
Z̄n ≤ q. Indeed, there exists an orthogonal transformation

On and a diagonal matrix Λ2
n

:= diag[µ̂ j]1≤ j≤q with µ̂ j > 0 being the eigenvalues of S2
n
, such that

S2
n
= O

′

n
Λ2

n
On. Now put Yi := [Yi, j]1≤ j≤q = OnZi . It is easy to see that by construction the empirical

variance of the Yi is

1

n

n∑

i=1

YiY
′
i
=

1

n

n∑

i=1

OnZi Z
′
i
O′

n
= OnS2

n
O
′

n
= Λ2

n
.

It also follows from this equality that, for all j = 1, · · · ,q, 1

n

∑n

i=1
Y 2

i, j
= µ̂ j , and

Z̄ ′
n
S−2

n
Z̄n = Ȳ ′

n
Λ−2

n
Ȳn =

q∑

j=1

 
1

n

n∑

i=1

Yi, j

!2

/µ̂ j .

This quantity is lower than q by Cauchy-Schwartz inequality. So, it follows that, for all t > qn

Pr
�

nZ̄ ′
n
S−2

n
Z̄n ≥ t

�
= 0.

a) In the symmetric and unidimensional framework (q = 1), this bound follows from Hoeffding

inequality (see [9]). Consider now the symmetric multidimensional framework (q > 1). Let

σi , 1 ≤ i ≤ n be Rademacher random variables, independent from (Zi)1≤i≤n, P(σi = −1) =

P(σi = 1) = 1/2. We denote σn(Z) =
1p
n

∑n

i=1
σi Zi and remark that S2

n
= 1

n

∑n

i=1
σi Zi Z

′
i
σi . Since

the Zi ’s have a symmetric distribution, meaning that −Zi has the same distribution as Zi , we make

use of a first symmetrization step:

Pr
�

nZ
′
n
S−2

n
Zn ≥ t

�
= Pr(σn(Z)

′
S−2

n
σn(Z)≥ t).

Now, we have

σn(Z)
′
S−2

n
σn(Z) = σn(Y )

′
Λ−2

n
σn(Y ) =

q∑

j=1

 
n∑

i=1

σiYi, j

!2

/

n∑

i=1

Y 2
i, j

.

It follows that, for t > 0,

Pr(σn(Z)
′
S−2

n
σn(Z)≥ t)≤

q∑

j=1

Pr



|
∑n

i=1
σiYi, j |Æ∑n

i=1
Y 2

i, j

≥
p

t/q




≤ 2

q∑

j=1

E Pr



∑n

i=1
σiYi, jÆ∑n

i=1
Y 2

i, j

≥
p

t/q

¯̄
¯̄
¯̄ (Zi)1≤i≤n


 .

Apply now Hoeffding inequality to each unidimensional self-normalized term in this sum to con-

clude.



638 Electronic Communications in Probability

b) The Zi ’s are not anymore symmetric. Define

Bn = sup
λ∈Jq




λ′Znp
λ′S2

n
λ



 and Dn = sup

λ∈Jq





È
1+
λ′S2λ

λ′S2
n
λ



 .

First of all, remark that the following events are equivalent

n
nZ
′
n
S−2

n
Zn ≥ t

o
=

¨
Bn ≥

Ç
t

n

«
. (18)

Indeed, the supremum in the definition of Bn is reached at λ = S−2
n

Z
′
n

and then Bn =

Æ
Z
′
n
S−2

n
Zn.

Notice that

Pr

�
Bn ≥

Ç
t

n

�
≤ inf

a>−1

¨
Pr

�
BnD−1

n
≥
r

t

n(1+ a)

�
+ Pr(Dn ≥

p
1+ a)

«
.

The control of the first term on the right hand side is obtained in two steps. First apply part a) of

Theorem 1 to n1/2 supλ∈Jq

λ′(Zn−Y n)Æ
λ′S2

n,Z−Y λ̃
. Then, by application of Lemma 1 and (18), we get

p
nBnD−1

n
≤ n1/2 sup

λ∈Jq

λ′ZnÆ
λ′S2

n
λ̃+λ′S2λ̃

,

and then we have for all t > 0,

Pr

�
BnD−1

n
≥
r

t

n(1+ a)

�
≤ 2qe

1− t

2q(1+a) .

For all a > 0 and all t > 0, we have

n
Dn ≥

p
1+ a

o
=

(
sup
λ∈Jq

�
1+
λ′S2λ

λ′S2
n
λ

�
≥ 1+ a

)

=

¨
inf
λ∈Jq

�
λ′S−1S2

n
S−1λ

�
≤

1

a

«
⊂
½
µ1(S

−1S2
n
S−1)≤

1

a

¾
.

We now use Lemma 3 applied to the r.v.’s (S−1Zi)1≤i≤n with covariance matrix equal to Idq. It is

easy to check that γ4 = eγ4. For all 1< a, we have,

Pr(Dn >
p

1+ a)≤ C(q)

�
n3

γ4

�q̃

e
− n

(q+1)γ4
(1− 1

a
)2

.

Since infa>−1 ≤ infa>1, we conclude that, for any t > 0,

Pr

�
Bn >

Ç
t

n

�
≤ inf

a>1

(
2qe e

− t

2q(1+a) + C(q)

�
n3

γ4

�q̃

e
− n

(q+1)γ4
(1− 1

a
)2

)
.

We achieve the proof by noticing that γ4 ≥ q2 from Jensen’s inequality and E(‖S−1Z‖2
2
) = q.
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A.3 Proof of Theorem 2.

Part a) is proved in [17]. Now, the proof of part b) follows the same lines as the Theorem 1

combining Lemmas 1, 2 and 3.
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