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Abstract

Benford’s law states that for many random variables X > 0 its leading digit D = D(X) satisfies
approximately the equation P(D = d) = log10(1 + 1/d) for d = 1, 2, . . . , 9. This phenomenon
follows from another, maybe more intuitive fact, applied to Y := log10 X: For many real
random variables Y , the remainder U := Y − ⌊Y ⌋ is approximately uniformly distributed on
[0, 1). The present paper provides new explicit bounds for the latter approximation in terms of
the total variation of the density of Y or some derivative of it. These bounds are an interesting
and powerful alternative to Fourier methods. As a by-product we obtain explicit bounds for
the approximation error in Benford’s law.

1 Introduction

The First Digit Law is the empirical observation that in many tables of numerical data the
leading significant digits are not uniformly distributed as one might suspect at first. The
following law was first postulated by Simon Newcomb (1881):

Prob(leading digit = d) = log10(1 + 1/d)

for d = 1, . . . , 9. Since the rediscovery of this distribution by physicist Frank Benford (1938),
an abundance of additional empirical evidence and various extensions have appeared, see Raimi
(1976) and Hill (1995) for a review. Examples for “Benford’s law” are one-day returns on stock
market indices, the population sizes of U.S. counties, or stream flow data (Miller and Nigrini
2007). An interesting application of this law is the detection of accounting fraud (see Nigrini,
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1996). Numerous number sequences (e.g. Fibonacci’s sequence) are known to follow Benford’s
law exactly, see Diaconis (1977), Knuth (1969) and Jolissaint (2005).
An elegant way to explain and extend Benford’s law is to consider a random variable X > 0 and
its expansion with integer base b ≥ 2. That means, X = M · bZ for some integer Z and some
number M ∈ [1, B), called the mantissa of X. The latter may be written as M =

∑∞
i=0 Di ·b−i

with digits Di ∈ {0, 1, . . . , b − 1}. This expansion is unique if we require that Di 6= b − 1 for
infinitely many indices i, and this entails that D0 ≥ 1. Then the ℓ + 1 leading digits of X are
equal to d0, . . . , dℓ ∈ {0, 1, . . . , b − 1} with d0 ≥ 1 if, and only if,

d ≤ M < d + b−ℓ with d :=

ℓ
∑

i=0

di · b−i. (1)

In terms of Y := logb(X) and

U := Y − ⌊Y ⌋ = logb(M)

one may express the probability of (1) as

P
(

logb(d) ≤ U < logb(d + b−ℓ)
)

. (2)

If the distribution of Y is sufficiently “diffuse”, one would expect the distribution of U being
approximately uniform on [0, 1), so that (2) is approximately equal to

logb(d + b−ℓ) − logb(d) = logb(1 + b−ℓ/d).

Hill (1995) stated the problem of finding distributions satisfying Benford’s law exactly. Of
course, a sufficient condition would be U being uniformly distributed on [0, 1). Leemis et al.
(2000) tested the conformance of several survival distributions to Benford’s law using com-
puter simulations. The special case of exponentially distributed random variables was studied
by Engel and Leuenberger (2003): Such random variables satisfy the first digit law only ap-
proximatively, but precise estimates can be given; see also Miller and Nigrini (2006) for an
alternative proof and extensions. Hill and Schuerger (2005) study the regularity of digits of
random variables in detail.
In general, uniformity of U isn’t satisfied exactly but only approximately. Here is one typical
result: Let Y = σYo for some random variable Yo with Lebesgue density fo on the real line.
Then

sup
B∈Borel([0,1))

∣

∣P(U ∈ B) − Leb(B)
∣

∣ → 0 as σ → ∞.

This particular and similar results are typically derived via Fourier methods; see, for instance,
Pinkham (1961) or Kontorovich and Miller (2005).
The purpose of the present paper is to study approximate uniformity of the remainder U in
more detail. In particular we refine and extend an inequality of Pinkham (1961). Section 2
provides the density and distribution function of U in case of the random variable Y having
Lebesgue density f . In case of f having finite total variation or, alternatively, f being k ≥ 1
times differentiable with k-th derivative having finite total variation, the deviation of L(U) (i.e.
the distribution of U) from Unif[0, 1) may be bounded explicitly in several ways. Since any
density may be approximated in L1(R) by densities with finite total variation, our approach is
no less general than the Fourier method. Section 3 contains some specific applications of our
bounds. For instance, we show that in case of Y being normally distributed with variance one
or more, the distribution of the remainder U is very close to the uniform distribution on [0, 1).
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2 On the distribution of the remainder U

Throughout this section we assume that Y is a real random variable with c.d.f. F and Lebesgue
density f .

2.1 The c.d.f. and density of U

For any Borel set B ⊂ [0, 1),

P(U ∈ B) =
∑

z∈Z

P(Y ∈ z + B).

This entails that the c.d.f. G of U is given by

G(x) := P(U ≤ x) =
∑

z∈Z

(F (z + x) − F (z)) for 0 ≤ x ≤ 1.

The corresponding density g is given by

g(x) :=
∑

z∈Z

f(z + x).

Note that the latter equation defines a periodic function g : R → [0,∞], i.e. g(x + z) = g(x)
for arbitrary x ∈ R and z ∈ Z. Strictly speaking, a density of U is given by 1{0 ≤ x < 1}g(x).

2.2 Total variation of functions

Let us recall the definition of total variation (cf. Royden 1988, Chapter 5): For any interval
J ⊂ R and a function h : J → R, the total variation of h on J is defined as

TV(h, J) := sup
{

m
∑

i=1

∣

∣h(ti) − h(ti−1)
∣

∣ : m ∈ N; t0 < · · · < tm; t0, . . . , tm ∈ J

}

.

In case of J = R we just write TV(h) := TV(h, R). If h is absolutely continuous with derivative
h′ in L1

loc(R), then

TV(h) =

∫

R

|h′(x)| dx.

An important special case are unimodal probability densities f on the real line, i.e. f is non-
decreasing on (−∞, µ] and non-increasing on [µ,∞) for some real number µ. Here TV(f) =
2f(µ).

2.3 Main results

We shall quantify the distance between L(U) and Unif[0, 1) by means of the range of g,

R(g) := sup
x,y∈R

∣

∣g(y) − g(x)
∣

∣ ≥ sup
u∈[0,1]

|g(u) − 1|.

The latter inequality follows from supx∈R
g(x) ≥

∫ 1

0
g(x) dx = 1 ≥ infx∈R g(x). In addition we

shall consider the Kuiper distance between L(U) and Unif[0, 1),

KD(G) := sup
0≤x<y≤1

∣

∣G(y) − G(x) − (y − x)
∣

∣ = sup
0≤x<y≤1

∣

∣P(x ≤ U < y) − (y − x)
∣

∣,
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and the maximal relative approximation error,

MRAE(G) := sup
0≤x<y≤1

∣

∣

∣

G(y) − G(x)

y − x
− 1

∣

∣

∣
.

Expression (2) shows that these distance measures are canonical in connection with Benfords
law. Note that KD(G) is bounded from below by the more standard Kolmogorov-Smirnov
distance,

sup
x∈[0,1]

|G(x) − x|,

and it is not greater than twice the Kolmogorov-Smirnov distance.

Theorem 1. Suppose that TV(f) < ∞. Then g is real-valued with

TV(g, [0, 1]) ≤ TV(f) and R(g) ≤ TV(f)/2.

Remark. The inequalities in Theorem 1 are sharp in the sense that for each number τ > 0
there exists a density f such that the corresponding density g satisfies

TV(g, [0, 1]) = TV(f) = 2τ and max
0≤x<y≤1

∣

∣g(x) − g(y)
∣

∣ = τ. (3)

A simple example, mentioned by the referee, is the uniform density f(x) = 1{0 < x < τ}/τ .
Writing τ = m + a for some integer m ≥ 0 and a ∈ (0, 1], one can easily verify that

g(x) = m/τ + 1{0 < x < a}/τ,

and this entails (3).
Here is another example with continuous densities f and g: For given τ > 0 consider a
continuous, even density f with f(0) = τ such that for all integers z ≥ 0,

f is

{

linear and non-increasing on [z, z + 1/2],

constant on [z + 1/2, z + 1].

Then f is unimodal with mode at zero, whence TV(f) = 2f(0) = 2τ . Moreover, one verifies
easily that g is linear and decreasing on [0, 1/2] and linear and increasing on [1/2, 1] with
g(0)− g(1/2) = τ . Thus TV(g, [0, 1]) = 2τ as well. Figure 1 illustrates this construction. The
left panel shows (parts of) an even density f with f(0) = 0.5 = TV(f)/2, and the resulting
function g with TV(g, [0, 1]) = TV(f) = g(1) − g(0.5).
As a corollary to Theorem 1 we obtain a refinement of the inequality

sup
0≤x≤1

|G(x) − x| ≤ TV(f)/6

which was obtained by Pinkham (1961, corollary to Theorem 2) via Fourier techniques:

Corollary 2. Under the conditions of Theorem 1, for 0 ≤ x < y ≤ 1,

∣

∣G(y) − G(x) − (y − x)
∣

∣ ≤ (y − x)(1 − (y − x))TV(f)/2.

In particular,
KD(G) ≤ TV(f)/8 and MRAE(G) ≤ TV(f)/2.
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Figure 1: A density f (left) and the corresponding g (right) such that TV(f) = TV(g).

The previous results are for the case of TV(f) being finite. Next we consider smooth densities
f . A function h on the real line is called k ≥ 1 times absolutely continuous if h ∈ Ck−1(R),
and if its derivative h(k−1) is absolutely continuous. With h(k) we denote some version of the
derivative of h(k−1) in L1

loc(R).

Theorem 3. Suppose that f is k ≥ 1 times absolutely continuous such that TV(f (k)) < ∞
for some version of f (k). Then g is Lipschitz-continuous on R. Precisely, for x, y ∈ R with
|x − y| ≤ 1,

∣

∣g(x) − g(y)
∣

∣ ≤ |x − y|(1 − |x − y|)TV(f (k))

2 · 6k−1
≤ TV(f (k))

8 · 6k−1
.

Corollary 4. Under the conditions of Theorem 3, for 0 ≤ x < y ≤ 1,

∣

∣G(y) − G(x) − (y − x)
∣

∣ ≤ (y − x)(1 − (y − x))
TV(f (k))

2 · 6k
.

In particular,

KD(G) ≤ TV(f (k))

8 · 6k
and MRAE(G) ≤ TV(f (k))

2 · 6k
.

Finally, let us note that Theorem 1 entails a short proof of the qualitative result mentioned in
the introduction:

Corollary 5. Let Y = µ + σYo for some µ ∈ R, σ > 0 and a random variable Yo with density
fo, i.e. f(x) = fo((x − µ)/σ)/σ. Then

∫ 1

0

|g(x) − 1| dx → 0 as σ → ∞, uniformly in µ.

3 Some applications

We start with a general remark on location-scale families. Let fo be a probability density on

the real line such that TV(f
(k)
o ) < ∞ for some integer k ≥ 0. For µ ∈ R and σ > 0 let

f(x) = fµ,σ(x) := σ−1f
(

σ−1(x − µ)
)

.

Then one verifies easily that

TV(f (k)) = TV(f (k)
o )/σk+1.
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3.1 Normal and log-normal distributions

For φ(x) := (2π)−1/2 exp(−x2/2), elementary calculations reveal that

TV(φ) = 2φ(0) ≈ 0.7979,

TV(φ(1)) = 4φ(1) ≈ 0.9679,

TV(φ(2)) = 8φ(
√

3) + 2φ(0) ≈ 1.5100.

In general,
φ(k)(x) = Hk(x)φ(x)

with the Hermite type polynomial

Hk(x) = exp(x2/2)
dk

dxk
exp(−x2/2)

of degree k. Via partial integration and induction one may show that
∫

Hj(x)Hk(x)φ(x) dx = 1{j = k}k!

for arbitrary integers j, k ≥ 0 (cf. Abramowitz and Stegun 1964). Hence the Cauchy-Schwarz
inequality entails that

TV(φ(k)) =

∫

|φ(k+1)(x)| dx

=

∫

|Hk+1(x)|φ(x) dx

≤
(

∫

Hk+1(x)2φ(x) dx
)1/2

=
√

(k + 1)!.

These bounds yield the following results:

Theorem 6. Let f(x) = fµ,σ(x) = φ((x − µ)/σ)/σ for µ ∈ R and σ ≥ 1/6. Then the
corresponding functions g = gµ,σ and G = Gµ,σ satisfy the inequalities

R(gµ,σ) ≤ 4.5 · h
(

⌊36σ2⌋
)

,

KD(Gµ,σ) ≤ 0.75 · h
(

⌊36σ2⌋
)

,

MRAE(Gµ,σ) ≤ 3 · h
(

⌊36σ2⌋
)

,

where h(m) :=
√

m!/mm for integers m ≥ 1.

It follows from Stirling’s formula that h(m) = cmm1/4e−m/2 with limm→∞ cm = (2π)1/4. In
particular,

lim
m→∞

log h(m)

m
= − 1

2
,

so the bounds in Theorem 6 decrease exponentially in σ2. For σ = 1 we obtain already the
remarkable bounds

R(g) ≤ 4.5 · h(36) ≈ 2.661 · 10−7,

KD(G) ≤ 0.75 · h(36) ≈ 4.435 · 10−8,

MRAE(G) ≤ 3 · h(36) ≈ 1.774 · 10−7

for all normal densities f with standard deviation at least one.
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Corollary 7. For an integer base b ≥ 2 let X = bY for some random variable Y ∼ N (µ, σ2)
with σ ≥ 1/6. Then the leading digits D0,D1,D2, . . . of X satisfy the following inequalities:
For arbitrary digits d0, d1, d2, . . . ∈ {0, 1, . . . , b − 1} with d0 ≥ 1 and integers ℓ ≥ 0,

∣

∣

∣

∣

∣

P
(

(Di)
ℓ
i=0 = (di)

ℓ
i=0

)

logb(1 + b−ℓ/d(ℓ))
− 1

∣

∣

∣

∣

∣

≤ 3 · h
(

⌊36σ2⌋
)

,

where d(ℓ) :=
∑ℓ

i=1 di · b−i. ¤

3.2 Gumbel and Weibull distributions

Let X > 0 be a random variable with Weibull distribution, i.e. for some parameters γ, τ > 0,

P(X ≤ r) = 1 − exp(−(r/γ)τ ) for r ≥ 0.

Then the standardized random variable Yo := τ log(X/γ) satisfies

Fo(y) := P(Yo ≤ y) = 1 − exp(−ey) for y ∈ R

and has density function
fo(y) = ey exp(−ey),

i.e. −Yo has a Gumbel distribution. Thus Y := logb(X) may be written as Y = µ + σYo with
µ := logb(γ) and σ = (τ log b)−1.
Elementary calculations reveal that for any integer n ≥ 1,

f (n−1)
o (y) = pn(ey) exp(−ey)

with pn(t) being a polynomial in t of degree n. Precisely, p1(t) = t, and

pn+1(t) = t(p′n(t) − pn(t)) (4)

for n = 1, 2, 3, . . .. In particular, p2(t) = t(1−t) and p3(t) = t(1−3t+t2). These considerations
lead already to the following conclusion:

Corollary 8. Let X > 0 have Weibull distribution with parameters γ, τ > 0 as above. Then

TV(f
(k)
o ) < ∞ and

∣

∣

∣

∣

∣

P
(

(Di)
ℓ
i=0 = (di)

ℓ
i=0

)

logb(1 + b−ℓ/d(ℓ))
− 1

∣

∣

∣

∣

∣

≤ 3 · TV(f (k)
o )

(τ log b

6

)k+1

for arbitrary integers k, ℓ ≥ 0 and digits d0, d1, d2 . . . as in Corollary 7. ¤

Explicit inequalities as in the gaussian case seem to be out of reach. Nevertheless some

numerical bounds can be obtained. Table 1 contains numerical approximations for TV(f
(k)
o )

and the resulting upper bounds

Bτ (k) := 3 · TV(f (k)
o )

(τ log(10)

6

)k+1

for the maximal relative approximation error in Benford’s law with decimal expansions, where
τ = 1.0, 0.5, 0.3. Note that τ = 1.0 corresponds to the standard exponential distribution. For
a detailed analysis of this special case we refer to Engel and Leuenberger (2003) and Miller
and Nigrini (2006).



106 Electronic Communications in Probability

k TV(f
(k)
o ) B1.0(k) B0.5(k) B0.3(k)

0 7.3576 · 10−1 8.4707 · 10−1 4.2354 · 10−1 2.5412 · 10−1

1 9.4025 · 10−1 4.1543 · 10−1 1.0386 · 10−1 3.7388 · 10−2

2 1.7830 3.0232 · 10−1 3.7790 · 10−2 8.1627 · 10−3

3 4.5103 2.9348 · 10−1 1.8343 · 10−2 2.3772 · 10−3

4 1.4278 · 10 3.5653 · 10−1 1.1142 · 10−2 8.6638 · 10−4

5 5.4301 · 10 5.2038 · 10−1 8.1309 · 10−3 3.7936 · 10−4

6 2.4118 · 102 8.8699 · 10−1 6.9296 · 10−3 1.9399 · 10−4

7 1.2252 · 103 1.7292 6.7546 · 10−3 1.1345 · 10−4

8 7.0056 · 103 3.7944 7.4110 · 10−3 7.4686 · 10−5

9 4.4527 · 104 9.2552 9.0383 · 10−3 5.4651 · 10−5

10 3.1140 · 105 2.4840 · 10 1.2129 · 10−2 4.4003 · 10−5

11 2.3763 · 106 7.2744 · 10 1.7760 · 10−2 3.8659 · 10−5

12 1.9648 · 107 2.3083 · 102 2.8177 · 10−2 3.6801 · 10−5

13 1.7498 · 108 7.8888 · 102 4.8150 · 10−2 3.7732 · 10−5

14 1.6698 · 109 2.8890 · 103 8.8166 · 10−2 4.1454 · 10−5

Table 1: Some bounds for Weibull-distributed X with τ ≤ 1.0, 0.5, 0.3

Remark. Writing

pn(t) =

n
∑

k=1

(−1)k−1Sn,k tk,

it follows from the recursion (4) that the coefficients can be calculated inductively by

S1,1 = 1, Sn,k = Sn−1,k−1 + kSn−1,k.

Hence the Sn,k are Stirling numbers of the second kind (see [6], chapter 6.1).

4 Proofs

4.1 Some useful facts about total variation

In our proofs we shall utilize the some basic properties of total variation of functions h : J → R

(cf. Royden 1988, Chapter 5). Note first that

TV(h, J) = TV+(h, J) + TV−(h, J)

with

TV±(h, J) := sup
{

m
∑

i=1

(

h(ti) − h(ti−1)
)±

: m ∈ N; t0 < · · · < tm; t0, . . . , tm ∈ J

}

and a± := max(±a, 0) for real numbers a. Here are further useful facts in case of J = R:

Lemma 9. Let h : R → R with TV(h) < ∞. Then both limits h(±∞) := limx→±∞ h(x)
exist. Moreover, for arbitrary x ∈ R,

h(x) = h(−∞) + TV+(h, (−∞, x]) − TV−(h, (−∞, x]).
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In particular, if h(±∞) = 0, then TV+(h) = TV−(h) = TV(h)/2. ¤

Lemma 10. Let h be integrable over R.
(a) If TV(h) < ∞, then lim|x|→∞ h(x) = 0.

(b) If h is k ≥ 1 times absolutely continuous with TV(h(k)) < ∞ for some version of h(k),
then

lim
|x|→∞

h(j)(x) = 0 for j = 0, 1, . . . , k.

While Lemma 9 is standard, we provide a proof of Lemma 10:

Proof of Lemma 10. Part (a) follows directly from Lemma 9. Since TV(h) < ∞, there
exist both limits limx→±∞ h(x). If one of these limits was nonzero, the function h could not
be integrable over R.
For the proof of part (b), define h(k)(±∞) := limx→±∞ h(k)(x). If h(k)(+∞) 6= 0, then one
can show inductively for j = k − 1, k − 2, . . . , 0 that limx→∞ h(j)(x) = sign(h(k)(+∞)) · ∞.
Similarly, if h(k)(−∞) 6= 0, then limx→−∞ h(j)(x) =
(−1)k−jsign(h(k)(−∞)) · ∞ for 0 ≤ j < k. In both cases we would get a contradiction to
h(0) = h being integrable over R.
Now suppose that lim|x|→∞ h(k)(x) = 0. It follows from Taylor’s formula that for x ∈ R and
u ∈ [−1, 1],

|h(x + u)| =

∣

∣

∣

∣

∣

∣

k−1
∑

j=0

h(j)(x)

j!
uj +

∫ u

0

h(k)(x + v)(u − v)k−1

(k − 1)!
dv

∣

∣

∣

∣

∣

∣

≥
∣

∣

∣

k−1
∑

j=0

h(j)(x)

j!
uj

∣

∣

∣
− sup

|s|≥|x|−1

|h(k)(s)||u|k
k!

.

Hence
∫ x+1

x−1

|h(t)| dt ≥ |h(j)(x)|
j!

Aj,k−1 − 2 sup
|s|≥|x|−1

|h(k)(s)|
(k + 1)!

for any j ∈ {0, 1, . . . , k − 1}, where for 0 ≤ ℓ ≤ m,

Aℓ,m := min
a0,...,am∈R : aℓ=1

∫ 1

−1

∣

∣

∣

m
∑

j=0

aju
j
∣

∣

∣
du > 0.

This shows that

|h(j)(x)| ≤ j!

Aj,k−1

(

∫ x+1

x−1

|h(t)| dt + 2 sup
|s|≥|x|−1

|h(k)(s)|
(k + 1)!

)

→ 0 as |x| → ∞. ¤

4.2 Proofs of the main results

Proof of Theorem 1. For arbitrary m ∈ N and 0 ≤ t0 < t1 < . . . < tm ≤ 1,

∑

z∈Z

m
∑

i=1

∣

∣f(z + ti) − f(z + ti−1)
∣

∣ ≤ TV(f). (5)
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In particular, for two points x, y ∈ [0, 1] with min(g(x), g(y)) < ∞, the difference g(x) − g(y)
is finite. Hence g < ∞ everywhere. Now it follows directly from (5) that TV(g) ≤ TV(f).
Moreover, for 0 ≤ x < y ≤ 1,

(

g(y) − g(x)
)±

=
(

∑

z∈Z

(

f(z + y) − f(z + x)
)

)±

≤
∑

z∈Z

(

f(z + y) − f(z + x)
)±

≤ TV±(f)

= TV(f)/2,

where the latter equality follows from Lemma 10 (a) and Lemma 9. ¤

Proof of Corollary 2. Let 0 ≤ x < y ≤ 1 and δ := y − x ∈ (0, 1]. Then

∣

∣G(y) − G(x) − (y − x)
∣

∣ =
∣

∣

∣

∫ y

x

g(u) du − δ

∫ y

y−1

g(u) du
∣

∣

∣

=
∣

∣

∣
(1 − δ)

∫ y

x

g(u) du − δ

∫ x

y−1

g(u) du
∣

∣

∣

=
∣

∣

∣
δ(1 − δ)

∫ 1

0

(

g(x + δt) − g(x − (1 − δ)t)
)

dt
∣

∣

∣

≤ δ(1 − δ)

∫ 1

0

∣

∣g(x + δt) − g(x − (1 − δ)t)
∣

∣ dt

≤ δ(1 − δ)TV(f)/2. ¤

Proof of Theorem 3. Throughout this proof let x, y ∈ R be generic real numbers with
δ := y − x ∈ [0, 1]. For integers j ∈ {0, . . . , k} and N ≥ 1 we define

g
(j)
N (x, y) :=

N
∑

z=−N

(

f (j)(z + y) − f (j)(z + x)
)

.

Note that g(y) − g(x) = limN→∞ g
(0)
N (x, y) whenever g(x) < ∞ or g(y) < ∞. To establish a

relation between g(j)(·, ·) and g(j+1)(·, ·) note first that for absolutely continuous h : R → R,

h(y) − h(x) = h(y) − h(x) − δ
(

h(y) − h(y − 1)
)

+ δ
(

h(y) − h(y − 1)
)

= δ(1 − δ)

∫ 1

0

(

h′(x + δt) − h′(x − (1 − δ)t)
)

dt + δ
(

h(y) − h(y − 1)
)

= δ(1 − δ)

∫ 1

0

(

h′(x + δt) − h′(x + δt − t)
)

dt + δ
(

h(y) − h(y − 1)
)

,

see also the proof of Corollary 2. Hence for 0 < j ≤ k,

g
(j−1)
N (x, y) = δ(1 − δ)

∫ 1

0

g
(j)
N (x + δt, x + δt − t) dt (6)

+ δ
(

f (j−1)(N + y) − f (j−1)(−N + y − 1)
)

.
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Recall that lim|z|→∞ f (j)(z) = 0 for 0 ≤ j ≤ k by virtue of Lemma 10 (b). In particular,

TV±(f (k)) = TV(f (k))/2 by Lemma 9. Hence

g
(k)
N (x, y) =

N
∑

z=−N

(

f (k)(y) − f (k)(x)
)+ −

N
∑

z=−N

(

f (k)(y) − f (k)(x)
)−

satisfies the inequality
∣

∣

∣
g
(k)
N (x, y)

∣

∣

∣
≤ TV(f (k))/2 and converges to a limit g(k)(x, y) as N → ∞.

Moreover, it follows from (6) that
∣

∣

∣
g
(k−1)
N (x, y)

∣

∣

∣
≤ δ(1 − δ)TV(f (k))/2 + 2‖f (k−1)‖∞

and, via dominated convergence,

lim
N→∞

g
(k−1)
N (x, y) = g(k−1)(x, y) := δ(1 − δ)

∫ 1

0

g(k)(x + δt, x + δt − t) dt

with

∣

∣

∣
g(k−1)(x, y)

∣

∣

∣
≤ δ(1 − δ)

∫ 1

0

∣

∣

∣
g(k)(x + δt, x + δt − t)

∣

∣

∣
dt ≤ δ(1 − δ)TV(f (k))/2.

Now we perform an induction step: Suppose that for some 1 ≤ j < k,
∣

∣

∣
g
(j)
N (x, y)

∣

∣

∣
≤ α(j) < ∞

and
g(j)(x, y) := lim

N→∞
g
(j)
N (x, y) exists with

∣

∣

∣
g(j)(x, y)

∣

∣

∣
≤ β(j)δ(1 − δ).

For j = k − 1 this is true with β(k−1) := TV(f (k))/2. Now it follows from (6) and dominated
convergence that

∣

∣

∣
g
(j−1)
N (x, y)

∣

∣

∣
≤ α(j) + 2‖f (j−1)‖∞

and

lim
N→∞

g
(j−1)
N (x, y) = g(j−1)(x, y) := δ(1 − δ)

∫ 1

0

g(j)(x + δt, x + δt − t) dt,

where

∣

∣

∣
g(j−1)(x, y)

∣

∣

∣
≤ δ(1 − δ)

∫ 1

0

∣

∣

∣
g(j)(x + δt, x + δt − t)

∣

∣

∣
dt

≤ β(j)δ(1 − δ)

∫ 1

0

t(1 − t) dt

= (β(j)/6) δ(1 − δ).

These considerations show that g(0)(x, y) := limN→∞ g
(0)
N (x, y) always exists and satisfies the

inequality
∣

∣

∣
g(0)(x, y)

∣

∣

∣
≤ δ(1 − δ)

TV(f (k))

2 · 6k−1
≤ TV(f (k))

8 · 6k−1
.

In particular, g is everywhere finite with g(y) − g(x) = g(0)(x, y) satisfying the asserted in-
equalities. ¤
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Proof of Corollary 4. For 0 ≤ x < y ≤ 1 and δ := y − x ∈ (0, 1],

∣

∣G(y) − G(x) − (y − x)
∣

∣ =
∣

∣

∣
δ(1 − δ)

∫ 1

0

(

g(x + δt) − g(x + δt − t) dt
∣

∣

∣

≤ δ(1 − δ)
TV(f (k))

2 · 6k−1

∫ 1

0

t(1 − t) dt

= δ(1 − δ)
TV(f (k))

2 · 6k
. ¤

Proof of Corollary 5. It is wellknown that integrable functions on the real line may be
approximated arbitrarily well in L1(R) by regular functions, for instance, functions with com-
pact support and continuous derivative. With little extra effort one can show that for any
fixed ǫ > 0 there exists a probability density f̃o such that TV(f̃o) < ∞ and

∫ ∞

−∞

∣

∣fo(z) − f̃o(z)
∣

∣ dz ≤ ǫ.

With f̃(x) := f̃o((x − µ)/σ)/σ and g̃(x) :=
∑

z∈Z
f̃(z + x),

∫ 1

0

|g(x) − 1| dx ≤
∫ 1

0

∣

∣g(x) − g̃(x)
∣

∣ dx +

∫ 1

0

|g̃(x) − 1| dx.

But

∫ 1

0

∣

∣g(x) − g̃(x)
∣

∣ dx ≤
∫ 1

0

∑

z∈Z

∣

∣f(z + x) − f̃(z + x)
∣

∣ dx

=

∫ ∞

−∞

∣

∣f(y) − f̃(y)
∣

∣ dy

=

∫ ∞

−∞

∣

∣fo(z) − f̃o(z)
∣

∣ dz

≤ ǫ

while
∫ 1

0

|g̃(x) − 1| dx ≤ TV(f̃)

2
=

TV(f̃o)

2σ
→ 0 (σ → ∞)

by means of Theorem 1. Since ǫ > 0 is arbitrarily small, this yields the asserted result. ¤

Proof of Theorem 6. According to Theorem 1,

R(gµ,σ) ≤ TV(fµ,σ)

2
=

TV(φ)

2σ
=

φ(0)

σ
,

whereas Theorem 3 and the considerations in Section 3.1 yield the inequalities

R(gµ,σ) ≤ TV(f
(k)
µ,σ)

8 · 6k−1
=

TV(φ(k))

8 · 6k−1σk+1
≤

√

(k + 1)!

8 · 6k−1σk+1
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for all k ≥ 1. Since the right hand side equals 0.75/σ ≥ φ(0)/σ if we plug in k = 0, we may
conclude that

R(gµ,σ) ≤
√

(k + 1)!

8 · 6k−1σk+1
= 4.5 ·

√

(k + 1)!

(36σ2)k+1

for all k ≥ 0. The latter bound becomes minimal if k + 1 = ⌊36σ2⌋ ≥ 1, and this value yields
the desired bound 4.5 · h

(

⌊36σ2⌋
)

.
Similarly, Corollaries 2 and 4 yield the inequalities

KD(Gµ,σ) ≤
√

(k + 1)!

8 · 6kσk+1
= 0.75 ·

√

(k + 1)!

(36σ2)k+1
,

MRAE(Gµ,σ) ≤
√

(k + 1)!

2 · 6kσk+1
= 3 ·

√

(k + 1)!

(36σ2)k+1
,

for arbitrary k ≥ 0, and k + 1 = ⌊36σ2⌋ ≥ 1 leads to the desired bounds. ¤
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