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Département de Mathématiques, Université d’Evry-Val d’Essonne, Boulevard Francois Mitter-

rand, 91025 Evry cedex, France

email: Denis.Feyel@univ-evry.fr

ARNAUD DE LA PRADELLE
Laboratoire d’Analyse Fonctionnelle, Université Paris VI, Tour 46-0, 4 place Jussieu, 75052
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Abstract

A non-commutative version of the sewing lemma [1] is proved, with some applications

Introduction

In a preceding paper [1] we proved a sewing lemma which was a key result for the study of
Hölder continuous functions. In this paper we give a non-commutative version of this lemma.

In the first section we recall the commutative version, and give some applications (Young
integral and stochastic integral).

In the second section we prove the non-commutative version. This last result has interesting
applications: an extension of the so-called integral product, an application to a Lie-Trotter
type formula, and a sharpening of the Lyons theorem about multiplicative functionals [3,4,5].

Note that we replaced the Hölder modulus of continuity tα by a more general modulus V (t).

This paper was elaborated with the regretted G. Mokobodzki. The writing has only been done
after his death.
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1 The additive sewing lemma

0 Definition: We say that a function V (t) defined on [0, T [ is a control function if it is non
decreasing, V (0) = 0 and

∑

n≥1 V (1/n) < ∞.

As easily seen, this is equivalent to the property

V (t) =
∑

n≥0

2nV (t.2−n) < ∞

for every t ≥ 0. For example, tα and t/(log t−1)α with α > 1 are control functions.

Observe that we have

V (t) = V (t) + · · · + 2nV (t.2−n) + 2n+1V (t.2−n−1)

from which follows that Lim
t→0

V (t)/t = 0.

1 Theorem: Consider a continuous function µ(a, b) defined for 0 ≤ a ≤ b < T satisfying the
relation

|µ(a, b) − µ(a, c) − µ(c, b)| ≤ V (b − a)

for every c ∈ [a, b], where V is a control function. Then there exists a unique continuous
function ϕ(t) on [0, T [, up to an additive constant, such that

|ϕ(b) − ϕ(a) − µ(a, b)| ≤ V (b − a)

Proof : Put µ′(a, b) = µ(a, c)+µ(c, b) for c = (a+ b)/2, µ(0) = µ and µ(n+1) = µ(n)′. We easily
get for n ≥ 0

|µ(n)(a, b) − µ(n+1)(a, b)| ≤ 2nV (2−n|b − a|)

so that the series
∑

n≥0 |µ
(n)(a, b) − µ(n+1)(a, b)| ≤ V (b − a) converges, and the sequence

µ(n)(a, b) converges to a limit u(a, b). For c = (a + b)/2 we have µ(n+1)(a, b) = µ(n)(a, c) +
µ(n)(c, b) which implies

u(a, b) = u(a, c) + u(c, b)

We say that u is midpoint-additive.

Now, we prove that u is the unique midpoint-additive function with the inequality |u(a, b) −
µ(a, b)| ≤ Cst V (b − a). Indeed if we have another one v, we get

|v(a, b) − u(a, b)| ≤ K.V (b − a)

and by induction |v(a, b)−u(a, b)| ≤ 2nK.V [2−n(b−a)] which vanishes as n → ∞ as mentioned
above. Let k be an integer k ≥ 3, and take the function

w(a, b) =
k−1
∑

i=0

u(ti, ti+1)

with ti = a + i.(b − a)/k. It follows that w also is midpoint-additive, and satisfies

|w(a, b) − µ(a, b)| ≤ Cstk V (b − a)
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hence we have w = u, that is u is in fact rationnally-additive. As µ is continuous, then so also
is u, as the defining series converges uniformly for 0 ≤ a ≤ b < T . Then u is additive, and it
suffices to put ϕ(t) = u(0, t).

2 Proposition: (Riemann sums) Let σ = {ti} some finite subdivision of [a, b]. Put δ =
Supi |ti+1 − ti|. Then

Lim
δ→0

∑

i

µ(ti, ti+1) = ϕ(b) − ϕ(a)

Proof : We have

ϕ(b) − ϕ(a) −
∑

i

µ(ti, ti+1) =
∑

i

[ϕ(ti+1) − ϕ(ti) − µ(ti, ti+1)]

∣

∣

∣

∣

∣

ϕ(b) − ϕ(a) −
∑

i

µ(ti, ti+1)

∣

∣

∣

∣

∣

≤
∑

i

V (ti+1 − ti)) ≤ ε
∑

i

(ti+1 − ti) = (b − a)ε

since V (δ)/δ ≤ ε as δ → 0.

3 Remarks: a) In fact the result holds even in the case of discontinuous µ, as proved in the
appendix.

b) The result obviously extends to Banach spaces valued functions µ.

In the case V (t) = tα with α > 1, we get V (t) =
2α tα

2α − 2
.

Example 1: The Young integral

Take V (t) = t2α with α > 1/2. If x and y are two α-Hölder continuous functions on [0, 1], put

µ(a, b) = xa(yb − ya)

We get
µ(a, b) − µ(a, c) − µ(c, b) = −(xc − xa)(yb − yc)

so that
|µ(a, b) − µ(a, c) − µ(c, b)| ≤ ‖x‖α‖y‖α|b − a|2α

where ‖x‖α is the norm in the space Cα. Let ϕ be the function of theorem 2, put

∫ b

a

xt dyt = ϕ(b) − ϕ(a)

This is a Young integral (cf. also [7]).

Remark: We could take x ∈ Cα, y ∈ Cβ with α + β > 1.

Example 2: The stochastic integral

Let Xt be the standard IRm-valued Brownian motion. As is well known, t → Xt is C1/2 with
values in L2. Let f be a tensor-valued C2-function with bounded derivatives of order 2 on IRm.
Put

µ(a, b) = f(Xa) ⊗ (Xb − Xa) + ∇f(Xa) ⊗

∫ b

a

(Xt − Xa) ⊗ dXt
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where the last integral is taken in the Ito or in the Stratonovitch sense. Let N2 be the natural
norm on L2. By straightforward computations, we get

N2[µ(a, b) − µ(a, c) − µ(c, b)] ≤ K.‖∇2f‖∞|b − a|3/2

By the additive sewing lemma, there exists a unique L2-valued function ϕ(t) such that N2[ϕ(b)−
ϕ(a) − µ(a, b)] ≤ Cst .|b − a|3/2 (the control function is V (t) = t3/2). It is easily seen that

ϕ(b) − ϕ(a) =

∫ b

a

f(Xt) ⊗ dXt

in the Ito or in the Stratonovitch sense.

Observe that as the stochastic integral

∫ b

a

Xt ⊗ dXt has Cα-trajectories almost surely for

1/3 < α < 1/2, analoguous computations as above yield Cα-trajectories for

∫ b

a

f(Xt) ⊗ dXt

on the same set of paths as

∫ b

a

Xt ⊗ dXt.

4 Remark: For the FBM with α > 1/4, the reader is referred to our previous paper [1].

2 The multiplicative sewing lemma

Here we need a strong notion of control function

5 Definition: We say that a function V (t) defined on [0, T [ is a strong control function if it
is a control function and there exists a θ > 2 such that for every t

V (t) =
∑

n≥0

θnV (t.2−n) < ∞

We consider an associative monoide M with a unit element I, and we assume that M is
complete under a distance d satisfying

d(xz, yz) ≤ |z| d(x, y), d(zx, zy) ≤ |z| d(x, y)

for every x, y, z ∈ M, where z → |z| is a Lipschitz function on M with |I| = 1.

Let µ(a, b) be an M-valued function defined for 0 ≤ a ≤ b < T . We assume that µ is
continuous, that µ(a, a) = I for every a, and that for every a ≤ c ≤ b we have

(1) d(µ(a, b), µ(a, c)µ(c, b)) ≤ V (b − a)

We say that an M-valued u(a, b) is multiplicative if u(a, b) = u(a, c)u(c, b) for every a ≤ c ≤ b.

6 Theorem: There exists a unique continuous multiplicative function u such that d(µ(a, b), u(a, b)) ≤
Cst V (b − a) for every a ≤ b.

Proof : Put µ0 = µ and by induction

µn+1(a, b) = µn(a, c)µn(c, b) where c = (a + b)/2
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hn(t) = Sup
b−a≤t

|µn(a, b)|, Un(t) = Sup
b−a≤t

d(µn+1(a, b), µn(a, b))

The functions hn and Un are continuous non decreasing with hn(0) = 1 and Un(0) = 0. Let κ
be the Lipschitz constant of z → |z|. One has

hn+1(t) ≤ hn(t) + κUn(t) ≤ h0(t) + κU0(t) + · · · + κUn(t)

(2) Un+1(t) ≤ [hn(t/2) + hn+1(t/2)]Un(t/2)

Let τ > 0 be such that h0(τ) + κV (τ) ≤ θ/2. Assume that Ui(t) ≤ θiV (t/2i) for t ≤ τ and
i ≤ n. One has hn+1(t) ≤ θ/2, then

Un+1(t) ≤ θUn(t/2) ≤ θn+1V (t/2n+1)

for t ≤ τ and every n by induction.

Hence for t ≤ τ the series Un(t) converges, so that the sequence hn(τ) is bounded. By inequality
(2) the series Un(2τ) converges, and the sequence hn(2τ) is bounded. From one step to the
other we see that the sequence hn is locally bounded, and that the series Un converges locally
uniformly on [0, T [. It follows that the sequence µn(a, b) converges locally uniformly to a
continuous function u(a, b) which is midpoint-multiplicative, that is u(a, b) = u(a, c)u(c, b) for
c = (a + b)/2. One has d(u, µ) ≤ Cst V .

Next we prove the uniqueness of u. Let v be a continuous function with the same prop-
erties as u. Put K(t) = Sup

b−a≤t
Sup[|u(a, b)|, |v(a, b)|]. Let τ1 > 0 be such that K(τ1) ≤

θ/2. One has d(u(a, b), v(a, b)) ≤ k V (b − a) with some constant k, then d(u(a, b), v(a, b)) ≤
2K(t/2)kV (t/2) ≤ k θV (t/2) for b − a ≤ t ≤ τ1, and by induction d(u(a, b), v(a, b)) ≤
k θnV (t/2n). It follows that u(a, b) = v(a, b) for b − a ≤ τ1. This equality extends to ev-
ery b − a by midpoint-multiplicativity.

Finally we prove that u is multiplicative. We argue as in the additive case, and we put for an
integer m

w(a, b) =

m−1
∏

i=0

u(ti, ti+1)

where ti = a + i.(b − a)/m. For simplicity we limit ourselves to the case m = 3, that is

w(a, b) = u(a, c′)u(c′, c′′)u(c′′, b)

with c′ = a+(b−a)/3, c′′ = a+2(b−a)/3. Observe that w is obviously midpoint-multiplicative.
Take a ≤ b ≤ T0 < T , we get with successive constants ki

d(w(a, b), µ(a, b)) ≤k1V (b − a) + d(w(a, b), µ(a, c′)µ(c′, b))

≤ k2V (b − a) + d(u(a, c′)u(c′, c′′)u(c′′, b), u(a, c′)µ(c′, b))

+ d(u(a, c′)µ(c′, b), µ(a, c′)µ(c′, b))

≤ k3V (b − a) + kd(u(c′, b), µ(c′, b)) + kd(u(a, c′), µ(a, c′))

≤ k4V (b − a)

By the second step of the proof, we get w = u. The same proof extends to every m, so that u
is in fact rationally multiplicative. As u is continuous, it is multiplicative.
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7 Remark: Let ν be a function with the same properties as µ. Moreover suppose that
d(ν(a, b), µ(a, b)) ≤ Cst V (b − a) for every a ≤ b. Then ν defines the same multiplicative
function u as µ.

Example 3: The integral product

Let t → At a Cα function with values in a Banach algebra A with a unit I. Put Aab = Ab−Aa

and

µ(a, b) = I + Aab

We get

µ(a, b) − µ(a, c)µ(c, b) = −AacAcb

Suppose that α > 1/2, then the multiplicative sewing lemma applies with the obvious distance,
and there exists a unique multiplicative function u(a, b) with values in A such that

|u(a, b) − µ(a, b)| ≤ Cst |b − a|2α

In view of the remark 8, we get the same u(a, b) by taking ν(a, b) = eAab . A good notation for
u(a, b) is

u(a, b) =
b

∏

a

(I + dAt) =
b

∏

a

edAt

8 Theorem: Put Ht = u(0, t). Then this is the solution of the EDO

Ht = I +

∫ t

0

Hs dAs

where the integral is taken in the Young sense.

Proof : We have only to verify that |Hb − Ha − HaAab| ≤ Cst |b − a|2α. The first member is
worth

u(0, a)[u(a, b) − I − Aab] = u(0, a)[u(a, b) − µ(a, b)]

so that we are done.

Example 4: A Trotter type formula

Let t → At and t → Bt as in the previous paragraph, and put

µ(a, b) = [I + Aab][I + Bab]

It is straightforward to verify the good inequality

|µ(a, b) − µ(a, c)µ(c, b)| ≤ Cst |b − a|2α

so that we get a multiplicative u(a, b) such that |u(a, b)−µ(a, b)| ≤ Cst |b−a|2α or equivalently

|u(a, b) − I − Aab − Bab| ≤ Cst |b − a|2α

u(a, b) =
b

∏

a

(I + dAt + dBt) =
b

∏

a

edAt edBt
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that is

u(a, b) = Lim
n→∞

2n

∏

i=1

eAtiti+1 eBtiti+1

for ti+1 − ti = (b − a)/2n.

Particularly we can take At = tA and Bt = tB with α = 1, this yields

eA+B = u(0, 1) = Lim
n→∞

2n

∏

i=1

eA/2n

eB/2n

= Lim
n→∞

[

eA/2n

eB/2n
]2n

Indeed, in view of the remark 8 as above, we have u(0, 1) = eA+B, which is the classical
Lie-Trotter formula.

Example 5: Extending the Lyons theorem

Let A be a Banach algebra with a unit I. Take µ(a, b) of the form

µ(a, b) =
N

∑

k=0

λkA
(k)
ab

where A
(0)
ab = I, (a, b) → A

(k)
ab ∈ A is continuous, λ is a real parameter and N a given integer.

We have

µ(a, c)µ(c, b) =

N
∑

k=0

λkB
(k)
acb +

2N
∑

k=N+1

λkC
(k)
acb

Following [5], we suppose the algebraic hypothesis for k ≤ N

(3) A
(k)
ab =

k
∑

i=0

A(i)
ac A

(k−i)
cb

that is

µ(a, c)µ(c, b) = µ(a, b) +

2N
∑

k=N+1

λkC
(k)
acb

9 Theorem: Under the condition (3) and the inequality

|A
(k)
ab | ≤ M |b − a|kα

for every k ≤ N , where α > 1/(N + 1), there exists a unique multiplicative function u(a, b)
such that

|u(a, b) − µ(a, b)| ≤ Cst |b − a|(N+1)α

Moreover we have

(4) u(a, b) =
N

∑

k=0

λkA
(k)
ab +

∑

k>N

λkB
(k)
ab

where the series is normally convergent for every λ.
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Proof : The only problem is to prove formula (4), that is to prove that u is the sum of its Taylor
expansion with respect to λ. In the case where A is a complex Banach algebra, the proof of
the multiplicative sewing lemma yields a sequence of holomorphic functions which converges
uniformly with respect to λ in every compact set of |C . Hence u(a, b) in holomorphic in λ ∈ |C .
If A is only a real Banach algebra, we get a sequence of holomorphic functions with values
in the complexified Banach space of A, and the result follows. It remains to observe that the
N + 1 first terms of the Taylor expansion are the same for every function of the sequence µn

converging to u.

Application to the Lyons theorem: Let E be a Banach space. Denote En = E⊗n. Suppose
that every En has a cross-norm such that

‖u ⊗ v‖n+m ≤ ‖u‖n‖v‖m

for every u ∈ En, v ∈ Em. Let A be the completed tensor algebra under the norm

‖t‖ =
∑

n≥0

‖tn‖n

This is a Banach algebra.

Let N be given, and for every k ≤ N , let (a, b) → X
(k)
ab be an Ek-valued continuous function

such that

X
(k)
ab =

k
∑

i=0

X(i)
ac ⊗ X

(k−i)
cb

for a ≤ c ≤ b. Suppose that α > 1/(N + 1), and that we have for k ≤ N

‖X
(k)
ab ‖k ≤ M.|b − a|kα

The previous theorem applies to the function

µ(a, b) =
N

∑

k=1

λkX
(k)
ab

so that there exists a unique continuous function (a, b) → Y
(k)
ab for every k such that Y (k) =

X(k) for k ≤ N ,

Y
(k)
ab =

k
∑

i=0

Y (i)
ac ⊗ Y

(k−i)
cb

for every integer k and every a ≤ c ≤ b, and

∑

k>N

‖Y
(k)
ab ‖k ≤ Cst |b − a|(N+1)α

Remark: This theorem sharpens the theorem 3.2.1 of [5].

Some estimations
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We return to formula (4) of theorem 10

u(a, b) =

N
∑

k=0

λkA
(k)
ab +

∞
∑

k=N+1

λkB
(k)
ab

for N = Ent(1/α), and we put B
(k)
ab = A

(k)
ab for simplification, so that we have

u(a, b) =

∞
∑

k=0

λkA
(k)
ab

There exist best constants Kn for every n such that |A
(n)
ab | ≤ Kn|b − a|nα. We have

A
(n+1)
ab = A(n+1)

ac + A
(n+1)
cb +

n
∑

k=1

A(k)
ac A

(n−k+1)
cb

By taking c = (a + b)/2 we get

|A
(n+1)
ab | ≤ 2−(n+1)α

[

2Kn+1 +
n

∑

k=1

KkKn−k+1

]

|b − a|(n+1)α

and then

(2(n+1)α − 2)Kn+1 ≤

n
∑

k=1

KkKn−k+1

Let 0 < β < α, and introduce the entire function

e(x) = eβ(x) =
∑

n≥0

xn

n!β
⇒ e(x)2 =

∑

n≥0

En,β
xn

n!β

where

En,β =
n

∑

k=0

[

Ck
n

]β
≤ 2nβ(n + 1)

There exist c ≥ 0 and x > 0 such that for 1 ≤ m ≤ N

(5) Km ≤ c.xm/m!β

Hence we have for n ≥ N

(2(n+1)α − 2)Kn+1 ≤ c2xn+1
n

∑

k=1

(k!)−β(n − k + 1)−β ≤ c2xn+1[(n + 1)!]−βEn+1,β

In order that (5) holds for every n, it suffices that

1

c
≥ Sup

n>N

En+1,β

2(n+1)α − 2

which is realizable since the fraction in the second hand member shrinks to 0 as n → ∞ (first
choose c and afterward choose x).



A NON-COMMUTATIVE SEWING LEMMA 33

10 Corollary: Put c′ = Max(c, 1), we have

|u(a, b)| ≤ c′ eβ(|λ|x|b − a|α)

11 Remarks: a) Note that for α = 1 one can take β = α = 1 so that we recover the classical
inequality.

b) For β < 1, the function eβ(x) increases faster than the exponential function (cf. Schwartz
[6] for a comparison when β = 1/2).

c) there are some analoguous estimates in Gubinelli [2].

Appendix: the discontinuous case

As announced in Remark 4a), we extend the additive sewing lemma in the case where µ is
discontinuous. We go back to the proof of the lemma: we get a unique function u(a, b) which
is rationally additive and such that |u(a, b) − µ(a, b)| ≤ Cst V (b − a). Put

vn(a, b) = u(an, bn) − u(an, a) + u(bn, b)

where an ≤ a and bn ≤ b are the classical dyadic approximations of a and b. As easily verified,
vn is additive for every a ≤ c ≤ b. Besides, we have

|vn(a, b) − u(a, b)| ≤ 2V (b − a) + 2V (bn − an) + V (a − an) + V (b − bn)

so that the sequence vn(a, b)−u(a, b) is bounded. Let v(a, b) be the limit of vn(a, b) according
to an ultrafilter U → ∞. We first have v(a, b) = v(a, c) + v(c, b) for every a ≤ c ≤ b. Then we
get

|v(a, b) − µ(a, b)| ≤ 3V (b − a) + 2Lim
U

V (bn − an) ≤ 5V (2(b − a))

As V (2t) is also a control function for µ, v is the unique additive function such that |v(a, b)−
µ(a, b)| ≤ 5V (2(b − a)), which implies that v = u. Hence u is completely additive.

Here we point out the important fact that the result also holds if µ takes values in a Banach
space B. Indeed, the proof is exactly the same, the last limit according to U must be taken in
the bidual B′′ with the topology σ(B′′, B′), but the result u belongs to B.
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