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Abstract
We consider a zero sum, stochastic differential game which involves two players, the controller
and the stopper. The stopper selects the stopping rule which halts the game. The controller
chooses the diffusion coefficient of the corresponding state process which is allowed to degener-
ate. At the end of the game, the controller pays the stopper, the amount E

∫ τ

0
e−αtC(Zx(t))dt,

where Zx(·) represents the state process with initial position x and α is a positive constant.
Here C(·) is a reward function where the set {x : C(x) > 0} is an open interval which contains
the origin. Under some assumptions on the reward function C(·) and the drift coefficient of
the state process, we show that this game has a value. Furthermore, this value function is
Lipschitz continuous, but it fails to be a C1 function.

1 Introduction

We study a stochastic differential game in this article. This work is related to the controller
and the stopper game studied by Karatzas and Sudderth in [4] and we use their formulation of
the problem. Consider a weak solution to the one dimensional stochastic differential equation

Xx(t) = x +
∫ t

0

µ(Xx(s))ds +
∫ t

0

u(s)dW (s) (1.1)

where x is a real number, µ is a twice differentiable function defined on R , {W (t) : t ≥ 0}
is a standard Brownian motion adapted to a right continuous filtration {Ft : t ≥ 0} on a
probability space (Ω,F, P ). The σ-algebra F contains all the null sets in Ω and the Brownian
increments W (t+ s)−W (t) are independent of Ft for all t ≥ 0 and s ≥ 0. The control process
u(·) is progressively measurable with respect to the filtration {Ft} and satisfies

0 ≤ u(t) ≤ σ0, (1.2)
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where σ0 is a constant.

The quadruple ((Ω,F, P ), (Ft),W, u(·)) is an admissible control system if the corresponding
state process Xx satisfies (1.1) together with the above assumptions. For convenience, we let
A(x) be the class of state processes Xx available with the initial position x. Here, the reward
function C(·) is a twice continuously differentiable defined on R and C(0) > 0.

In this zero sum stochastic differential game, there are two players, the controller and the
stopper. Given any initial point x, the controller selects a state process Xx from A(x) . The
second player, the stopper selects a stopping rule τ to halt the evolution of the state process
Xx. As described in [4], such a stopping rule τ is considered a mapping from the space of
continuous functions C[0,∞) to the half line [0,∞] satisfying

{f ∈ C[0,∞) : τ(f) ≤ t} ∈ ϕ−1
t (B) 0 ≤ t < ∞, (1.3)

where B is the Borel σ-algebra generated by the open sets in C[0,∞) and ϕt : C[0,∞) →
C[0,∞) is the mapping

(ϕtf)(s) = f(t ∧ s) 0 ≤ s < ∞.

Let S be the collection of all such stopping rules. If the stopper decides to end the game at
τ(Xx), then the controller pays the stopper an amount of

∫ τ(Xx)

0
e−αtC(Xx(t))dt at that time.

Here α is a positive constant. Thus, the controller would like to choose the control process u(·)
to minimize the expected value E

∫ τ

0
e−αtC(Xx(t))dt, while the stopper would like to select the

stopping rule τ to maximize it. The positive discount factor α is useful, so that the expected
pay-off will remain finite even for any degenerate diffusion process with state space contained
in the set [C > 0].

We define the upper and lower value functions of this game by

V (x) = inf
τ∈S

sup
Xx∈A(x)

E

∫ τ

0

e−αtC(Xx(t))dt (1.4)

and
V (x) = sup

Xx∈A(x)

inf
τ∈S

E

∫ τ

0

e−αtC(Xx(t))dt (1.5)

respectively.

If V (x) = V (x), then this game has a value, and in that case, we denote this common value
function by V (x). The discrete time controller and stopper game has been studied in [5]. They
showed that the game has a value when the reward function is Borel-measurable and the state
space is a Polish space. Our problem is closely related to the continuous time controller and
stopper game studied by [4].

Throughout the article, we make the following assumptions (i), (ii) and (iii) about the drift
coefficient µ(·) and the reward function C(·). Here, µ′ and µ′′ denote the first and second
derivatives of the function µ. C ′ denotes the first derivative of C.
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(i) The function µ is twice continuously differentiable and it satisfies the following conditions:

a) xµ(x) < 0 for all x 6= 0, (1.6)
b) α− µ′(x) > 0 for all x, and (1.7)
c) (α− 2µ′(x))(α− µ′(x)) > µ(x)µ′′(x) for all x. (1.8)

(ii) The function C is twice continuously differentiable, C(0) > 0 and the set {x : C(x) > 0}
is an open interval. We denote it by

{x : C(x) > 0} = (r, s). (1.9)

(iii)

The function
C ′(x)

(α− µ′(x))
is decreasing on R. (1.10)

Remarks.

1. In the case of linear drift, say, µ(x) = −θx where θ > 0 is a positive constant, the above
assumptions (1.6)-(1.8) are trivially true. Furthermore, (1.9) and (1.10) reduce to C
being a twice differentiable concave function with C(0) > 0.

2. If µ is decreasing and α2 > µ(x)µ′′(x) for all x, then (1.7) and (1.8) are automatically
satisfied.

Next, as in [4], we introduce the definition of a saddle point of the game.

Definition 1.1.
A pair (τ∗, Z∗) in S ×A(x) is called a saddle point of the game, if

E

∫ τ

0

e−αtC(Z∗(t))dt ≤ E

∫ τ∗(Z∗)

0

e−αtC(Z∗(t))dt

≤ E

∫ τ∗(X)

0

e−αtC(X(t))dt

(1.11)

for every τ in S and every X(·) in A(x).

The existence of a saddle point clearly implies that the game has a value and in this case,

V (x) = V (x) = E

∫ τ∗(Z∗)

0

e−αtC(Z∗(t))dt.

We intend to characterize a saddle point and to derive the explicit form of the value function
for this game.

For early work on stochastic differential games, we refer to chapter 17 of [2]. There, stochas-
tic differential games are discussed for non-degenerate diffusion processes in which the control
variables occur in the drift coefficient. In [1], two player, zero sum stochastic differential games
in finite time horizon are considered in the viscosity solutions framework. There, both players
control the drift and diffusion coefficients in the presence of a running cost function and a ter-
minal cost function. They assume that the drift and diffusion coefficients of the state process
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as well as both cost functions are bounded. They show the existence of the value function and
characterize it as the unique viscosity solution to the corresponding “Bellman-Isaacs” partial
differential equation.

In our problem, the cost function is unbounded and the drift coefficient of the state process
also can be unbounded. Here, the game has a value and this value function is Lipschitz con-
tinuous, but it fails to be a C1 function.

This paper is organized as follows. In section 2, we introduce a class of degenerate diffusion
processes. Then we assume the existence of a function Q0 which is a solution to a second order
differential equation with overdetermined boundary data. Using this function Q0, we prove the
main theorem of the article. There, we obtain a saddle point and the corresponding optimal
state process which belongs to the above described class of degenerate diffusion processes. We
discuss the properties of the value function of an optimal stopping problem in section 3. This
will be used in the construction of Q0. Section 4 is devoted to the construction of the function
Q0 with the desired properties as required in section 2. In the case of linear drift coefficient
µ(x) = −θx where θ is a positive number, the computations related to the construction of Q0

in Theorem 4.1 simplify a great deal.

2 A Class of Degenerate Diffusion
Processes and a Saddle Point

We begin with a class of degenerate diffusion processes used in a stochastic control problem
in [6]. The construction of such processes is described in page 5 of [6], but it is an immediate
application of the proof of Theorem 7.2 in chapter 4 of Ikeda and Watanabe (p.208-214, [3]).
For each open interval (a, b) with a < 0 < b, consider a weak solution to

Xx(t) = x +
∫ t

0

µ(Xx(s))ds +
∫ t

0

σ0I(a,b)(Xx(s))dW (s), (2.1)

where x is a real number, µ is a twice differentiable function on R which satisfies (1.6),
{W (t) : t ≥ 0} is a standard Brownian motion adapted to a right continuous filtration
{Ft : t ≥ 0} on a probability space (Ω,F, P ). For a discussion on the existence of a weak
solution and the uniqueness in law for such processes, we refer to [6].

To describe the saddle point, first we assume the existence of a function Q0 and an open
interval (a∗, b∗) so that a∗ < 0 < b∗ and the following conditions are satisfied:

(i)
σ2

2
Q′′

0(x) + µ(x)Q′
0(x)− αQ0(x) + C(x) = 0

for all x in (a∗, b∗).
(2.2)

(ii) Q0(a∗) = Q0(b∗) = 0, Q′′
0(a∗) = Q′′

0(b∗) = 0
and Q0(x) > 0 for all x in (a∗, b∗).

(2.3)

It will be shown in section 5 that such a function Q0 and the interval (a∗, b∗) satisfying
a∗ < 0 < b∗ exist. In the following lemma, we obtain two properties of the function Q0 under
the assumptions (2.2) and (2.3). They will be used in the derivation of a saddle point in the
proof of Theorem 2.2.
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Lemma 2.1. Assume the existence of a function Q0 and a finite interval (a∗, b∗) so that
a∗ < 0 < b∗ and satisfying (2.2) and (2.3). Then

(i) a∗ ≤ r < 0 < s ≤ b∗, where the interval (r, s) is defined in
(1.9), and

(2.4)

(ii) Q′′
0(x) ≤ 0 for all x in the interval [a∗, b∗]. (2.5)

Proof. Since the coefficients of the differential equation (2.2) are C1 functions on R, the func-
tion Q0 which satisfy (2.2) and (2.3) can be extended to R so that it satisfies (2.2) everywhere.
Consider this extended function Q0 and evaluate (2.2) at a∗ and b∗. Using (2.3), then we ob-
tain µ(a∗)Q′

0(a
∗) + C(a∗) = 0 and µ(b∗)Q′

0(b
∗) + C(b∗) = 0. By (2.3), Q0 > 0 on (a∗, b∗) and

hence Q′
0(a

∗) ≥ 0 and Q′
0(b

∗) ≤ 0. Since a∗ < 0 < b∗, using (1.6), we obtain µ(a∗) > 0 > µ(b∗).
Consequently, C(a∗) ≤ 0 and C(b∗) ≤ 0. Therefore, using (1.9), we obtain a∗ ≤ r < 0 < s ≤ b∗

and part (i) follows.

To prove part (ii), we intend to use the maximum principle in differential equations (page 7,
[8]). By differentiating the differential equation in (2.2) when a∗ < x < b∗, we obtain

(α− µ′(x))Q′
0(x) =

σ2

2
Q′′′

0 (x) + µ(x)Q′′
0(x) + C ′(x). (2.6)

Let P (x) = Q′′
0(x) on [a∗, b∗]. By differentiating (2.6) again and rearranging the terms, we

derive

σ2

2
P ′′(x) + µ(x)P ′(x)− (α− 2µ′(x))P (x) + µ′′(x)Q′

0(x) + C ′′(x) = 0,

for a∗ < x < b∗. Next, we use (2.6) to replace Q′
0(x) in the above equation and obtain

σ2

2
P ′′(x) + µ(x)P ′(x)− (α− 2µ′(x))P (x)

+
µ′′(x)

(α− µ′(x))
[
σ2

2
P ′(x) + µ(x)P (x) + C ′(x)] + C ′′(x) = 0,

for a∗ < x < b∗. This can be rewritten as

σ2

2
P ′′(x) + b(x)P ′(x)− r(x)P (x) + H(x) = 0

for a∗ < x < b∗. Here, b(x) = µ(x) +
σ2

2
µ′′(x)

(α−µ′(x)) , r(x) = [(α− 2µ′(x))− µ(x)µ′′(x)
(α−µ′(x)) ] and

H(x) = C′′(x)(α−µ′(x))+µ′′(x)C′(x)
(α−µ′(x)) on the interval [a∗, b∗]. We use the assumptions (1.7) and

(1.8) to observe that the functions b(.), r(.) and H(.) are well defined and continuous on [a∗, b∗].
Moreover, r(x) > 0 by (1.6) and by (1.10), d

dx [ C′(x)
(α−µ′(x)) ] ≤ 0 on [a∗, b∗].

Notice that H(x)
(α−µ′(x)) = d

dx [ C′(x)
(α−µ′(x)) ]. Therefore, using (1.7) and (1.10), we can conclude that

H(x) ≤ 0 on (a∗, b∗). Since, P (a∗) = P (b∗) = 0, now we can apply the maximum principle for
differential equations (page 7, [8]) to conclude P (x) ≤ 0 on [a∗, b∗]. Hence, part (ii) follows
and this completes the proof of the lemma.
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To describe our candidate for a saddle point, first we introduce the process Z∗
x, which is a

weak solution to

Z∗
x(t) = x +

∫ t

0

µ(Z∗
x(s))ds +

∫ t

0

σ0I(a∗,b∗)(Z∗
x(s))dW (s) (2.7)

where IA represents the indicator function of the set A. Notice that the corresponding control
process u∗(t) = I(a∗,b∗)(Z∗

x(t)) is a feed-back type control. Next, we introduce a stopping rule
τ∗ on C[0,∞) defined by

τ∗(f) = inf{t ≥ 0 : f(t) ≤ a∗ or f(t) ≥ b∗}
= +∞, if the above set is empty.

(2.8)

Now, we are ready to show that the above pair (τ∗, Z∗
x) is a saddle point.

Theorem 2.2. Assume the existence of a finite interval (a∗, b∗) and a function Q0 satisfying
(2.2) and (2.3). Then the pair (τ∗, Z∗

x) is a saddle point. Furthermore, the stochastic game
has a value function, is given by

V (x) =
{

Q0(x) if a∗ < x < b∗,
0 otherwise. (2.9)

Proof. We intend to verify the two inequalities in (1.11) in the following proof. Notice that
the domain of the infinitesimal generator of the Z∗

x process consists of all C2 functions f which
satisfy f ′′(a∗) = f ′′(b∗) = 0 (for details, see [6].)

Let x be in [a∗, b∗]. Then,we can apply Itô’s lemma to Q0(Z∗
x(t))e−αt and use (2.2) and (2.3)

to obtain

Q0(x) = E

∫ τ∗(Z∗)

0

e−αtC(Z∗(t))dt (2.10)

Next, we take any stopping time τ and apply Itô’s lemma to obtain

0 ≤ E[Q0(Z∗
x(τ))e−ατ ] = Q0(x)− E

∫ τ

0

e−αtC(Z∗(t))dt.

Hence,

E

∫ τ

0

e−αtC(Z∗(t))dt ≤ Q0(x). (2.11)

This verifies the first inequality of (1.11) when the initial point x is inside the interval [a∗, b∗].

If x is outside the interval [a∗, b∗], then τ∗(Z∗
x) = 0 and

E
∫ τ∗(Z∗)

0
e−αtC(Z∗(t))dt = 0. The process Z∗

x is deterministic until it enters the interval
[a∗, b∗] and we let T0 be the first entrance time to the interval [a∗, b∗]. Then

E

∫ τ

0

e−αtC(Z∗(t))dt =E

∫ τ∧T0

0

e−αtC(Z∗(t))dt

+ E

∫ τ

τ∧T0

e−αtC(Z∗(t))dt.
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By Lemma 2.1, the cost function C is negative outside the interval [a∗, b∗]. Hence, the first
term is less than or equal to zero. Similar to the proof of (2.11), we can show that the second
term is also less than or equal to zero. Thus,

E

∫ τ

0

e−αtC(Z∗(t))dt ≤ E

∫ τ∗(Z∗)

0

e−αtC(Z∗(t))dt = 0.

This verifies the first inequality of (1.11) when x is outside [a∗, b∗].

Now it remains to verify the second inequality of (1.11). Let the initial point x be inside [a∗, b∗]
and Xx be any process which satisfies (1.1) with the corresponding control u(·). We apply
Itô’s lemma and obtain

E

∫ τ∗(X)

0

e−αt(
u(t)2

2
Q′′

0 + µ(Xx(t))Q′
0 − αQ0)(Xx(t))dt

= Q0(x)− E
[
Q0(Xx(τ∗(X)))e−ατ∗(X)

]
(2.12)

where τ∗ is defined in (2.8). By (2.5), Q′′
0 ≤ 0 on [a∗, b∗]. Therefore,

σ2
0

2
Q′′

0(Xx(t)) ≤ u(t)2

2
Q′′

0(Xx(t)).

By using (2.2), we obtain

E
[
Q0(Xx(τ∗(X)))e−ατ∗(X)

]
≥ Q0(x)− E

∫ τ∗(X)

0

e−αtC(Xx(t))dt.

Notice that if τ∗(X) is finite, then Q0(Xx(τ∗(X))) = 0 and
Q0(Xx(τ∗(X)))e−ατ∗(X) = 0 when τ∗(X) is infinite.
Hence, E[Q0(Xx(τ∗(X)))e−ατ∗(X)] = 0 and

E

∫ τ∗(X)

0

e−αtC(Xx(t))dt ≥ Q0(x).

Using this together with (2.10), we obtain the second inequality of (1.11) when x is in [a∗, b∗].

When x is outside the interval [a∗, b∗], clearly, τ∗(X) = 0 and τ∗(Z∗) = 0. Consequently,
E

∫ τ∗(X)

0
e−αtC(Xx(t))dt = 0 and

E

∫ τ∗(Z∗)

0

e−αtC(Z∗
x(t))dt = 0

. Hence the second inequality of (1.11) follows.

Therefore, we can conclude that the pair (τ∗, Z∗
x) is a saddle point and V (x) = V (x) for all x,

where V (x) and V (x) are defined in (1.4) and (1.5) respectively. Consequently, this stochastic
game has a value function and it is given by (2.9). This completes the proof.
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3 An Optimal Stopping Problem

In this section, we consider an optimal stopping problem which is related to the construction
of the function Q0. We begin with the process {Yx(t) : t ≥ 0} which satisfies

Yx(t) = x +
∫ t

0

µ(Yx(s))ds + σ0W (t), (3.1)

for t ≥ 0. Here, {W (t) : t ≥ 0} is a Brownian motion adapted to a Brownian filtration {Ft} in
a probability space (Ω,F, P ). We introduce the infinitesimal generator G of (3.1) by

G =
σ2

0

2
d2

dx2
+ µ(x)

d

dx
(3.2)

and for α > 0, we define the differential operator G − α by

G − α =
σ2

0

2
d2

dx2
+ µ(x)

d

dx
− α. (3.3)

Let D be the collection of all {Ft} stopping times. We consider the optimal stopping problem
with the value function U(x) given by

U(x) = sup
τ∈D

E

∫ τ

0

e−αtC(Yx(t))dt. (3.4)

Since C(·) is positive on the interval (r, s), U(·) is also strictly positive on (r, s). It is known
that(see [7]) this value function U is a C1 function and it satisfies the variational inequality

max{(G − α)U(x) + C(x),−U(x)} = 0, (3.5)

for almost every x in R.

It is also known that, (see [7]), there is a finite interval [c∗, d∗] so that the set [U(x) > 0] is
equal to the open interval (c∗, d∗). Moreover, U(c∗) = U(d∗) = 0, (G−α)U(x)+C(x) = 0 for
c∗ < x < d∗, U ′(c∗) = U ′(d∗) = 0 and U(x) = 0 outside the interval (c∗, d∗). Thus, “the prin-
ciple of smooth fit” holds for U at the points c∗ and d∗. Also, U ′′(c∗+) > 0 and U ′′(d∗−) > 0.

Furthermore, if Qab is a positive function on [a, b] which satisfies

(G − α)Qab(x) + C(x) = 0, for a < x < b,

Qab(a) = Qab(b) = 0, Qab(x) > 0 on (a, b).
(3.6)

Then by Itô’s lemma, we can conclude that

Qab(x) = E

∫ τab

0

e−αtC(Yx(t))dt,

for a ≤ x ≤ b, where τab is the first exit time from the interval [a, b]. Hence 0 < Qab(x) ≤ U(x)
for all x in (a, b). Consequently,

[a, b] ⊆ [c∗, d∗]. (3.7)
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4 Construction of Q0

Let G be the differential operator introduced in (3.2). We consider the collection of the func-
tions Qab along with their corresponding intervals [a, b] satisfying the following conditions:

(i) The interval [a, b] satisfy
[r, s] ⊆ [a, b] ⊆ [c∗, d∗] . (4.1)

(ii) The function Qab is a solution to the boundary value problem

(G − α)Qab(x) + C(x) = 0, for a < x < b,

Qab(a) = Qab(b) = 0.
(4.2)

(iii) The function Qab also satisfies

Qab(x) > 0 on (a, b), Q′′
ab(a) ≤ 0, and Q′′

ab(b) ≤ 0. (4.3)

Theorem 4.1. There is a finite interval [a∗, b∗] and an associated function Qa∗b∗ which satisfy
(4.1), (4.2) and (4.3) above together with the following additional property:

Q′′
a∗b∗(a

∗) = Q′′
a∗b∗(b

∗) = 0 and Q′′
a∗b∗(x) ≤ 0

on the interval (a∗, b∗).

Remark.
For convenience, we relabel this function Qa∗b∗ as Q0 and use it as required in Theorem 2.1.

Proof. We set

C =
{
[a, b] : [a, b] satisfies (4.1) and there exists Qab satisfying (4.2) and (4.3)

}
(4.4)

First we show that [r, s] is in C. Since C(·) is strictly positive in (r, s), we can apply the max-
imum principle for differential equations (see [8], page 7) to Qrs to conclude Qrs(x) > 0 on
(r, s). Also, by the boundary point lemma ([8] page 7), Q′

rs(r) > 0 and Q′
rs(s) < 0. Hence,

using the differential equation for Qrs it follows that Q′′
rs(r) < 0 and Q′′

rs(s) < 0. Therefore,
the interval [r, s] is in C.

Now let ([an, bn]) be an increasing sequence of nested intervals in C. Then (an) is a decreasing
sequence and (bn) is an increasing sequence. We let l = lim

n
an and m = lim

n
bn. Then l and m

are finite and the interval [l, m] satisfies (4.1).

Throughout the remaining arguments, we will use the following facts from the theory of dif-
ferential equations.

a) Two distinct solutions of the differential equation (G − α)Q(x) + C(x) = 0 cannot meet
more than once.

b) The solution Qab(x) and its first and second derivatives are jointly continuous in (a, b, x).
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By elementary analysis, it can be shown that Qanbn
is increasing to Qlm, lim

n
Q′

anbn
(x) =

Q′
lm(x) and lim

n
Q′′

anbn
(x) = Q′′

lm(x) for all x in (l, m). It is easy to verify that Qlm satisfies

(4.2) and (4.3). Thus, [l, m] is in C. Therefore, each nested increasing sequence in C has an
upper bound in C. By Zorn’s lemma, C has a maximal element. We label it [a∗, b∗]. Our next
step is to to show that Q′′

a∗b∗(a
∗) = Q′′

a∗b∗(b
∗) = 0.

First, notice that from (3.7), it follows that if [a, b] is in C, then [a, b] ⊆ [c∗, d∗]. In the following
argument, we intend to show that [a, b] is a proper subset of [c∗, d∗].

Suppose that [a, b] = [c∗, d∗], then, by the uniqueness of the solution to (4.2), Qab(x) = U(x)
for all x in [c∗, d∗], where U is given in (3.4). But, by the discussion below (3.5), we have
U ′′(c∗+) > 0 and U ′′(d∗−) > 0. Hence, Qab does not satisfy (4.3). This is a contradiction and
we conclude that [a, b] 6= [c∗, d∗]. Now suppose a = c∗, b < d∗. Then, Qc∗d∗(x) ≥ Qab(x) ≥ 0
for all x in [a, b], since Qc∗d∗ is same as the value function U of the optimal stopping problem
(3.4). But Q′

c∗d∗(c
∗) = 0, hence Q′

ab(a) = 0. Then, Qc∗d∗ and Qab both satisfy the same
differential equation with the same initial conditions at the point a = c∗. Hence, they are the
same and this implies that b = d∗. This is a contradiction. A similar contradiction can be
obtained in the case a > c∗, b = d∗. Consequently, c∗ < a < b < d∗ for any [a, b] in C.

Next, if [a, b] is in C, then by (4.3), Q′′
ab(a) ≤ 0 and Q′′

ab(b) ≤ 0. Suppose that Q′′
ab(a) ≤ 0

and Q′′
ab(b) < 0 when [a, b] is in C. We will now show that there is an ε > 0 and a δ > 0 so

that [a− δ, b + ε] is in C. The corresponding result can also be obtained when Q′′
ab(a) < 0 and

Q′′
ab(b) ≤ 0 and [a, b] is in C with an analogous proof.

We must first extend the function Qab to R so that it satisfies the differential equation in (4.2)
everywhere. Then we evaluate Qab in (4.2) at the points a and b to obtain

µ(a)Q′
ab(a) + C(a) ≥ 0 and µ(b)Q′

ab(b) + C(b) > 0. (4.5)

Since [r, s] ⊆ [a, b] , µ(a) > 0 and µ(b) < 0 , we can conclude Q′
ab(a) ≥ 0 and Q′

ab(b) < 0.
Hence, we can pick a small ε1 > 0 so that Qab(b+ε) < 0 for each 0 < ε < ε1. Next, consider the
solution Qa,b+ε to (4.2) on the interval (a, b + ε). Since Qab(x) > 0 on (a, b) and since two dis-
tinct solutions to the differential equation can meet only once, we obtain Qa,b+ε(x) > Qab(x)
for all a < x ≤ b. Consequently, Q′

a,b+ε(a) ≥ Q′
ab(a). But, by the uniqueness of the solutions

to the initial value problem corresponding to (4.2), we conclude Q′
a,b+ε(a) 6= Q′

ab(a). Hence,
Q′

a,b+ε(a) > Q′
ab(a) ≥ 0.

By evaluating (4.2) for Qa,b+ε at the point x = a, and by (4.5), we obtain

σ2

2
Q′′

a,b+ε(a) = −[µ(a)Q′
a,b+ε(a) + C(a)] < −[µ(a)Q′

ab(a) + C(a)] ≤ 0.

Thus, Q′′
a,b+ε(a) < 0 for each 0 < ε < ε1. But, as a function of (p, q, x), Q′′

pq(x) is continuous
in (p, q, x) and Q′′

ab(b) < 0. Therefore, we can choose an ε > 0 so that Q′′
a,b+ε(b + ε) <

0. Consequently, [a, b + ε] is in C. Using the joint continuity of Qpq(x), Q′
pq(x) and Q′′

pq(x)
in the variables (p, q, x), now we can find a small δ > 0 so that Q′′

a−δ,b+ε(a − δ) < 0 and
Q′′

a−δ,b+ε(b + ε) < 0. For such a δ > 0, Qa−δ,b+ε and Qa,b+ε can meet only at b + ε and hence
Qa−δ,b+ε(x) > Qa,b+ε(x) > Qab(x) for all x in (a, b + ε). Consequently, [a− δ, b + ε] is also in
C.
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Since [a∗, b∗] is a maximal element in C, therefore it follows that Q′′
a∗b∗(a

∗) = Q′′
a∗b∗(b

∗) = 0.
This completes the proof.
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